1
|
Zou Y, Liao Z, Zhang R, Song S, Yang Y, Xie D, Liu X, Wei L, Liu Y, Song Y. Cellulose nanofibers/liquid metal hydrogels with high tensile strength, environmental adaptability and electromagnetic shielding for temperature monitoring and strain sensors. Carbohydr Polym 2025; 348:122788. [PMID: 39562066 DOI: 10.1016/j.carbpol.2024.122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024]
Abstract
Hydrogel sensors are widely recognized in the fields of flexible electronics and human motion monitoring due to their multiple properties and potential applications. However, how to prepare hydrogels with multiple excellent properties simultaneously and how to improve the compatibility of conductive fillers with hydrogel matrices remain a major challenge. Therefore, in this work, liquid metal (LM) droplets stabilized by cellulose nanofibers (CNFs) were utilized to initiate the polymerization of acrylamide monomer (Am), which was used as a conductive filler. Meanwhile, reduced graphene oxide (rGO) was introduced to bridge the LM droplets. The hydrogels were then further crosslinked in glycerol. The constructed CNF@LM/polyacrylamide/rGO/gelatin/glycerol hydrogel possesses high tensile properties (>1317 %), high environmental adaptability (-80 to 80 °C), and adhesion properties for multifunctional sensing. What's more, it offers the high sensitivity of both a strain sensor and a temperature sensor for accurate monitoring of human movement at room temperature and even in extreme environments. In addition, this hydrogel has excellent electromagnetic shielding properties and antimicrobial properties. This research opens up a new direction for the preparation of multifunctional hydrogel sensors, expanding their applications in cutting-edge fields such as temperature monitoring, wearable smart devices, e-skin and intelligent robotics.
Collapse
Affiliation(s)
- Yushan Zou
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Zhengyu Liao
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Rui Zhang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanshan Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yutong Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Di Xie
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Xinru Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lishi Wei
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yi Liu
- Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, PR China.
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
2
|
Xin Y, Zhou X, Tan MRJ, Chen S, Huang P, Jiang Y, Wu W, Gao D, Lv J, Magdassi S, Lee PS. 3D-Printed Electrohydrodynamic Pump and Development of Anti-Swelling Organohydrogel for Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415210. [PMID: 39743943 DOI: 10.1002/adma.202415210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Indexed: 01/04/2025]
Abstract
This study introduces advancements in electrohydrodynamic (EHD) pumps and the development of a 3D-printable anti-swelling organohydrogel for soft robotics. Using digital light processing (DLP)technology, precise components with less than 1% size variation are fabricated, enabling a unique manifold pump array. This design achieves an output pressure of 90.2 kPa-18 times higher than traditional configurations-and a flow rate of 800 mL min-1, surpassing previous EHD pumps. To address swelling issues in dielectric liquids, a novel organohydrogel is developed with Young's modulus of 0.33 MPa, 300% stretchability, and a swelling ratio under 10%. Its low swelling is attributed to the shield effect and edge length confinement effect. This durable material ensures consistent pump performance under mechanical stresses like bending and twisting, crucial for dynamic soft robotic environments. These innovations significantly improve EHD pump efficiency and reliability, expanding their potential applications in soft robotics, bioengineering, and vertical farming.
Collapse
Affiliation(s)
- Yangyang Xin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Xinran Zhou
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Ming Rui Joel Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Shaohua Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Peiwen Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Yawei Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Wenting Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Shlomo Magdassi
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
- Casali Center for Applied Chemistry, Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| |
Collapse
|
3
|
Jeon MJ, Randhawa A, Kim H, Dutta SD, Ganguly K, Patil TV, Lee J, Acharya R, Park H, Seol Y, Lim KT. Electroconductive Nanocellulose, a Versatile Hydrogel Platform: From Preparation to Biomedical Engineering Applications. Adv Healthc Mater 2025; 14:e2403983. [PMID: 39668476 DOI: 10.1002/adhm.202403983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Nanocelluloses have garnered significant attention recently in the attempt to create sustainable, improved functional materials. Nanocellulose possesses wide varieties, including rod-shaped crystalline cellulose nanocrystals and elongated cellulose nanofibers, also known as microfibrillated cellulose. In recent times, nanocellulose has sparked research into a wide range of biomedical applications, which vary from developing 3D printed hydrogel to preparing structures with tunable characteristics. Owing to its multifunctional properties, different categories of nanocellulose, such as cellulose nanocrystals, cellulose nanofibers, and bacterial nanocellulose, as well as their unique properties are discussed here. Here, different methods of nanocellulose-based hydrogel preparation are covered, which include 3D printing and crosslinking methods. Subsequently, advanced nanocellulose-hydrogels addressing conductivity, shape memory, adhesion, and structural color are highlighted. Finally, the application of nanocellulose-based hydrogel in biomedical applications is explored here. In summary, numerous perspectives on novel approaches based on nanocellulose-based research are presented here.
Collapse
Affiliation(s)
- Myoung Joon Jeon
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Youjin Seol
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
4
|
Zhang H, Wang P, Zhang H, Chen G, Wang K, Chen X, Chen Z, Jiang M, Yang J, Chen M, Li J. One-Step Digital Light Processing 3D Printing of Robust, Conductive, Shape-Memory Hydrogel for Customizing High-Performance Soft Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68131-68143. [PMID: 39614415 DOI: 10.1021/acsami.4c18098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Mechanically robust and electrically conductive hydrogels hold significant promise for flexible device applications. However, conventional fabrication methods such as casting or injection molding meet challenges in delivering hydrogel objects with complex geometric structures and multicustomized functionalities. Herein, a 3D printable hydrogel with excellent mechanical properties and electrical conductivity is implemented via a facile one-step preparation strategy. With vat polymerization 3D printing technology, the hydrogel can be solidified based on a hybrid double-network mechanism involving in situ chemical and physical dual cross-linking. The hydrogel consists of two chemical networks including covalently cross-linked poly(acrylamide-co-acrylic acid) and chitosan, and zirconium ions are induced to form physically cross-linked metal-coordination bonds across both chemical networks. The 3D-printed hydrogel exhibits multiple excellent functionalities including enhanced mechanical properties (680% stretchability, 15.1 MJ/m3 toughness, and 7.30 MPa tensile strength), rapid printing speed (0.7-3 s/100 μm), high transparency (91%), favorable ionic conductivity (0.75 S/m), large strain gauge factor (≥7), and fast solvent transfer induced phase separation (in ∼3 s), which enable the development of high-performance flexible wearable sensors, shape memory actuators, and soft pneumatic robotics. The 3D printable multifunctional hydrogel provides a novel path for customizing next-generation intelligent soft devices.
Collapse
Affiliation(s)
- Hanqiang Zhang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Peiren Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Heng Zhang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gangsheng Chen
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| | - Kai Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoyi Chen
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Zhen Chen
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Mingxing Jiang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Junhui Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Min Chen
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Ji Li
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Yang Y, Li D, Yan N, Guo F. A new 3D printing strategy by enhancing shear-induced alignment of gelled nanomaterial inks resulting in stronger and ductile cellulose films. Carbohydr Polym 2024; 340:122269. [PMID: 38858020 DOI: 10.1016/j.carbpol.2024.122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Cellulose nanofibrils (CNFs) are derived from biomass and have significant potential as fossil-based plastic alternatives used in disposable electronics. Controlling the nanostructure of fibrils is the key to obtaining strong mechanical properties and high optical transparency. Vacuum filtration is usually used to prepare the CNFs film in the literature; however, such a process cannot control the structure of the CNFs film, which limits the transparency and mechanical strength of the film. Here, direct ink writing (DIW), a pressure-controlled extrusion process, is proposed to fabricate the CNFs film, which can significantly harness the alignment of fibrils by exerting shear stress force on the filaments. The printed films by DIW have a compact structure, and the degree of fibril alignment quantified by the small angle X-ray diffraction (SAXS) increases by 24 % compared to the vacuum filtration process. Such a process favors the establishment of the chemical bond (or interaction) between molecules, therefore leading to considerably high tensile strength (245 ± 8 MPa), elongation at break (2.2 ± 0.5 %), and good transparency. Thus, proposed DIW provides a new strategy for fabricating aligned CNFs films in a controlled manner with tunable macroscale properties. Moreover, this work provides theoretical guidance for employing CNFs as structural and reinforcing materials to design disposable electronics.
Collapse
Affiliation(s)
- Yunxia Yang
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China; Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Dan Li
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China; Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, People's Republic of China.
| | - Ning Yan
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, M5S 3E5, Canada
| | - Fu Guo
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China; Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, People's Republic of China; School of Mechanical Electrical Engineering, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
| |
Collapse
|
6
|
Qiu S, Sun J, Gu X, Li H, Wang H, Zhang S. Polyvinyl Chloride-Based Luminescent Downshifting Film with High Flame Retardancy and Excellent UV Resistance for Silicon Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402488. [PMID: 38716752 DOI: 10.1002/smll.202402488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Indexed: 10/04/2024]
Abstract
Solar power generation, as a clean energy source, has significant potential for development. This work reports the recent efforts to address the challenge of low power conversion efficiency in photovoltaic devices by proposing the fabrication of a luminescence downshifting layer using polyvinyl chloride (PVC) with added fluorescent dots to enhance light utilization. A photoluminescent microsphere (HCPAM) is synthesized by cross-linking hexachlorocyclotriphosphazene, 2-iminobenzimidazoline, and polyethyleneimine. Low addition of HCPAM can improve the fire safety of PVC films, raising the limiting oxygen index of PVC to 32.4% and reducing the total heat release and smoke production rate values by 14.5% and 42.9%, respectively. Additionally, modified PVC film remains a transparency of 88% and shows down-conversion light properties. When the PVC+1%HCPAM film is applied to the solar cell, the short-circuit current density increases from 42.3 to 43.8 mA cm-2, resulting in a 7.0% enhancement in power conversion efficiency. HCPAM also effectively delays the photooxidative aging of PVC, particularly at a 3% content, maintaining the surface morphology and optical properties of PVC samples during ultraviolet aging. This study offers an innovative strategy to enhance the fire and UV-resistant performance of PVC films and expand their applications in protecting and efficiently utilizing photovoltaic devices.
Collapse
Affiliation(s)
- Shuang Qiu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haiqiao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Wang Y, Duan Y, Yang B, Li Y. Nanocomposite Hydrogel Bioinks for 3D Bioprinting of Tumor Models. Biomacromolecules 2024; 25:5288-5299. [PMID: 39083715 DOI: 10.1021/acs.biomac.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In vitro tumor models were successfully constructed by 3D bioprinting; however, bioinks with proper viscosity, good biocompatibility, and tunable biophysical and biochemical properties are highly desirable for tumor models that closely recapitulated the main features of native tumors. Here, we developed a nanocomposite hydrogel bioink that was used to construct ovarian and colon cancer models by 3D bioprinting. The nanocomposite bioink was composed of aldehyde-modified cellulose nanocrystals (aCNCs), aldehyde-modified hyaluronic acid (aHA), and gelatin. The hydrogels possessed tunable gelation time, mechanical properties, and printability by controlling the ratio between aCNCs and gelatin. In addition, ovarian and colorectal cancer cells embedded in hydrogels showed high survival rates and rapid growth. By the combination of 3D bioprinting, ovarian and colorectal tumor models were constructed in vitro and used for drug screening. The results showed that gemcitabine had therapeutic effects on ovarian tumor cells. However, the ovarian tumor model showed drug resistance for oxaliplatin treatment.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yixiong Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061, China
| |
Collapse
|
8
|
de Kergariou C, Day GJ, Perriman AW, Armstrong JPK, Scarpa F. Flax fibre reinforced alginate poloxamer hydrogel: assessment of mechanical and 4D printing potential. SOFT MATTER 2024; 20:4021-4034. [PMID: 38695256 PMCID: PMC11095501 DOI: 10.1039/d4sm00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
The mechanical and printing performance of a new biomaterial, flax fibre-reinforced alginate-poloxamer based hydrogel, for load-bearing and 4D printing biomedical applications is described in this study. The-self suspendable ability of the material was evaluated by optimising the printing parameters and conducting a collapse test. 1% of the flax fibre weight fraction was sufficient to obtain an optimum hydrogel composite from a mechanical perspective. The collapse test showed that the addition of flax fibres allowed a consistent print without support over longer distances (8 and 10 mm) than the unreinforced hydrogel. The addition of 1% of flax fibres increased the viscosity by 39% and 129% at strain rates of 1 rad s-1 and 5 rad s-1, respectively, compared to the unreinforced hydrogel. The distributions of fibre size and orientation inside the material were also evaluated to identify the internal morphology of the material. The difference of coefficients of moisture expansion between the printing direction (1.29 × 10-1) and the transverse direction (6.03 × 10-1) showed potential for hygromorphic actuation in 4D printing. The actuation authority was demonstrated by printing a [0°; 90°] stacking sequence and rosette-like structures, which were then actuated using humidity gradients. Adding fibres to the hydrogel improved the repeatability of the actuation, while lowering the actuation authority from 0.11 mm-1 to 0.08 mm-1. Overall, this study highlighted the structural and actuation-related benefits of adding flax fibres to hydrogels.
Collapse
Affiliation(s)
- Charles de Kergariou
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering (CADE), University of Bristol, University Walk, Bristol BS8 1TR, UK.
| | - Graham J Day
- Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, UK
- Research School of Chemistry and John Curtin School of Medical Research, Australian National University, Canberra ACT2601, Australia
| | - James P K Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, BS1 3NY Bristol, UK
| | - Fabrizio Scarpa
- Bristol Composites Institute, School of Civil, Aerospace and Design Engineering (CADE), University of Bristol, University Walk, Bristol BS8 1TR, UK.
| |
Collapse
|
9
|
Lu G, Tang R, Nie J, Zhu X. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices. Macromol Rapid Commun 2024; 45:e2300661. [PMID: 38271638 DOI: 10.1002/marc.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Photocuring 3D printing of hydrogels, with sophisticated, delicate structures and biocompatibility, attracts significant attention by researchers and possesses promising application in the fields of tissue engineering and flexible devices. After years of development, photocuring 3D printing technologies and hydrogel inks make great progress. Herein, the techniques of photocuring 3D printing of hydrogels, including direct ink writing (DIW), stereolithography (SLA), digital light processing (DLP), continuous liquid interface production (CLIP), volumetric additive manufacturing (VAM), and two photon polymerization (TPP) are reviewed. Further, the raw materials for hydrogel inks (photocurable polymers, monomers, photoinitiators, and additives) and applications in tissue engineering and flexible devices are also reviewed. At last, the current challenges and future perspectives of photocuring 3D printing of hydrogels are discussed.
Collapse
Affiliation(s)
- Guoqiang Lu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruifen Tang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Nie
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqun Zhu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Guan X, Zheng S, Zhang B, Sun X, Meng K, Elafify MS, Zhu Y, El-Gowily AH, An M, Li D, Han Q. Masking Strategy Constructed Metal Coordination Hydrogels with Improved Mechanical Properties for Flexible Electronic Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5168-5182. [PMID: 38234121 DOI: 10.1021/acsami.3c18077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Metal coordination hydrogels (MC-HGs) that introduce dynamically coordinate bonds together with metal ionic conduction have attracted considerable attention in flexible electronics. However, the traditional soaking method alleged to have technical scalability faces the challenge of forming MC-HGs with a "core-shell" structure, which undoubtedly reduces the whole mechanical properties and ionic stimulation responsiveness required for flexible electronics materials. Herein, a novel strategy referred to as "masking" has been proposed based on the theory of the valence bond and coordination chemistry. By regulating the masking agents and their concentrations as well as pairing mode with the metal ions, the whole mechanical properties of the resulting composites (MC-HGsMasking) show nearly double the values of their traditional soaking samples (MC-HGsSoaking). For example, the fracture stress and toughness of Fe-HGsMasking(SA, 5.0 g/L) are 1.55 MPa and 2.14 MJ/m3, almost twice those of Fe-HGsSoaking (0.83 MPa and 0.93 MJ/m3, respectively). Microstructure characterization combined with finite element analysis, molecular dynamics, and first-principles simulations demonstrates that the masking strategy first facilitating interfacial permeation of metal complexes and then effective coordination with functional ligands (carboxylates) of the hydrogels is the mechanism to strengthen the mechanical properties of composites MC-HGsMasking, which has the potential to break through the limitations of current MC-HGs in flexible electronic sensor applications.
Collapse
Affiliation(s)
- Xiaoyu Guan
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Sai Zheng
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Bingyuan Zhang
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xuhui Sun
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Kai Meng
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Mohamed S Elafify
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Gamal Abdel El-Nasr Street, Shebin El-Kom, Menoufia 32511, Egypt
| | - Yanxia Zhu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Afnan H El-Gowily
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Meng An
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Dongping Li
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
11
|
Agrawal A, Hussain CM. 3D-Printed Hydrogel for Diverse Applications: A Review. Gels 2023; 9:960. [PMID: 38131946 PMCID: PMC10743314 DOI: 10.3390/gels9120960] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogels have emerged as a versatile and promising class of materials in the field of 3D printing, offering unique properties suitable for various applications. This review delves into the intersection of hydrogels and 3D printing, exploring current research, technological advancements, and future directions. It starts with an overview of hydrogel basics, including composition and properties, and details various hydrogel materials used in 3D printing. The review explores diverse 3D printing methods for hydrogels, discussing their advantages and limitations. It emphasizes the integration of 3D-printed hydrogels in biomedical engineering, showcasing its role in tissue engineering, regenerative medicine, and drug delivery. Beyond healthcare, it also examines their applications in the food, cosmetics, and electronics industries. Challenges like resolution limitations and scalability are addressed. The review predicts future trends in material development, printing techniques, and novel applications.
Collapse
Affiliation(s)
- Arpana Agrawal
- Department of Physics, Shri Neelkantheshwar Government Post-Graduate College, Khandwa 450001, India;
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|