1
|
Wang X, Zhang S, Wang X, Zhou L, Tang Y, Xiao Y, Zhang Y, Li W. β-cyclodextrin-modified carboxymethyl chitosan/hyaluronic acid-based crosslinked composite nanogels as a dual responsive carrier for targeting anti-tumor therapy. Int J Pharm 2024; 667:124917. [PMID: 39521160 DOI: 10.1016/j.ijpharm.2024.124917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Advanced nanosized drug delivery systems can significantly improve efficacy and safety of first-line chemotherapeutics by enhancing tumor targeting. Herein, one-pot covalent crosslinking approach was developed to generate biodegradable tumor-targeted composite Nanogels from carboxymethyl chitosan, hyaluronic acid, cystamine and 6-ethylene-diamine-6-deoxy-β-cyclodextrin loaded with doxorubicin (DOX) for controlled intracellular DOX release. The optimized synthetic procedures generated Nanogels of about 190 nm in size and 28.3 % drug loading capability. DOX-loaded Nanogels was effectively internalized into tumor cells mainly by CD44 receptor-mediated endocytosis and rapidly released DOX in response to the high level of GSH in cytoplasm and acidic intracellular environments. DOX-loaded Nanogels significantly inhibited the tumor growth especially without appreciable side toxicities in 4 T1 tumor-bearing mice model owing to CD44 receptor-mediated active targeting and the passive targeting of Nanogels by enhanced permeation and retention effect. Overall, our newly developed composite Nanogels might be employed as a potentially effective therapeutic strategy for tumor therapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shurong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyue Wang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Liping Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yang Tang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Zhang M, Wang K, Li M, Fang X, Chen Z, Li Y, Lu H, Zhang Q. Highly Efficient and Long-Lasting Chemiluminescence-Functionalized Nanohydrogel for Imaging-Guided Precise Piperlongumine Chemotherapy. Anal Chem 2024; 96:19833-19839. [PMID: 39610273 DOI: 10.1021/acs.analchem.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
A major challenge for imaging-guided precise chemotherapy remains the ability to track the in situ real-time variation of the reactive oxygen species (ROS) level during treatment with prooxidation antitumor drugs. Chemiluminescence (CL) is widely used as an in vivo imaging tool with an excellent signal-to-noise ratio and high biological safety. However, suffering from flash-type and poor water solubility, most of the reported CL probes for ROS detection are unsuitable for in vivo long-term tracking. Herein, we designed a water-soluble CL nanohydrogel (L-012/Co2+@NGs) by cross-linking of vinyl-derived β-cyclodextrin monomer (MAH-β-CD) and loaded with luminol analog L-012 and cobalt ions (Co2+). In vitro studies reveal that L-012/Co2+@NGs exhibit long-lasting CL emission (up to 4 h) due to the slow diffusion of hydrogen peroxide in the nanohydrogel. High catalytic efficiency from the accelerated reduction of Co3+ to Co2+ through Tris and chelation of Co2+, as well as protection of the β-CD cavity against the active intermediate of L-012, enables L-012/Co2+@NGs to exhibit a 722-fold CL signal turn-on ratio and a nanomolar limit of detection (8.9 nmol/L). Piperlongumine (PL) was selected as a model of prooxidation drugs. The long-term and highly efficient CL strategy was designed for monitoring the local dynamic changes of ROS in PL-treated tumor-bearing mice for 150 min. The CL signal increased over time until reaching its maximum with a ∼6-fold increase at 15 min and then decreased slowly. The CL-functionalized nanohydrogel platform with good biocompatibility offers a great opportunity for imaging-guided precise tumor chemotherapy of PL and other prooxidation antitumor drugs.
Collapse
Affiliation(s)
- Miaomiao Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Kang Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Meiqin Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xun Fang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhongxiang Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Yuting Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Haifeng Lu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Qunlin Zhang
- Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
3
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
4
|
Topuz F, Uyar T. Recent Advances in Cyclodextrin-Based Nanoscale Drug Delivery Systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1995. [PMID: 39480078 DOI: 10.1002/wnan.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024]
Abstract
Cyclodextrins (CDs) belong to a class of cyclic oligosaccharides characterized by their toroidal shape consisting of glucose units linked via α-1,4-glycosidic bonds. This distinctive toroidal shape exhibits a dual nature, comprising a hydrophobic interior and a hydrophilic exterior, making CDs highly versatile in various pharmaceutical products. They serve multiple roles: they act as solubilizers, stabilizers, controlled release promoters, enhancers of drug bioavailability, and effective means of masking undesirable tastes and odors. Taking advantage of these inherent benefits, CDs have been integrated into numerous nanoscale drug delivery systems. The resulting nanomaterials exploit the exceptional properties of CDs, including their ability to solubilize hydrophobic drugs for substantial drug loading, engage in supramolecular complexation for engineered nanomaterials, increase bioavailability for improved therapeutic efficacy, stabilize labile drugs, and exhibit biocompatibility and versatility. This paper compiles recent studies on CD functional nanoscale drug delivery platforms. First, we described the physicochemical and toxicological aspects of CDs, CD/drug inclusion complexation, and their impact on improving drug bioavailability. We then summarized applications for CD-functional nano delivery systems based on polymeric, hybrid, lipid-based nanoparticles, and CD-based nanofibers. Particular interest was in the targeted applications and the function of the CD molecules used. In most applications, CD molecules were used for drug solubilization and loading, while in some studies, CD molecules were employed for supramolecular complexation to construct nanoscale drug delivery systems. Finally, the review concludes with a thoughtful consideration of the current challenges and outlook.
Collapse
Affiliation(s)
- Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Qin Y, Xu Y, Lin F, Qiu Y, Luo Y, Lv X, Liu T, Li Y, Liu Z, Yang S. Reactive oxygen species-responsive nano gel as a carrier, combined with photothermal therapy and photodynamic therapy for the treatment of brucellosis. J Biomater Appl 2024:8853282241279340. [PMID: 39440835 DOI: 10.1177/08853282241279340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Brucellosis is an intracellular infectious disease that is primarily treated with antibacterial therapy. However, most antibacterial drugs struggle to penetrate the cell membrane and may be excluded or inactivated within the cell. In a recent study, researchers developed a nanogel coated with polydopamine (PDA) that responds to reactive oxygen species (ROS) and has enhanced adhesion properties. This nanogel encapsulates photosensitized zinc phthalocyanine (ZnPc) and an antibacterial drug, and is further modified with folic acid (FA) for active targeting. The resulting ROS-responsive nanogel, termed PDA@PMAA@ZnPc@DH-FA, can reach temperatures up to 50°C under near-infrared light, leading to a 72.1% improvement in drug release through increased ROS production. Cell staining confirmed a cell survival rate above 75%, with a low hemolysis rate of only 4.633%, indicating excellent biocompatibility. Furthermore, the study's results showed that the nanogel exhibited stronger killing effects against Brucella compared to administering the drug alone. Under near-infrared irradiation, the nanogel achieved a bacteriostatic rate of 99.8%. The combined approach of photothermal therapy and photodynamic therapy offers valuable insights for treating Brucella.
Collapse
Affiliation(s)
- Yuchang Qin
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yuanyuan Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Fuli Lin
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yinwei Qiu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yujie Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Xuan Lv
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Tianyu Liu
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Yongsheng Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
6
|
Hu Y, Zhou Y, Li K, Zhou D. Recent advances in near-infrared stimulated nanohybrid hydrogels for cancer photothermal therapy. Biomater Sci 2024; 12:4590-4606. [PMID: 39136645 DOI: 10.1039/d4bm00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanomedicine has emerged as a promising avenue for advancing cancer treatment, but the challenge of mitigating its in vivo side effects necessitates the development of innovative structures and materials. Recent investigation has unveiled nanogels as particularly compelling candidates, characterized by a porous, three-dimensional network architecture that exhibits exceptional drug loading capacity. Beyond this, nanogels boast a substantial specific surface area and can be tailored with specific chemical functionalities. Consequently, nanogels are frequently engineered as a multi-modal synergistic platform for combating cancer, wherein photothermal therapy stands out due to its capacity to penetrate deep tissues and achieve localized tumor eradication through the application of elevated temperatures. In this review, we delve into the synthesis of diverse varieties of photothermal nanogels capable of controlled drug release triggered by either chemical or physical stimuli. It also summarizes their potential for synergistic integration with photothermal therapy alongside other therapeutic modalities to realize effective tumor ablation. Moreover, we analyze the primary mechanisms underlying the contribution of photothermal nanogels to cancer treatment while underscoring their adeptness in regulating therapeutic temperatures for repairing bone defects resulting from tumor-associated trauma. Envisioned as an auspicious strategy in the realm of cancer therapy, photothermal nanogels hold promise for furnishing controlled drug delivery and precise thermal ablation capabilities.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Zhou
- Huanggang Central Hospital of Yangtze University, Huanggang, 438000, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Dong Zhou
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
7
|
Jarak I, Ramos S, Caldeira B, Domingues C, Veiga F, Figueiras A. The Many Faces of Cyclodextrins within Self-Assembling Polymer Nanovehicles: From Inclusion Complexes to Valuable Structural and Functional Elements. Int J Mol Sci 2024; 25:9516. [PMID: 39273469 PMCID: PMC11395033 DOI: 10.3390/ijms25179516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Most chemotherapeutic agents are poorly soluble in water, have low selectivity, and cannot reach the tumor in the desired therapeutic concentration. On the other hand, sensitive hydrophilic therapeutics like nucleic acids and proteins suffer from poor bioavailability and cell internalization. To solve this problem, new types of controlled release systems based on nano-sized self-assemblies of cyclodextrins able to control the speed, timing, and location of therapeutic release are being developed. Cyclodextrins are macrocyclic oligosaccharides characterized by a high synthetic plasticity and potential for derivatization. Introduction of new hydrophobic and/or hydrophilic domains and/or formation of nano-assemblies with therapeutic load extends the use of CDs beyond the tried-and-tested CD-drug host-guest inclusion complexes. The recent advances in nano drug delivery have indicated the benefits of the hybrid amphiphilic CD nanosystems over individual CD and polymer components. This review provides a comprehensive overview of the most recent advances in the design of CDs self-assemblies and their use for delivery of a wide range of therapeutic molecules. It aims to offer a valuable insight into the many roles of CDs within this class of drug nanocarriers as well as current challenges and future perspectives.
Collapse
Affiliation(s)
- Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Sara Ramos
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Beatriz Caldeira
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
8
|
Alishahi M, Xiao R, Kreismanis M, Chowdhury R, Aboelkheir M, Lopez S, Altier C, Bonassar LJ, Shen H, Uyar T. Antibacterial, Anti-Inflammatory, and Antioxidant Cotton-Based Wound Dressing Coated with Chitosan/Cyclodextrin-Quercetin Inclusion Complex Nanofibers. ACS APPLIED BIO MATERIALS 2024; 7:5662-5678. [PMID: 39097904 DOI: 10.1021/acsabm.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Quercetin, recognized for its antioxidant, anti-inflammatory, and antibacterial properties, faces limited biomedical application due to its low solubility. Cotton, a preferred wound dressing material over synthetic ones, lacks inherent antibacterial and wound-healing attributes and can benefit from quercetin features. This study explores the potential of overcoming these challenges through the inclusion complexation of quercetin with cyclodextrins (CDs) and the development of a nanofibrous coating on a cotton nonwoven textile. Hydroxypropyl-beta-cyclodextrin (HP-β-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) formed inclusion complexes of quercetin, with chitosan added to enhance antibacterial properties. Phase solubility results showed that inclusion complexation can enhance quercetin solubility up to 20 times, with HP-γ-CD forming a more stable inclusion complexation compared with HP-β-CD. Electrospinning of the nanofibers from HP-β-CD/Quercetin and HP-γ-CD/Quercetin aqueous solutions without the use of a polymeric matrix yielded a uniform, smooth fiber morphology. The structural and thermal analyses of the HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers confirmed the presence of inclusion complexes between quercetin and each of the CDs (HP-β-CD and HP-γ-CD). Moreover, HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed a near-complete loading efficiency of quercetin and followed a fast-releasing profile of quercetin. Both HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed significantly higher antioxidant activity compared to pristine quercetin. The HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers also showed antibacterial activity, and with the addition of chitosan in the HP-γ-CD/Quercetin system, the Chitosan/HP-γ-CD/Quercetin nanofibers completely eliminated the investigated bacteria species. The nanofibers were nontoxic and well-tolerated by cells, and exploiting the quercetin and chitosan anti-inflammatory activities resulted in the downregulation of IL-6 and NO secretion in both immune as well as regenerative cells. Overall, CD inclusion complexation markedly enhances quercetin solubility, resulting in a biofunctional antioxidant, antibacterial, and anti-inflammatory wound dressing through a nanofibrous coating on cotton textiles.
Collapse
Affiliation(s)
- Mohsen Alishahi
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| | - Ruobai Xiao
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| | - Melisa Kreismanis
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| | - Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Mahmoud Aboelkheir
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| | - Serafina Lopez
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hongqing Shen
- Cotton Incorporated, Cary, North Carolina 27513, United States
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Li H, Tan W, Hou M, Yang S, Liu C, Han M, Liang J, Gao Z. Multi-strategy dynamic cross-linking to prepare EGCG-loaded multifunctional Pickering emulsion/α-cyclodextrin/konjac glucomannan composite films for ultra-durable preservation of perishable fruits. Carbohydr Polym 2024; 338:122205. [PMID: 38763727 DOI: 10.1016/j.carbpol.2024.122205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Developing multifunctional films with antibacterial, antioxidant, and sustained-release properties is a robust strategy for preventing contamination of perishable fruits by foodborne microorganisms. This study engineered a sustained-release biodegradable antibacterial film loaded with EGCG (Pickering emulsion (PE)/α-Cyclodextrin (α-CD)/Konjac glucomannan (KGM)) through multi-strategy cross-linking for fruit preservation. EGCG is stabilized using PE and incorporated into the α-CD/KGM inclusion compound; the unique structure of α-CD enhances EGCG encapsulation, while KGM provides the film toughness and surface adhesion. The composite film's physicochemical properties, antioxidant, bacteriostatic and biodegradability were studied. Results showed that Pickering emulsions with 3 % oil phase exhibited excellent stability. Moreover, α-CD introduction increased the loading and sustained release of EGCG from the film, and its concentration significantly affected the light transmission, thermal stability, mechanical strength, mechanical characteristics and antioxidant capacity of the composite membrane. Antioxidant and antimicrobial activities of the composite film increased significantly with increasing α-CD concentration. Application of the film to tomatoes and strawberries effectively inhibited Escherichia coli and Staphylococcus aureus growth, prolonging the shelf-life of the fruits. Notably, the composite film exhibits superior biodegradability in soil. This EGCG-loaded PE/α-CD/KGM composite film is anticipated to be a multifunctional antimicrobial preservation material with sustained-release properties and biodegradable for perishable food applications.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Weiteng Tan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Caiyun Liu
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Ji XY, Zou YX, Lei HF, Bi Y, Yang R, Tang JH, Jin QR. Advances in Cyclodextrins and Their Derivatives in Nano-Delivery Systems. Pharmaceutics 2024; 16:1054. [PMID: 39204399 PMCID: PMC11360519 DOI: 10.3390/pharmaceutics16081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The diversity of cyclodextrins and their derivatives is increasing with continuous research. In addition to monomolecular cyclodextrins with different branched chains, cyclodextrin-based polymers have emerged. The aim of this review is to summarize these innovations, with a special focus on the study of applications of cyclodextrins and their derivatives in nano-delivery systems. The areas covered include nanospheres, nano-sponges, nanogels, cyclodextrin metal-organic frameworks, liposomes, and emulsions, providing a comprehensive and in-depth understanding of the design and development of nano-delivery systems.
Collapse
Affiliation(s)
- Xin-Yu Ji
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
| | - Yi-Xuan Zou
- National institute of Metrology, Beijing 100029, China
| | - Han-Fang Lei
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Yong Bi
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Rui Yang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China;
| | - Ji-Hui Tang
- College of Pharmacy, Anhui Medical University, Hefei 230032, China; (H.-F.L.); (Y.B.)
| | - Qing-Ri Jin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China;
| |
Collapse
|
11
|
Wang H, Tiwari N, Orellano MS, Navarro L, Beiranvand Z, Adeli M, Calderón M. Polyglycerol-Functionalized β-Cyclodextrins as Crosslinkers in Thermoresponsive Nanogels for the Enhanced Dermal Penetration of Hydrophobic Drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311166. [PMID: 38693075 DOI: 10.1002/smll.202311166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Indexed: 05/03/2024]
Abstract
Thermoresponsive nanogels (tNGs) are promising candidates for dermal drug delivery. However, poor incorporation of hydrophobic drugs into hydrophilic tNGs limits the therapeutic efficiency. To address this challenge, β-cyclodextrins (β-CD) are functionalized by hyperbranched polyglycerol serving as crosslinkers (hPG-βCD) to fabricate βCD-tNGs. This novel construct exhibits augmented encapsulation of hydrophobic drugs, shows the appropriate thermal response to dermal administration, and enhances the dermal penetration of payloads. The structural influences on the encapsulation capacity of βCD-tNGs for hydrophobic drugs are analyzed, while concurrently retaining their efficacy as skin penetration enhancers. Various synthetic parameters are considered, encompassing the acrylation degree and molecular weight of hPG-βCD, as well as the monomer composition of βCD-tNGs. The outcome reveals that βCD-tNGs substantially enhance the aqueous solubility of Nile Red elevating to 120 µg mL-1 and augmenting its dermal penetration up to 3.33 µg cm-2. Notably, the acrylation degree of hPG-βCD plays a significant role in dermal drug penetration, primarily attributed to the impact on the rigidity and hydrophilicity of βCD-tNGs. Taken together, the introduction of the functionalized β-CD as the crosslinker in tNGs presents a novel avenue to enhance the efficacy of hydrophobic drugs in dermatological applications, thereby offering promising opportunities for boosted therapeutic outcomes.
Collapse
Affiliation(s)
- Huiyi Wang
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastian, 20018, Spain
| | - Neha Tiwari
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastian, 20018, Spain
| | - Maria Soledad Orellano
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastian, 20018, Spain
| | - Lucila Navarro
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL), Santa Fe, 3000, Argentina
| | - Zahra Beiranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastian, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
12
|
Qi K, Lu Z, Gao X, Tan G, Zhang Z, Liu D, Dong G, Jing D, Luo P. Enhancing Surface Hydroxyl Group Modulation on Carbon Nitride Boosts the Effectiveness of Photodynamic Treatment for Brain Glioma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29793-29804. [PMID: 38819663 DOI: 10.1021/acsami.4c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The effectiveness of photodynamic therapy (PDT) in treating brain gliomas is limited by the solubility of photosensitizers and the production of reactive oxygen species (ROS), both of which are influenced by the concentration of photosensitizers and catalyst active sites. In this study, we developed a controllable surface hydroxyl concentration for the photosensitizer CN11 to address its poor water solubility issue and enhance PDT efficacy in tumor treatment. Compared to pure g-C3N4 (CN), CN11 exhibited 4.6 times higher hydrogen peroxide production under visible light, increased incidence of the n → π* electron transition, and provided more available reaction sites for cytotoxic ROS generation. These findings resulted in a 2.43-fold increase in photodynamic treatment efficacy against brain glioma cells. Furthermore, in vivo experiments conducted on mice demonstrated that CN11 could be excreted through normal cell metabolism with low cytotoxicity and high biosafety, effectively achieving complete eradication of tumor cells.
Collapse
Affiliation(s)
- Kai Qi
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Zihan Lu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guoqiang Tan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuoyuan Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Dan Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guohui Dong
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
13
|
Li M, Chen F, Yang Q, Tang Q, Xiao Z, Tong X, Zhang Y, Lei L, Li S. Biomaterial-Based CRISPR/Cas9 Delivery Systems for Tumor Treatment. Biomater Res 2024; 28:0023. [PMID: 38694229 PMCID: PMC11062511 DOI: 10.34133/bmr.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
CRISPR/Cas9 gene editing technology is characterized by high specificity and efficiency, and has been applied to the treatment of human diseases, especially tumors involving multiple genetic modifications. However, the clinical application of CRISPR/Cas9 still faces some major challenges, the most urgent of which is the development of optimized delivery vectors. Biomaterials are currently the best choice for use in CRISPR/Cas9 delivery vectors owing to their tunability, biocompatibility, and efficiency. As research on biomaterial vectors continues to progress, hope for the application of the CRISPR/Cas9 system for clinical oncology therapy builds. In this review, we first detail the CRISPR/Cas9 system and its potential applications in tumor therapy. Then, we introduce the different delivery forms and compare the physical, viral, and non-viral vectors. In addition, we analyze the characteristics of different types of biomaterial vectors. We further review recent research progress in the use of biomaterials as vectors for CRISPR/Cas9 delivery to treat specific tumors. Finally, we summarize the shortcomings and prospects of biomaterial-based CRISPR/Cas9 delivery systems.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Fenglei Chen
- College of Veterinary Medicine, Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses,
Yangzhou University, Yangzhou 225009, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Ying Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
14
|
Nunes AMA, de Oliveira Alves Júnior J, Haydée VS, Júnior JAO. Intelligent Systems based on Cyclodextrins for the Treatment of Breast Cancer. Curr Pharm Des 2024; 30:2345-2363. [PMID: 38967070 DOI: 10.2174/0113816128291108240613094515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/15/2024] [Accepted: 05/03/2024] [Indexed: 07/06/2024]
Abstract
The incidence of breast cancer has been increasing over the last four decades, although the mortality rate has decreased. Endocrine therapy and chemotherapy are the most used options for cancer treatment but several obstacles are still attributed to these therapies. Smart materials, such as nanocarriers for targeting, delivery and release of active ingredients, sensitive to intrinsic-stimuli (pH-responsive, redox-responsive, enzyme- responsive, and thermo-responsive) and extrinsic-stimuli (ultrasound-responsive, magnetic-responsive, light-responsive) have been studied as a novel strategy in breast cancer therapy. Cyclodextrins (CDs) are used in the design of these stimuli-responsive drug carrier and delivery systems, either through inclusion complexes with hydrophobic molecules or covalent bonds with large structures to generate new materials. The present work aims to gather and integrate recent data from in vitro and in vivo preclinical studies of CD-based stimuli- responsive systems to contribute to the research in treating breast cancer. All drug carriers showed high in vitro release rates in the presence of a stimulus. The stimuli-responsive nanoplatforms presented biocompatibility and satisfactory results of IC50, inhibition of cell viability and antitumor activity against several breast cancer cell lines. Additionally, these systems led to a significant reduction in drug dosages, which encouraged possible clinical studies for better alternatives to traditional antitumor therapies.
Collapse
Affiliation(s)
- Adenia Mirela Alves Nunes
- Center for Biological and Health Sciences, State University of Paraíba, R. Baraúnas, 351 - Universitário, Campina Grande - PB, 58429-500, Paraíba, Brazil
| | - José de Oliveira Alves Júnior
- Center for Biological and Health Sciences, State University of Paraíba, R. Baraúnas, 351 - Universitário, Campina Grande - PB, 58429-500, Paraíba, Brazil
| | - Valéria Springer Haydée
- Department of Chemistry, National University of the South, INQUISUR (UNS-CONICET), Av. Alem 1253, Bahía Blanca, Argentina
| | - João Augusto Oshiro Júnior
- Center for Biological and Health Sciences, State University of Paraíba, R. Baraúnas, 351 - Universitário, Campina Grande - PB, 58429-500, Paraíba, Brazil
| |
Collapse
|
15
|
Si Y, Luo H, Zhang P, Zhang C, Li J, Jiang P, Yuan W, Cha R. CD-MOFs: From preparation to drug delivery and therapeutic application. Carbohydr Polym 2024; 323:121424. [PMID: 37940296 DOI: 10.1016/j.carbpol.2023.121424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOFs) show considerable advantages of edibility, degradability, low toxicity, and high drug loading, which have attracted enormous interest, especially in drug delivery. This review summarizes the typical synthesis approaches of CD-MOFs, the drug loading methods, and the mechanism of encapsulation and release. The influence of the structure of CD-MOFs on their drug encapsulation and release is highlighted. Finally, the challenges CD-MOFs face are discussed regarding biosafety assessment systems, stability in aqueous solution, and metal ion effect.
Collapse
Affiliation(s)
- Yanxue Si
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huize Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China.
| | - Pai Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, Hainan, PR China.
| | - Peng Jiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing 100050, PR China.
| |
Collapse
|
16
|
Kubeil M, Suzuki Y, Casulli MA, Kamal R, Hashimoto T, Bachmann M, Hayashita T, Stephan H. Exploring the Potential of Nanogels: From Drug Carriers to Radiopharmaceutical Agents. Adv Healthc Mater 2024; 13:e2301404. [PMID: 37717209 PMCID: PMC11468994 DOI: 10.1002/adhm.202301404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Nanogels open up access to a wide range of applications and offer among others hopeful approaches for use in the field of biomedicine. This review provides a brief overview of current developments of nanogels in general, particularly in the fields of drug delivery, therapeutic applications, tissue engineering, and sensor systems. Specifically, cyclodextrin (CD)-based nanogels are important because they have exceptional complexation properties and are highly biocompatible. Nanogels as a whole and CD-based nanogels in particular can be customized in a wide range of sizes and equipped with a desired surface charge as well as containing additional molecules inside and outside, such as dyes, solubility-mediating groups or even biological vector molecules for pharmaceutical targeting. Currently, biological investigations are mainly carried out in vitro, but more and more in vivo applications are gaining importance. Modern molecular imaging methods are increasingly being used for the latter. Due to an extremely high sensitivity and the possibility of obtaining quantitative data on pharmacokinetic and pharmacodynamic properties, nuclear methods such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) using radiolabeled compounds are particularly suitable here. The use of radiolabeled nanogels for imaging, but also for therapy, is being discussed.
Collapse
Affiliation(s)
- Manja Kubeil
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Yota Suzuki
- Graduate School of Science and EngineeringSaitama University255 Shimo‐OkuboSakura‐KuSaitama338‐8570Japan
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | | | - Rozy Kamal
- Department of Nuclear MedicineManipal College of Health ProfessionsManipal Academy of Higher EducationManipalKarnataka576104India
| | - Takeshi Hashimoto
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Michael Bachmann
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Takashi Hayashita
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Holger Stephan
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| |
Collapse
|
17
|
Xue Y, Riva N, Zhao L, Shieh JS, Chin YT, Gatt A, Guo JJ. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J Control Release 2023; 364:90-108. [PMID: 37866405 DOI: 10.1016/j.jconrel.2023.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Sports medicine is generally associated with soft tissue injuries including muscle injuries, meniscus and ligament injuries, tendon ruptures, tendinopathy, rotator cuff tears, and tendon-bone healing during injuries. Tendon and ligament injuries are the most common sport injuries accounting for 30-40% of all injuries. Therapies for tendon injuries can be divided into surgical and non-surgical methods. Surgical methods mainly depend on the operative procedures, the surgeons and postoperative interventions. In non-surgical methods, cell therapy with stem cells and cell-free therapy with secretome of stem cell origin are current directions. Exosomes are the main paracrine factors of mesenchymal stem cells (MSCs) containing biological components such as proteins, nucleic acids and lipids. Compared with MSCs, MSC-exosomes (MSC-exos) possess the capacity to escape phagocytosis and achieve long-term circulation. In addition, the functions of exosomes from various cell sources in soft tissue injuries in sports medicine have been gradually revealed in recent years. Along with the biological and biomaterial advances in exosomes, exosomes can be designed as drug carriers with biomaterials and exosome research is providing promising contributions in cell biology. Exosomes with biomaterial have the potential of becoming one of the novel therapeutic modalities in regenerative researches. This review summarizes the derives of exosomes in soft tissue regeneration and focuses on the biological and biomaterial mechanism and advances in exosomal therapy in soft tissue injuries.
Collapse
Affiliation(s)
- Yulun Xue
- Department of Orthopaedic Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215006, Jiangsu, PR China; Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Nicoletta Riva
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Lingying Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Yu-Tang Chin
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Alexander Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Department of Haematology, Mater Dei Hospital, Msida, Malta
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China.
| |
Collapse
|
18
|
Marabada D, Li J, Wei S, Huang Q, Wang Z. Cyclodextrin based nanoparticles for smart drug delivery in colorectal cancer. Chem Biol Drug Des 2023; 102:1618-1631. [PMID: 37705133 DOI: 10.1111/cbdd.14344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The advancement of colorectal cancer (CRC) prevention, detection, and treatment is essential to ensure that survivors live longer and higher-quality lives. The field of cancer detection and therapy has undergone a revolution with the development of nanotechnology for targeted drug delivery. The significant problems with the delivery of cancer drugs are their solubility, stability, and nonspecific distribution. There is a challenge that the acidic and enzymatic environment in the digestive tract will modify or destroy the medication or the active pharmaceutical ingredient. To overcome the problems, nanoparticles have been widely employed during the past several years to increase the specificity, selectivity, and controlled release of drug delivery systems. The site-specific and targeted delivery leads to reduce toxicity and side effects. With respect to the capability and utilization of cyclodextrin-based nanoparticles in different aspects of the tumour microenvironment and gut microbiota, a survey of current research papers was conducted via looking through databases including GoogleScholar, PubMed, Web of Science, and Scopus. This review aims to summarize cutting-edge nanoparticulate-based technologies and therapies for CRC.
Collapse
Affiliation(s)
- Davies Marabada
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinlei Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shijie Wei
- General Hospital, Ningxia Medical University, Yinchuan, China
| | - Qing Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
19
|
Pantaleone S, Gho CI, Ferrero R, Brunella V, Corno M. Exploration of the Conformational Scenario for α-, β-, and γ-Cyclodextrins in Dry and Wet Conditions, from Monomers to Crystal Structures: A Quantum-Mechanical Study. Int J Mol Sci 2023; 24:16826. [PMID: 38069149 PMCID: PMC10706634 DOI: 10.3390/ijms242316826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cyclodextrins (CDs) constitute a class of cyclic oligosaccharides that are well recognized and largely applied in the drug delivery field, thanks to their biocompatibility, low cost, and the possibility to be derivatized in order to tune and optimize the complexation/release of the specific drug. The conformational flexibility of these systems is one of their key properties and requires a cost-effective methodology to be studied by combining the accuracy of results with the possibility of exploring a large set of conformations. In the present paper, we have explored the conformational potential energy surface of the monomers and dimers of α-, β-, and γ-cyclodextrins (i.e., 6, 7, and 8 monomeric units, respectively) by means of fast but accurate semiempirical methods, which are then refined by state-of-the-art DFT functionals. Moreover, the crystal structure is considered for a more suitable comparison with the IR spectrum experimentally recorded. Calculations are carried out in the gas phase and in water environments, applying both implicit and explicit treatments. We show that the conformation of the studied molecules changes from the gas phase to the water, even if treated implicitly, thus modifying their complexation capability.
Collapse
Affiliation(s)
| | | | | | | | - Marta Corno
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy; (S.P.); (C.I.G.); (R.F.); (V.B.)
| |
Collapse
|
20
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
21
|
Yilmaz AS, Ozturk S, Salih B, Ayyala RS, Sahiner N. ESI-IM-MS characterization of cyclodextrin complexes and their chemically cross-linked alpha (α-), beta (β-) and gamma (γ-) cyclodextrin particles as promising drug delivery materials with improved bioavailability. Colloids Surf B Biointerfaces 2023; 230:113522. [PMID: 37657404 DOI: 10.1016/j.colsurfb.2023.113522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Cyclodextrins (CDs) are natural cyclic oligosaccharides with a relatively hydrophobic cavity and a hydrophilic outer surface. In this study, alpha (α-), beta (β-) and gamma (γ-) CD particles were prepared by directly using α-, β-, and γ-CDs as monomeric units and divinyl sulfone (DVS) as a crosslinker in a single-step via reverse micelle microemulsion crosslinking technique. Particles of p(α-CD), p(β-CD), and p(γ-CD) were perfectly spherical in sub- 10 µm size ranges. The prepared p(CD) particles at 1.0 mg/mL concentrations were found biocompatible with > 95 % cell viability against L929 fibroblasts. Furthermore, p(α-CD) and p(β-CD) particles were found non-hemolytic with < 2 % hemolysis ratios, whereas p(γ-CD) particles were found to be slightly hemolytic with its 2.1 ± 0.4 % hemolysis ratio at 1.0 mg/mL concentration. Furthermore, a toxic compound, Bisphenol A (BPA) and a highly antioxidant polyphenol, curcumin (CUR) complexation with α-, β-, and γ-CD molecules was investigated via Electrospray-Ion Mobility-Mass Spectrometry (ESI-IM-MS) and tandem mass spectrometry (MS/MS) analysis. It was determined that the most stable noncovalent complex was in the case of β-CD, but the complex stoichiometry was changed by the hydrophobic nature of the guest molecules. In addition, BPA and CUR were separately loaded into prepared p(CD) particles as active agents. The drug loading and release studies showed that p(CD) particles possess governable loading and releasing profiles.
Collapse
Affiliation(s)
- Aynur Sanem Yilmaz
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Serhat Ozturk
- Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara 06800, Turkey
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, FL 33612, USA
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey; Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, 12901 Bruce B Down Blvd, MDC 21, Tampa, FL 33612, USA; Department of Chemical & Biomedical Engineering, Materials Science and Engineering Program, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
22
|
Khalid FM, Ijaz M, Mahmood A, Waqas MK, Hussain T, Asim MH, Ahmad N, Arshad S, Rehman MU, Nazir I. Mucoadhesive, Fluconazole-Loaded Nanogels Complexed with Sulfhydryl-β-cyclodextrin for Oral Thrush Treatment. AAPS PharmSciTech 2023; 24:194. [PMID: 37752361 DOI: 10.1208/s12249-023-02653-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
The objective of this study was to generate fluconazole-loaded mucoadhesive nanogels to address the problem of hydrophobicity of fluconazole (FL). An inclusion complex was formulated with sulfhydryl-β-CD (SH-β-CD) followed by nanogels formation by a Schiff base reaction of carbopol 940 (CA-940) and gelatin (GE). For characterization, PXRD, FT-IR analysis, drug content, and phase solubility studies were performed. Similarly, nanogels were assessed for particle size, zeta potential, organoleptic, and spreadability studies. Moreover, drug contents, rheological, in vitro drug permeation, release kinetics, toxicity, and stability studies of nanogels were performed. Furthermore, mucoadhesive characteristics over the buccal mucosal membrane of the goat were evaluated. The nanogels formulated with a higher amount of CA-940 and subsequently loaded with the inclusion complexes of FL showed promising results. PXRD and FT-IR analysis confirmed the physical complexes by displaying a reduction in the intensity of peaks of FL. The average particle size of nanogels was in the range of 257 to 361 nm. The highest drug content of 88% was encapsulated within the FL-SH-β-CD complex. All formulations at 0.5-1% concentration displayed no toxicity to the Caco-2 cell lines. Nanogels loaded with FL-SH-β-CD complexes showed 18-fold improved mucoadhesion on the buccal mucous membrane of the goat when compared to simple nanogels. The in vitro permeation study exhibited significantly enhanced permeation and first-order concentration-dependent drug release was observed. On the bases of these findings, we can conclude that a mucoadhesive nanogel-based drug delivery system can be an ideal therapy for candidiasis.
Collapse
Affiliation(s)
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Defense Road, 1.5Km off Raiwind Road, Lahore, 54000, Pakistan.
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, 51133, Abu Dhabi, United Arab Emirates
| | | | - Talib Hussain
- Institute of Pharmaceutical Sciences, UVAS, Lahore, 54000, Pakistan
| | | | - Nadeem Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Defense Road, 1.5Km off Raiwind Road, Lahore, 54000, Pakistan
| | - Shumaila Arshad
- Doctor's Institute of Health Sciences, 3-Km Sargodha Bypass Road, Sargodha, 40100, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Ripha International University, Islamabad, 45550, Pakistan
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Defense Road, 1.5Km off Raiwind Road, Lahore, 54000, Pakistan
| |
Collapse
|
23
|
Sarabia-Vallejo Á, Caja MDM, Olives AI, Martín MA, Menéndez JC. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023; 15:2345. [PMID: 37765313 PMCID: PMC10534465 DOI: 10.3390/pharmaceutics15092345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral bioavailability of many drugs. The microencapsulation process modifies key properties of the included drugs including volatility, dissolution rate, bioavailability, and bioactivity. In this context, we present relevant examples of the stabilization of labile drugs through the encapsulation in cyclodextrins. The formation of inclusion complexes with drugs belonging to class IV in the biopharmaceutical classification system as an effective solution to increase their bioavailability is also discussed. The stabilization and improvement in nutraceuticals used as food supplements, which often have low intestinal absorption due to their poor solubility, is also considered. Cyclodextrin-based nanofibers, which are polymer-free and can be generated using environmentally friendly technologies, lead to dramatic bioavailability enhancements. The synthesis of chemically modified cyclodextrins, polymers, and nanosponges based on cyclodextrins is discussed. Analytical techniques that allow the characterization and verification of the formation of true inclusion complexes are also considered, taking into account the differences in the procedures for the formation of inclusion complexes in solution and in the solid state.
Collapse
Affiliation(s)
- Álvaro Sarabia-Vallejo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - María del Mar Caja
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - Ana I. Olives
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - M. Antonia Martín
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
24
|
Dhiman A, Bhardwaj D, Goswami K, Agrawal G. Biodegradable redox sensitive chitosan based microgels for potential agriculture application. Carbohydr Polym 2023; 313:120893. [PMID: 37182935 DOI: 10.1016/j.carbpol.2023.120893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
In this work, we report redox sensitive, 2,3-dihydroxybenzoic acid (DH) functionalized chitosan/stearic acid microgels (DH-ChSt MGs) for controlled delivery of insecticide and capturing of heavy metal ions. DH-ChSt MGs (≈146 nm) are prepared by disulfide crosslinking of SH functionalized chitosan and stearic acid rendering them biodegradable. DH-ChSt MGs exhibit high loading (≈8 %) and encapsulation (≈85 %) efficiency for imidacloprid insecticide, and offer its prolonged release (≈75 % after 133 h) under reducing conditions. Functionalization with DH provides enhanced foliar adhesion on pea leaves. DH-ChSt MGs also bind Fe3+ very efficiently due to the strong chelation of Fe3+ by DH, offering the opportunity of supplying Fe3+ nutrient for plant care. MTT assay results using different cells confirm that DH-ChSt MGs are nontoxic up to the experimental concentration of 120 μg/mL. Additionally, reduced DH-ChSt MGs having free thiol groups are also capable of binding heavy metal ions, thus presenting the reported formulation as a promising platform for agriculture application.
Collapse
Affiliation(s)
- Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India
| | - Kajal Goswami
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India.
| |
Collapse
|
25
|
Dabravolski SA, Sukhorukov VN, Melnichenko AA, Khotina VA, Orekhov AN. Oligosaccharides as Potential Therapeutics against Atherosclerosis. Molecules 2023; 28:5452. [PMID: 37513323 PMCID: PMC10386248 DOI: 10.3390/molecules28145452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is the major cause of cardiovascular-disease-related death worldwide, resulting from the subendothelial accumulation of lipoprotein-derived cholesterol, ultimately leading to chronic inflammation and the formation of clinically significant atherosclerotic plaques. Oligosaccharides have been widely used in biomedical research and therapy, including tissue engineering, wound healing, and drug delivery. Moreover, oligosaccharides have been consumed by humans for centuries, and are cheap, and available in large amounts. Given the constantly increasing number of obesity, diabetes, and hyperlipidaemia cases, there is an urgent need for novel therapeutics that can economically and effectively slow the progression of atherosclerosis. In this review, we address the current state of knowledge in oligosaccharides research, and provide an update of the recent in vitro and in vivo experiments that precede clinical studies. The application of oligosaccharides could help to eliminate the residual risk after the application of other cholesterol-lowering medicines, and provide new therapeutic opportunities to reduce the associated burden of premature deaths because of atherosclerosis.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexandra A Melnichenko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| |
Collapse
|
26
|
Vashist A, Raymond AD, Chapagain P, Vashist A, Arias AY, Kolishetti N, Nair M. Multi-functional auto-fluorescent nanogels for theranostics. J Neurovirol 2023; 29:252-257. [PMID: 37248372 PMCID: PMC10404193 DOI: 10.1007/s13365-023-01138-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Here in the present article, the state of art for nanotechnology-enabled nanogel theranostics and the upcoming concepts in nanogel-based therapeutics are summarized. The benefits, innovation, and prospects of nanogel technology are also briefly presented.
Collapse
Affiliation(s)
- Arti Vashist
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| | - Prem Chapagain
- Department of Physics and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - Atul Vashist
- Department of Infection & Immunology, Translational Health Science and Technology, Faridabad, Haryana 121001 India
| | - Adriana Yndart Arias
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| | - Nagesh Kolishetti
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| |
Collapse
|
27
|
Vasdev N, Pawar B, Gupta T, Mhatre M, Tekade RK. A Bird's Eye View of Various Cell-Based Biomimetic Nanomedicines for the Treatment of Arthritis. Pharmaceutics 2023; 15:1150. [PMID: 37111636 PMCID: PMC10146206 DOI: 10.3390/pharmaceutics15041150] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Arthritis is the inflammation and tenderness of the joints because of some metabolic, infectious, or constitutional reasons. Existing arthritis treatments help in controlling the arthritic flares, but more advancement is required to cure arthritis meticulously. Biomimetic nanomedicine represents an exceptional biocompatible treatment to cure arthritis by minimizing the toxic effect and eliminating the boundaries of current therapeutics. Various intracellular and extracellular pathways can be targeted by mimicking the surface, shape, or movement of the biological system to form a bioinspired or biomimetic drug delivery system. Different cell-membrane-coated biomimetic systems, and extracellular-vesicle-based and platelets-based biomimetic systems represent an emerging and efficient class of therapeutics to treat arthritis. The cell membrane from various cells such as RBC, platelets, macrophage cells, and NK cells is isolated and utilized to mimic the biological environment. Extracellular vesicles isolated from arthritis patients can be used as diagnostic tools, and plasma or MSCs-derived extracellular vesicles can be used as a therapeutic target for arthritis. Biomimetic systems guide the nanomedicines to the targeted site by hiding them from the surveillance of the immune system. Nanomedicines can be functionalized using targeted ligand and stimuli-responsive systems to reinforce their efficacy and minimize off-target effects. This review expounds on various biomimetic systems and their functionalization for the therapeutic targets of arthritis treatment, and discusses the challenges for the clinical translation of the biomimetic system.
Collapse
Affiliation(s)
| | | | | | | | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opposite Air Force Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
28
|
Gan S, Wu Y, Zhang X, Zheng Z, Zhang M, Long L, Liao J, Chen W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023; 9:gels9040286. [PMID: 37102898 PMCID: PMC10137920 DOI: 10.3390/gels9040286] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phototherapeutic agent-based phototherapies activated by light have proven to be safe modalities for the treatment of various malignant tumor indications. The two main modalities of phototherapies include photothermal therapy, which causes localized thermal damage to target lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical application due to their phototoxicity, which primarily arises from the uncontrolled distribution of phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects of phototherapy while improving its therapeutic performance, extensive research has focused on developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss the current clinical status of hydrogel-based antitumor phototherapy.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023; 226:535-553. [PMID: 36521697 DOI: 10.1016/j.ijbiomac.2022.12.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The development of nanotechnology has influenced the advancements in biomedical and pharmaceutical fields. The design and formulation of stimuli-responsive nano-drug delivery systems, also called smart drug delivery systems, have attracted significant research worldwide and have been seen as a breakthrough in nanomedicines. The ability of these nanocarriers to respond to external and internal stimuli, such as pH, temperature, redox, electric and magnetic fields, enzymes, etc., has allowed them to deliver the cargo at targeted sites in a controlled fashion. The targeted drug delivery systems limit the harmful side effects on healthy tissue by toxic drugs and furnish spatial and temporal control drug delivery, improved patient compliance, and treatment efficiency. The polymeric nanogels (hydrogel nanoparticles) with stimuli-responsive characteristics have shown great potential in various biomedical, tissue engineering, and pharmaceutical fields. It is primarily because of their small size, biocompatibility, biodegradability, stimuli-triggered drug deliverability, high payload capacity, and tailored functionality. This comprehensive review deals distinctively with polymeric nanogels, their chemical, physical, and biological stimuli, the concepts of nanogels response to different stimuli, and recent advancements. This document will further improve the current understanding of stimuli-responsive materials and drug delivery systems and assist in exploring advanced potential applications of these intelligent materials.
Collapse
Affiliation(s)
- Sachin Bhaladhare
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India.
| | - Sulagna Bhattacharjee
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India
| |
Collapse
|
30
|
Tirsoaga A, Cojocaru V, Badea M, Badea IA, Rostas AM, Stoica R, Bacalum M, Chifiriuc MC, Olar R. Copper (II) Species with Improved Anti-Melanoma and Antibacterial Activity by Inclusion in β-Cyclodextrin. Int J Mol Sci 2023; 24:ijms24032688. [PMID: 36769008 PMCID: PMC9916925 DOI: 10.3390/ijms24032688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
To improve their biological activity, complexes [Cu(bipy)(dmtp)2(OH2)](ClO4)2·dmtp (1) and [Cu(phen)(dmtp)2(OH2)](ClO4)2·dmtp (2) (bipy 2,2'-bipyridine, phen: 1,10-phenantroline, and dmtp: 5,7-dimethyl-1,2,4-triazolo [1,5-a]pyrimidine) were included in β-cyclodextrins (β-CD). During the inclusion, the co-crystalized dmtp molecule was lost, and UV-Vis spectra together with the docking studies indicated the synthesis of new materials with 1:1 and 1:2 molar ratios between complexes and β-CD. The association between Cu(II) compounds and β-CD has been proven by the identification of the components' patterns in the IR spectra and powder XRD diffractograms, while solid-state UV-Vis and EPR spectra analysis highlighted a slight modification of the square-pyramidal stereochemistry around Cu(II) in comparison with precursors. The inclusion species are stable in solution and exhibit the ability to scavenge or trap ROS species (O2·- and HO·) as indicated by the EPR experiments. Moreover, the two inclusion species exhibit anti-proliferative activity against murine melanoma B16 cells, which has been more significant for (2)@β-CD in comparison with (2). This behavior is associated with a cell cycle arrest in the G0/G1 phase. Compared with precursors, (1a)@β-CD and (2a)@β-CD exhibit 17 and 26 times more intense activity against planktonic Escherichia coli, respectively, while (2a)@β-CD is 3 times more active against the Staphylococcus aureus strain.
Collapse
Affiliation(s)
- Alina Tirsoaga
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
| | - Victor Cojocaru
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
| | - Mihaela Badea
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
| | - Irinel Adriana Badea
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
- Correspondence: (I.A.B.); (R.O.)
| | - Arpad Mihai Rostas
- National Institute for Research and Development of Isotopic and Molecular Technologies, Department of Physics of Nanostructured Systems, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Roberta Stoica
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independenței Str., District 5, 050085 Bucharest, Romania
- Biological Sciences Division, The Romanian Academy, 25 Calea Victoriei, Sector 1, District 1, 010071 Bucharest, Romania
| | - Rodica Olar
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av., District 3, 030018 Bucharest, Romania
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str., District 5, 050663 Bucharest, Romania
- Correspondence: (I.A.B.); (R.O.)
| |
Collapse
|
31
|
Guo J, Lin L, Wang Y, Zhang W, Diao G, Piao Y. Supramolecular Design Strategy of a Water-Soluble Diphenylguanidine-Cyclodextrin Polymer Inclusion Complex. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206919. [PMID: 36296510 PMCID: PMC9607006 DOI: 10.3390/molecules27206919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
Diphenylguanidine (DPG) is a widely used secondary accelerator for the vulcanization of natural rubber (NR) latex. However, its low water solubility and high toxicity limit its use in high-end NR products. In this study, a water-soluble inclusion complex of DPG and a β-cyclodextrin polymer (β-CDP), termed DPG-β-CDP, was prepared through supramolecular interactions and characterized using Fourier-transform infrared spectroscopy, 1H NMR, scanning electron microscopy, and UV-vis spectroscopy techniques. In comparison with that of DPG, the water solubility of DPG-β-CDP was greatly enhanced because of the water-soluble host molecule. The molar ratio of DPG to the CD unit in β-CDP was determined to be 1:1. At 25 °C, the binding constant of DPG-β-CDP was found to be 9.2 × 105 L/mol by UV-vis spectroscopy. The proposed method for forming inclusion complexes with high potential for use as water-soluble vulcanization accelerators is promising.
Collapse
Affiliation(s)
- Junqiang Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Liwei Lin
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Yuping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Korea
- Correspondence: or ; Tel.: +82-31-888-9169
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Advanced Institutes of Convergence Technology, Suwon 16229, Korea
| |
Collapse
|