1
|
Tkacz M, Zgutka K, Tomasiak P, Tarnowski M. Responses of Endothelial Progenitor Cells to Chronic and Acute Physical Activity in Healthy Individuals. Int J Mol Sci 2024; 25:6085. [PMID: 38892272 PMCID: PMC11173310 DOI: 10.3390/ijms25116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Endothelial progenitor cells (EPCs) are circulating cells of various origins that possess the capacity for renewing and regenerating the endothelial lining of blood vessels. During physical activity, in response to factors such as hypoxia, changes in osmotic pressure, and mechanical forces, endothelial cells undergo intense physiological stress that results in endothelial damage. Circulating EPCs participate in blood vessel repair and vascular healing mainly through paracrine signalling. Furthermore, physical activity may play an important role in mobilising this important cell population. In this narrative review, we summarise the current knowledge on the biology of EPCs, including their characteristics, assessment, and mobilisation in response to both chronic and acute physical activity in healthy individuals.
Collapse
Affiliation(s)
- Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
| | - Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| |
Collapse
|
2
|
Yasar Z, Ross MD, Gaffney CJ, Postlethwaite RD, Wilson R, Hayes LD. Aerobically trained older adults show impaired resting, but preserved exercise-induced circulating progenitor cell count, which was not improved by sprint interval training. Pflugers Arch 2023; 475:465-475. [PMID: 36786845 PMCID: PMC10011317 DOI: 10.1007/s00424-022-02785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023]
Abstract
Older adults exhibit a reduced number and function of CD34 + circulating progenitor cells (CPC), a known risk factor for cardiovascular disease. Exercise promotes the mobilisation of CPCs from bone marrow, so whether ageing per se or physical inactivity in older age reduces CPCs is unknown. Thus, this study examined the effect of age on resting and exercise-induced changes in CPCs in aerobically trained adults and the effect of 8 weeks of sprint interval training (SIT) on resting and exercise-induced CPCs in older adults. Twelve young (22-34 years) and nine older (63-70 years) adults participated in the study. Blood was sampled pre and immediately post a graded exercise test to exhaustion in both groups. Older participants repeated the process after 8 weeks of SIT (3 × 20 s 'all-out' sprints, 2 × a week). Total CPCs (CD34+) and endothelial progenitor cells (EPCs: CD34+KDR+) were determined by flow cytometry. Older adults exhibited lower basal total CD34+ CPCs (828 ± 314 vs. 1186 ± 272 cells·mL-1, p = 0.0149) and CD34+KDR+ EPCs (177 ± 128 vs. 335 ± 92 cells·mL-1, p = 0.007) than younger adults. The maximal exercise test increased CPCs in young (CD34+: p = 0.004; CD34+KDR+: p = 0.017) and older adults (CD34+: p < 0.001; CD34+KDR+: p = 0.008), without difference between groups (p = 0.211). SIT did not alter resting or exercise-induced changes in CPCs in the older cohort (p > 0.232). This study suggests age per se does not impair exercise-induced CPC counts, but does lower resting CPC counts.
Collapse
Affiliation(s)
- Zerbu Yasar
- Active Ageing Research Group, Institute of Health, University of Cumbria, Lancaster, UK
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Christopher J. Gaffney
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | | - Russell Wilson
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Lawrence D. Hayes
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| |
Collapse
|
3
|
Ross M, Kargl CK, Ferguson R, Gavin TP, Hellsten Y. Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol 2023:10.1007/s00421-022-05128-6. [PMID: 36715739 DOI: 10.1007/s00421-022-05128-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/25/2022] [Indexed: 01/31/2023]
Abstract
Exercise-induced skeletal muscle angiogenesis is a well-known physiological adaptation that occurs in humans in response to exercise training and can lead to endurance performance benefits, as well as improvements in cardiovascular and skeletal tissue health. An increase in capillary density in skeletal muscle improves diffusive oxygen exchange and waste extraction, and thus greater fatigue resistance, which has application to athletes but also to the general population. Exercise-induced angiogenesis can significantly contribute to improvements in cardiovascular and metabolic health, such as the increase in muscle glucose uptake, important for the prevention of diabetes. Recently, our understanding of the mechanisms by which angiogenesis occurs with exercise has grown substantially. This review will detail the biochemical, cellular and biomechanical signals for exercise-induced skeletal muscle angiogenesis, including recent work on extracellular vesicles and circulating angiogenic cells. In addition, the influence of age, sex, exercise intensity/duration, as well as recent observations with the use of blood flow restricted exercise, will also be discussed in detail. This review will provide academics and practitioners with mechanistic and applied evidence for optimising training interventions to promote physical performance through manipulating capillarisation in skeletal muscle.
Collapse
Affiliation(s)
- Mark Ross
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, Scotland, UK.
| | - Christopher K Kargl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, USA.,Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Richard Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Timothy P Gavin
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Mitsiou G, Tokmakidis SP, Dinas PC, Smilios I, Nanas S. Endothelial progenitor cell mobilization based on exercise volume in patients with cardiovascular disease and healthy individuals: a systematic review and meta-analysis. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac078. [PMID: 36583078 PMCID: PMC9793853 DOI: 10.1093/ehjopen/oeac078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Endothelial progenitor cells (EPCs) play a vital role in protecting endothelial dysfunction and cardiovascular disease (CVD). Physical exercise stimulates the mobilization of EPCs, and along with vascular endothelial growth factor (VEGF), promotes EPC differentiation, and contributes to vasculogenesis. The present meta-analysis examines the exercise-induced EPC mobilization and has an impact on VEGF in patients with CVD and healthy individuals. Database research was conducted (PubMed, EMBASE, Cochrane Library of Controlled Trials) by using an appropriate algorithm to indicate the exercise-induced EPC mobilization studies. Eligibility criteria included EPC measurements following exercise in patients with CVD and healthy individuals. A continuous random effect model meta-analysis (PROSPERO-CRD42019128122) was used to calculate mean differences in EPCs (between baseline and post-exercise values or between an experimental and control group). A total of 1460 participants (36 studies) were identified. Data are presented as standard mean difference (Std.MD) and 95% confidence interval (95% CI). Aerobic training stimulates the mobilization of EPCs and increases VEGF in patients with CVD (EPCs: Std.MD: 1.23, 95% CI: 0.70-1.76; VEGF: Std.MD: 0.76, 95% CI:0.16-1.35) and healthy individuals (EPCs: Std.MD: 1.11, 95% CI:0.53-1.69; VEGF: Std.MD: 0.75, 95% CI: 0.01-1.48). Acute aerobic exercise (Std.MD: 1.40, 95% CI: 1.00-1.80) and resistance exercise (Std.MD: 0.46, 95%CI: 0.10-0.82) enhance EPC numbers in healthy individuals. Combined aerobic and resistance training increases EPC mobilization (Std.MD:1.84, 95% CI: 1.03-2.64) in patients with CVD. Adequate exercise volume (>60%VO2max >30 min; P = 0.00001) yields desirable results. Our meta-analysis supports the findings of the literature. Exercise volume is required to obtain clinically significant results. Continuous exercise training of high-to-moderate intensity with adequate duration as well as combined training with aerobic and resistance exercise stimulates EPC mobilization and increases VEGF in patients with CVD and healthy individuals.
Collapse
Affiliation(s)
- Georgios Mitsiou
- Clinical Ergophysiology and Exercise Physiology Laboratory, Department of Physical Education and Sports Science, Democritus University of Thrace, 69100 Komotini, Greece
- 1st Critical Care Department, Evangelismos General Hospital, Department of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Savvas P Tokmakidis
- Clinical Ergophysiology and Exercise Physiology Laboratory, Department of Physical Education and Sports Science, Democritus University of Thrace, 69100 Komotini, Greece
- 1st Critical Care Department, Evangelismos General Hospital, Department of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| | - Petros C Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Ilias Smilios
- Clinical Ergophysiology and Exercise Physiology Laboratory, Department of Physical Education and Sports Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Serafeim Nanas
- 1st Critical Care Department, Evangelismos General Hospital, Department of Medicine, National and Kapodistrian University of Athens, 45-47 Ypsilantou Str., 106 75 Athens, Greece
| |
Collapse
|
5
|
Exercise Training Effects on Circulating Endothelial and Progenitor Cells in Heart Failure. J Cardiovasc Dev Dis 2022; 9:jcdd9070222. [PMID: 35877584 PMCID: PMC9322098 DOI: 10.3390/jcdd9070222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a major public health issue worldwide with increased prevalence and a high number of hospitalizations. Patients with chronic HF and either reduced ejection fraction (HFrEF) or mildly reduced ejection fraction (HFmrEF) present vascular endothelial dysfunction and significantly decreased circulating levels of endothelial progenitor cells (EPCs). EPCs are bone marrow-derived cells involved in endothelium regeneration, homeostasis, and neovascularization. One of the unsolved issues in the field of EPCs is the lack of an established method of identification. The most widely approved method is the use of monoclonal antibodies and fluorescence-activated cell sorting (FACS) analysis via flow cytometry. The most frequently used markers are CD34, VEGFR-2, CD45, CD31, CD144, and CD146. Exercise training has demonstrated beneficial effects on EPCs by increasing their number in peripheral circulation and improving their functional capacities in patients with HFrEF or HFmrEF. There are two potential mechanisms of EPCs mobilization: shear stress and the hypoxic/ischemic stimulus. The combination of both leads to the release of EPCs in circulation promoting their repairment properties on the vascular endothelium barrier. EPCs are important therapeutic targets and one of the most promising fields in heart failure and, therefore, individualized exercise training programs should be developed in rehabilitation centers.
Collapse
|
6
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022. [PMID: 35022875 DOI: 10.1007/s00421-021-04876-1.pmid:35022875;pmcid:pmc8927049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
UNLABELLED Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
7
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022; 122:815-860. [PMID: 35022875 PMCID: PMC8927049 DOI: 10.1007/s00421-021-04876-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Abstract
Exercise training is recommended for patients with heart failure by major societies' guidelines. It improves exercise capacity and quality of life, reduces symptoms of depression, can improve survival, and reduce the risk for hospitalizations. Exercise-based cardiac rehabilitation can be offered with different modalities, such as continuous or interval aerobic training, resistance, and inspiratory muscle training. The intervention must follow an accurate evaluation of the patient's cardiovascular conditions and functional capacity. Despite the multiple benefits of exercise training, there is a lack of adherence to exercise-based programs, due to socioeconomic factors, patients' characteristics, and lack of referral.
Collapse
|
9
|
Valenti MT, Dalle Carbonare L, Dorelli G, Mottes M. Effects of physical exercise on the prevention of stem cells senescence. Stem Cell Rev Rep 2020; 16:33-40. [PMID: 31832933 DOI: 10.1007/s12015-019-09928-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regular physical activity is essential for maintaining wellbeing; physical inactivity, on the contrary, is considered by the World Health Organization (WHO) as one of the most important risk factors for global mortality. During physical exercise different growth factors, cytokines and hormones are released, which affect positively the functions of heart, bone, brain and skeletal muscle. It has been reported that physical activity is able to stimulate tissue remodeling. Therefore, in this scenario, it is important to deepen the topic of physical activity-induced effects on stem cells.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, University of Verona, Ple Scuro 10, 37100, Verona, Italy
| | - Luca Dalle Carbonare
- Department of Medicine, University of Verona, Ple Scuro 10, 37100, Verona, Italy.
| | - Gianluigi Dorelli
- Department of Medicine, University of Verona, Ple Scuro 10, 37100, Verona, Italy
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| |
Collapse
|
10
|
Physical training prior to myocardial infarction potentializes stem cell therapy, SDF-1/CXCR4 axis activation and inhibits the vasoconstrictor response in hypertensive rats. Cytokine 2020; 126:154912. [DOI: 10.1016/j.cyto.2019.154912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022]
|
11
|
Sen S. Adult Stem Cells: Beyond Regenerative Tool, More as a Bio-Marker in Obesity and Diabetes. Diabetes Metab J 2019; 43:744-751. [PMID: 31902144 PMCID: PMC6943270 DOI: 10.4093/dmj.2019.0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/17/2019] [Indexed: 12/23/2022] Open
Abstract
Obesity, diabetes, and cardiovascular diseases are increasing rapidly worldwide and it is therefore important to know the effect of exercise and medications for diabetes and obesity on adult stem cells. Adult stem cells play a major role in remodeling and tissue regeneration. In this review we will focus mainly on two adult stem/progenitor cells such as endothelial progenitor cells and mesenchymal stromal cells in relation to aerobic exercise and diabetes medications, both of which can alter the course of regeneration and tissue remodelling. These two adult precursor and stem cells are easily obtained from peripheral blood or adipose tissue depots, as the case may be and are precursors to endothelium and mesenchymal tissue (fat, bone, muscle, and cartilage). They both are key players in maintenance of cardiovascular and metabolic homeostasis and can act also as useful biomarkers.
Collapse
Affiliation(s)
- Sabyasachi Sen
- Division of Endocrinology, Department of Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
12
|
Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Rev Port Cardiol 2019; 38:817-827. [DOI: 10.1016/j.repc.2019.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/30/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
|
13
|
Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.repce.2019.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Alem MM. Endothelial Dysfunction in Chronic Heart Failure: Assessment, Findings, Significance, and Potential Therapeutic Targets. Int J Mol Sci 2019; 20:E3198. [PMID: 31261886 PMCID: PMC6651535 DOI: 10.3390/ijms20133198] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure (CHF) is a complex syndrome that results from structural and functional disturbances that affect the ability of the heart to supply oxygen to tissues. It largely affects and reduces the patient's quality of life, socio-economic status, and imposes great costs on health care systems worldwide. Endothelial dysfunction (ED) is a newly discovered phenomenon that contributes greatly to the pathophysiology of numerous cardiovascular conditions and commonly co-exists with chronic heart failure. However, the literature lacks clarity as to which heart failure patients might be affected, its significance in CHF patients, and its reversibility with pharmacological and non-pharmacological means. This review will emphasize all these points and summarize them for future researchers interested in vascular pathophysiology in this particular patient population. It will help to direct future studies for better characterization of these two phenomena for the potential discovery of therapeutic targets that might reduce future morbidity and mortality in this "at risk" population.
Collapse
Affiliation(s)
- Manal M Alem
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
15
|
Ross M, Lithgow H, Hayes L, Florida-James G. Potential Cellular and Biochemical Mechanisms of Exercise and Physical Activity on the Ageing Process. Subcell Biochem 2019; 91:311-338. [PMID: 30888658 DOI: 10.1007/978-981-13-3681-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exercise in young adults has been consistently shown to improve various aspects of physiological and psychological health but we are now realising the potential benefits of exercise with advancing age. Specifically, exercise improves cardiovascular, musculoskeletal, and metabolic health through reductions in oxidative stress, chronic low-grade inflammation and modulating cellular processes within a variety of tissues. In this this chapter we will discuss the effects of acute and chronic exercise on these processes and conditions in an ageing population, and how physical activity affects our vasculature, skeletal muscle function, our immune system, and cardiometabolic risk in older adults.
Collapse
Affiliation(s)
- Mark Ross
- School of Applied Science, Edinburgh Napier University, Edinburgh, Scotland, UK.
| | - Hannah Lithgow
- School of Applied Science, Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Lawrence Hayes
- Active Ageing Research Group, University of Cumbria, Lancaster, UK
| | | |
Collapse
|
16
|
Ross MD. Endothelial Regenerative Capacity and Aging: Influence of Diet, Exercise and Obesity. Curr Cardiol Rev 2018; 14:233-244. [PMID: 30047332 PMCID: PMC6300798 DOI: 10.2174/1573403x14666180726112303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Background: The endothelium plays an important role in cardiovascular regulation, from blood flow to platelet aggregation, immune cell infiltration and demargination. A dysfunctional endo-thelium leads to the onset and progression of Cardiovascular Disease (CVD). The aging endothelium displays significant alterations in function, such as reduced vasomotor functions and reduced angio-genic capabilities. This could be partly due to elevated levels of oxidative stress and reduced endothe-lial cell turnover. Circulating angiogenic cells, such as Endothelial Progenitor Cells (EPCs) play a significant role in maintaining endothelial health and function, by supporting endothelial cell prolifera-tion, or via incorporation into the vasculature and differentiation into mature endothelial cells. Howev-er, these cells are reduced in number and function with age, which may contribute to the elevated CVD risk in this population. However, lifestyle factors, such as exercise, physical activity obesity, and dietary intake of omega-3 polyunsaturated fatty acids, nitrates, and antioxidants, significantly af-fect the number and function of these circulating angiogenic cells. Conclusion: This review will discuss the effects of advancing age on endothelial health and vascular regenerative capacity, as well as the influence of diet, exercise, and obesity on these cells, the mecha-nistic links and the subsequent impact on cardiovascular health
Collapse
Affiliation(s)
- Mark D Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Hammadah M, Samman Tahhan A, Mheid IA, Wilmot K, Ramadan R, Kindya BR, Kelli HM, O'Neal WT, Sandesara P, Sullivan S, Almuwaqqat Z, Obideen M, Abdelhadi N, Alkhoder A, Pimple PM, Levantsevych O, Mohammed KH, Weng L, Sperling LS, Shah AJ, Sun YV, Pearce BD, Kutner M, Ward L, Bremner JD, Kim J, Waller EK, Raggi P, Sheps D, Vaccarino V, Quyyumi AA. Myocardial Ischemia and Mobilization of Circulating Progenitor Cells. J Am Heart Assoc 2018; 7:e007504. [PMID: 31898922 PMCID: PMC5850188 DOI: 10.1161/jaha.117.007504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The response of progenitor cells (PCs) to transient myocardial ischemia in patients with coronary artery disease remains unknown. We aimed to investigate the PC response to exercise‐induced myocardial ischemia (ExMI) and compare it to flow mismatch during pharmacological stress testing. Methods and Results A total of 356 patients with stable coronary artery disease underwent 99mTc‐sestamibi myocardial perfusion imaging during exercise (69%) or pharmacological stress (31%). CD34+ and CD34+/chemokine (C‐X‐C motif) receptor 4 PCs were enumerated by flow cytometry. Change in PC count was compared between patients with and without myocardial ischemia using linear regression models. Vascular endothelial growth factor and stromal‐derived factor‐1α were quantified. Mean age was 63±9 years; 76% were men. The incidence of ExMI was 31% and 41% during exercise and pharmacological stress testing, respectively. Patients with ExMI had a significant decrease in CD34+/chemokine (C‐X‐C motif) receptor 4 (−18%, P=0.01) after stress that was inversely correlated with the magnitude of ischemia (r=−0.19, P=0.003). In contrast, patients without ExMI had an increase in CD34+/chemokine (C‐X‐C motif) receptor 4 (14.7%, P=0.02), and those undergoing pharmacological stress had no change. Plasma vascular endothelial growth factor levels increased (15%, P<0.001) in all patients undergoing exercise stress testing regardless of ischemia. However, the change in stromal‐derived factor‐1α level correlated inversely with the change in PC counts in those with ExMI (P=0.03), suggesting a greater decrease in PCs in those with a greater change in stromal‐derived factor‐1α level with exercise. Conclusions ExMI is associated with a significant decrease in circulating levels of CD34+/chemokine (C‐X‐C motif) receptor 4 PCs, likely attributable, at least in part, to stromal‐derived factor‐1α–mediated homing of PCs to the ischemic myocardium. The physiologic consequences of this uptake of PCs and their therapeutic implications need further investigation.
Collapse
Affiliation(s)
- Muhammad Hammadah
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ayman Samman Tahhan
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ibhar Al Mheid
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kobina Wilmot
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ronnie Ramadan
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Bryan R Kindya
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Heval M Kelli
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Wesley T O'Neal
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Pratik Sandesara
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Samaah Sullivan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Zakaria Almuwaqqat
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Malik Obideen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Naser Abdelhadi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ayman Alkhoder
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Pratik M Pimple
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Oleksiy Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Kareem H Mohammed
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Lei Weng
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Laurence S Sperling
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Amit J Shah
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA.,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA.,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Brad D Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Michael Kutner
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Laura Ward
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Jinhee Kim
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Alberta, Canada
| | - David Sheps
- Department of Epidemiology, University of Florida, Gainesville, FL
| | - Viola Vaccarino
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA.,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
18
|
Boudia D, Domergue V, Mateo P, Fazal L, Prud'homme M, Prigent H, Delcayre C, Cohen-Solal A, Garnier A, Ventura-Clapier R, Samuel JL. Beneficial effects of exercise training in heart failure are lost in male diabetic rats. J Appl Physiol (1985) 2017; 123:1579-1591. [PMID: 28883044 DOI: 10.1152/japplphysiol.00117.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals.
Collapse
Affiliation(s)
- Dalila Boudia
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Valérie Domergue
- UMS IPSIT Animex Platform, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Philippe Mateo
- UMR-S 1180 INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Loubina Fazal
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Mathilde Prud'homme
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Héloïse Prigent
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France.,Cardiology, Assistance Publique-Hópitaux de Paris (AP-HP), Ambroise Paré, Paris
| | - Claude Delcayre
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Alain Cohen-Solal
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France.,Cardiology, Assistance Publique-Hópitaux de Paris (AP-HP), Ambroise Paré, Paris
| | - Anne Garnier
- UMR-S 1180 INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Renée Ventura-Clapier
- UMR-S 1180 INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jane-Lise Samuel
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| |
Collapse
|
19
|
Ichige MHA, Pereira MG, Brum PC, Michelini LC. Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:181-206. [PMID: 29022264 DOI: 10.1007/978-981-10-4307-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients' morbimortality.
Collapse
Affiliation(s)
- Marcelo H A Ichige
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo G Pereira
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia C Brum
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil. .,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil.
| | - Lisete C Michelini
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Pearson MJ, Smart NA. Effect of exercise training on endothelial function in heart failure patients: A systematic review meta-analysis. Int J Cardiol 2016; 231:234-243. [PMID: 28089145 DOI: 10.1016/j.ijcard.2016.12.145] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Endothelial dysfunction contributes to the development and progression of cardiovascular disease and heart failure (HF) and is associated with an increased risk of mortality. Flow-mediated dilation (FMD) is widely utilised to assess endothelial function and is improved with exercise training in heart failure patients. The aim of this meta-analysis is to quantify the effect of exercise training in patients with heart failure. BACKGROUND A large number of studies now exist that have examined endothelial function in patients with heart failure. We sought to add to the current literature by quantifying the effect of exercise training on endothelial function. METHODS We conducted database searches (PubMed, EMBASE, PROQUEST and Cochrane Trials Register to June 2016) for exercise based rehabilitation trials in heart failure, using search terms exercise training, endothelial function, flow-mediated dilation (FMD) and endothelial progenitor cells (EPCs). RESULTS The 16 included studies provided a total of 529 participants, 293 in an intervention and 236 in controls groups. FMD was improved with exercise training in exercise vs. control, SMD of 1.08 (95%CI 0.70 to 1.46, p<0.00001). CONCLUSION Overall exercise training improved endothelial function, assessed via FMD, and endothelial progenitor cells in heart failure patients.
Collapse
Affiliation(s)
- M J Pearson
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - N A Smart
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
21
|
Recchioni R, Marcheselli F, Antonicelli R, Lazzarini R, Mensà E, Testa R, Procopio AD, Olivieri F. Physical activity and progenitor cell-mediated endothelial repair in chronic heart failure: Is there a role for epigenetics? Mech Ageing Dev 2016; 159:71-80. [DOI: 10.1016/j.mad.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 02/09/2023]
|
22
|
Nadlacki B, Suuronen EJ. Biomaterial strategies to improve the efficacy of bone marrow cell therapy for myocardial infarction. Expert Opin Biol Ther 2016; 16:1501-1516. [DOI: 10.1080/14712598.2016.1235149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Cell Therapy in Ischemic Heart Disease: Interventions That Modulate Cardiac Regeneration. Stem Cells Int 2016; 2016:2171035. [PMID: 26880938 PMCID: PMC4736413 DOI: 10.1155/2016/2171035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/26/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
The incidence of severe ischemic heart disease caused by coronary obstruction has progressively increased. Alternative forms of treatment have been studied in an attempt to regenerate myocardial tissue, induce angiogenesis, and improve clinical conditions. In this context, cell therapy has emerged as a promising alternative using cells with regenerative potential, focusing on the release of paracrine and autocrine factors that contribute to cell survival, angiogenesis, and tissue remodeling. Evidence of the safety, feasibility, and potential effectiveness of cell therapy has emerged from several clinical trials using different lineages of adult stem cells. The clinical benefit, however, is not yet well established. In this review, we discuss the therapeutic potential of cell therapy in terms of regenerative and angiogenic capacity after myocardial ischemia. In addition, we addressed nonpharmacological interventions that may influence this therapeutic practice, such as diet and physical training. This review brings together current data on pharmacological and nonpharmacological approaches to improve cell homing and cardiac repair.
Collapse
|
24
|
Vascular Ageing and Exercise: Focus on Cellular Reparative Processes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3583956. [PMID: 26697131 PMCID: PMC4678076 DOI: 10.1155/2016/3583956] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022]
Abstract
Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with “vascular ageing” and are often accompanied by a reduced ability for the body to repair vascular damage, termed “reendothelialization.” Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this “vascular ageing” process.
Collapse
|
25
|
Povsic TJ, Sloane R, Pieper CF, Pearson MP, Peterson ED, Cohen HJ, Morey MC. Endothelial Progenitor Cell Levels Predict Future Physical Function: An Exploratory Analysis From the VA Enhanced Fitness Study. J Gerontol A Biol Sci Med Sci 2015; 71:362-9. [PMID: 26511012 DOI: 10.1093/gerona/glv180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/24/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Levels of circulating progenitor cells (CPCs) are depleted with aging and chronic injury and are associated with level of physical functioning; however, little is known about the correlation of CPCs with longer-term measures of physical capabilities. We sought to determine the association of CPCs with future levels of physical function and with changes in physical function over time. METHODS CPCs were measured in 117 participants with impaired glucose tolerance in the Enhanced Fitness clinical trial based on the cell surface markers CD34 and CD133 and aldehyde dehydrogenase (ALDH) activity at baseline, 3 months, and 12 months. Physical function was assessed using usual and rapid gait speed, 6-minute walk distance, chair stand time, and SF-36 physical functioning score and reassessed at 3 and 12 months after clinical intervention. RESULTS Higher baseline levels of CD133(+), CD34(+), CD133(+)CD34(+), and ALDH(br) were each highly predictive of faster gait speed and longer distance walked in 6 minutes at both 3 and 12 months. These associations remained robust after adjustment for age, body mass index, baseline covariates, and inflammation and were independent of interventions to improve physical fitness. Further, higher CPC levels predicted greater improvements in usual and rapid gait speed over 1 year. CONCLUSIONS Baseline CPC levels are associated not only with baseline mobility but also with future physical function, including changes in gait speed. These findings suggest that CPC measurement may be useful as a marker of both current and future physiologic aging and functional decline.
Collapse
Affiliation(s)
| | - Richard Sloane
- Claude D. Pepper Older Americans Independence Center, and Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Carl F Pieper
- Claude D. Pepper Older Americans Independence Center, and Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Megan P Pearson
- Geriatric Research, Education, and Clinical Center and Center for Health Services Research and Development, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | | | - Harvey J Cohen
- Department of Medicine, Claude D. Pepper Older Americans Independence Center, and Geriatric Research, Education, and Clinical Center and
| | - Miriam C Morey
- Department of Medicine, Claude D. Pepper Older Americans Independence Center, and Geriatric Research, Education, and Clinical Center and Center for Health Services Research and Development, Durham Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
26
|
Boppart MD, De Lisio M, Witkowski S. Exercise and Stem Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:423-56. [PMID: 26477925 DOI: 10.1016/bs.pmbts.2015.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are traditionally studied in the context of embryonic development, yet studies confirm that a fraction remains in the adult organism for the purpose of daily remodeling and rejuvenation of multiple tissues following injury. Adult stem cells (ASCs) are found in close proximity to vessels and respond to tissue-specific cues in the microenvironment that dictate their fate and function. Exercise can dramatically alter strain sensing, extracellular matrix composition, and inflammation, and such changes in the niche likely alter ASC quantity and function postexercise. The field of stem cell biology is still in its infancy and identification and terminology of ASCs continues to evolve; thus, current information regarding exercise and stem cells is lacking. This chapter summarizes the literature that reports on the ASC response to acute exercise and exercise training, with particular emphasis on hematopoietic stem cells, endothelial progenitor cells, and mesenchymal stem cells.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA; Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, USA.
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, USA
| | - Sarah Witkowski
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
27
|
Di Marco F, Santus P, Sotgiu G, Blasi F, Centanni S. Does Improving Exercise Capacity and Daily Activity Represent the Holistic Perspective of a New COPD Approach? COPD 2015; 12:575-81. [PMID: 26457460 DOI: 10.3109/15412555.2015.1008694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In COPD patients a reduced daily activity has been well documented, resulting from both respiratory and non-respiratory manifestations of the disease. An evaluation by multisensory armband has confirmed that daily physical activity is mainly associated with dynamic hyperinflation, regardless of COPD severity. This aspect is crucial, since exercise capacity is closely correlated to life expectancy. Notwithstanding the causal key role of lung impairment in the patient's symptoms, some authors have suggested that other factors, such as systemic inflammation and co-morbidities, have an important role, particularly as mortality risk factors. Many studies suggest the efficacy of bronchodilators and rehabilitation in improving exercise capacity, and, speaking in terms of daily life, in increasing the number of days in which patients are able to perform their usual activities. On this evidence, the first aim in the management of COPD should be to improve exercise capacity and daily activity since these outcomes have direct effects on patients' quality of life, co-morbidities (heart and metabolic diseases), and prognosis. Thus, improving physical activity represents a modern approach aimed at dealing with both pulmonary and systemic manifestations of the disease. It is however worth of notice to remember that in patients affected by COPD the relationship between the improvement of "potential" exercise capacity and daily physical activity has been found to be only moderate to weak. Obtaining a significant behavior modification with regard to daily physical activity, together with the optimization of therapy thus represents currently the true challenge.
Collapse
Affiliation(s)
- Fabiano Di Marco
- a Respiratory Unit, Ospedale San Paolo, Dept of Scienze della Salute , Università degli Studi di Milano , Milan , Italy
| | - Pierachille Santus
- b Respiratory Unit Fondazione Salvatore Maugeri-Istituto Scientifico di Milano - IRCCS , Università degli Studi di Milano , Milan , Italy
| | - Giovanni Sotgiu
- c Clinical Epidemiology and Medical Statistics Unit, Dept of Biomedical Sciences , University of Sassari - Research, Medical Education and Professional Development Unit , AOU Sassari , Italy
| | - Francesco Blasi
- d Respiratory Unit, IRCCS Fondazione Cà Granda Milano, Department of Pathophysiology and Transplantation , University of Milan , Milan , Italy
| | - Stefano Centanni
- a Respiratory Unit, Ospedale San Paolo, Dept of Scienze della Salute , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
28
|
Kachamakova-Trojanowska N, Bukowska-Strakova K, Zukowska M, Dulak J, Jozkowicz A. The real face of endothelial progenitor cells - Circulating angiogenic cells as endothelial prognostic marker? Pharmacol Rep 2015; 67:793-802. [PMID: 26321283 DOI: 10.1016/j.pharep.2015.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) have been extensively studied for almost 19 years now and were considered as a potential marker for endothelial regeneration ability. On the other hand, circulating endothelial cells (CEC) were studied as biomarker for endothelial injury. Yet, in the literature, there is also huge incoherency in regards to terminology and protocols used. This results in misleading conclusions on the role of so called "EPCs", especially in the clinical field. The discrepancies are mainly due to strong phenotypic overlap between EPCs and circulating angiogenic cells (CAC), therefore changes in "EPC" terminology have been suggested. Other factors leading to inconsistent results are varied definitions of the studied populations and the lack of universal data reporting, which could strongly affect data interpretation. The current review is focused on controversies concerning the use of "EPCs"/CAC and CEC as putative endothelial diagnostic markers.
Collapse
Affiliation(s)
- Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
29
|
Sandri M, Viehmann M, Adams V, Rabald K, Mangner N, Höllriegel R, Lurz P, Erbs S, Linke A, Kirsch K, Möbius-Winkler S, Thiery J, Teupser D, Hambrecht R, Schuler G, Gielen S. Chronic heart failure and aging - effects of exercise training on endothelial function and mechanisms of endothelial regeneration: Results from the Leipzig Exercise Intervention in Chronic heart failure and Aging (LEICA) study. Eur J Prev Cardiol 2015; 23:349-58. [PMID: 26015451 DOI: 10.1177/2047487315588391] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/05/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND A reduction in number and function of endothelial progenitor cells (EPCs) occurs in both physiologic aging and chronic heart failure (CHF). We assessed whether disease and aging have additive effects on EPCs or whether beneficial effects of exercise training are diminished in old age. METHODS We randomized 60 patients with stable CHF and 60 referent controls to a training or a control group. To detect possible aging effects we included subjects below 55 (young) and above 65 years (older). Subjects in the training group exercised four times daily at 60% to 70% of VO2max for four weeks under supervision. At baseline and after the intervention the number and function of EPCs were assessed. RESULTS As compared with young referent controls, older referent controls showed at baseline a reduced EPC number (young: 190 ± 37 CD34/KDR positive cells/ml blood; older: 131 ± 26 CD34/KDR positive cells/ml blood; p < 0.05) and function (young: 230 ± 41 migrated cells/1000 plated cells; older: 185 ± 28 cells/1000 plated cells; p < 0.05). In young and older CHF patients EPC-number (young: 85 ± 21 CD34/KDR positive cells/ml blood; older: 78 ± 20 CD34/KDR positive cells/ml blood) and EPC-function (young: 113 ± 26 cells/1000 plated cells; older: 120 ± 27 cells/1000 plated cells) were impaired. As a result of exercise training, EPC function improved by 24% in older referent controls (p < 0.05), while it remained unchanged in young training referent controls and controls respectively. In young and older patients with CHF four weeks of exercise training resulted in a significant improvement in EPC numbers and EPC function (young: number +66% function +43%; p < 0.05; older: number +69% function +36%; p < 0.05). These results were accompanied by a significant increase in flow mediated dilatation in the training groups of young/older CHF patients and in older referent controls. CONCLUSIONS Four weeks of exercise training are effective in improving EPC number and EPC function in CHF patients. These training effects were not impaired among older patients, emphasizing the potentials of rehabilitation interventions in a patient group where CHF has a high prevalence.
Collapse
Affiliation(s)
- Marcus Sandri
- University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany
| | - Manuel Viehmann
- University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany
| | - Volker Adams
- University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany
| | - Kristin Rabald
- University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany
| | - Norman Mangner
- University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany
| | - Robert Höllriegel
- University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany
| | - Philipp Lurz
- University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany
| | - Sandra Erbs
- University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany
| | - Axel Linke
- University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany
| | - Katharina Kirsch
- University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Germany
| | | | - Joachim Thiery
- University of Leipzig, Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Germany
| | - Daniel Teupser
- University of Leipzig, Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Germany
| | - Rainer Hambrecht
- Klinikum Links der Weser, Department of Cardiology and Angiology, Bremen, Germany
| | - Gerhard Schuler
- Martin-Luther-University Halle/Wittenberg, University Hospital, Department of Internal Medicine III, Halle/Saale, Germany
| | - Stephan Gielen
- Martin-Luther-University Halle/Wittenberg, University Hospital, Department of Internal Medicine III, Halle/Saale, Germany
| |
Collapse
|
30
|
Harris E, Rakobowchuk M, Birch KM. Sprint interval and sprint continuous training increases circulating CD34+ cells and cardio-respiratory fitness in young healthy women. PLoS One 2014; 9:e108720. [PMID: 25265043 PMCID: PMC4181657 DOI: 10.1371/journal.pone.0108720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/02/2014] [Indexed: 01/22/2023] Open
Abstract
Introduction The improvement of vascular health in the exercising limb can be attained by sprint interval training (SIT). However, the effects on systemic vascular function and on circulating angiogenic cells (CACs) which may contribute to endothelial repair have not been investigated. Additionally, a comparison between SIT and sprint continuous training (SCT) which is less time committing has not been made. Methods 12 women (22±2 yrs) completed 12 sessions of either SIT (n = 6) or work-matched SCT (n = 6) on 3 days/week. Pre and post-training assessments included brachial artery endothelial function and peripheral blood analysis for CAC number (CD34+/CD34+CD45dim). CAC function was measured by migration and adhesion assays. Cardio-respiratory fitness, carotid arterial stiffness and carotid-radial and brachial-foot pulse wave velocity (PWV) were also evaluated. Results CD34+ CACs increased following training in both groups but CD34+CD45dim did not (Pre CD34+: 40±21/105 leukocytes, Post CD34+: 56±24/105 leukocytes, main time effect p<0.05). Brachial artery flow-mediated dilation (FMD) increased following SIT but SCT had no effect (Pre SIT: 5.0±3.4%, Post SIT: 5.9±3.0%, Pre SCT: 7.2±2.7%, Post SCT: 6.5±2.9%; group x time interaction p = 0.08). increased in both training groups (Pre: 34.6±4.6 ml•kg•ml−1, Post: 36.9±5.4 ml•kg•ml−1, main time effect p<0.05). CAC function, carotid arterial stiffness and PWV did not change after training (p>0.05). Discussion SCT involving little time commitment is comparable to SIT in increasing CD34+ cell number and . An increased mobilisation of CD34+ CACs suggests that sprint training may be an effective method to enhance vascular repair.
Collapse
Affiliation(s)
- Emma Harris
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Mark Rakobowchuk
- School of Sport and Education, Brunel University, Middlesex, United Kingdom
| | - Karen M. Birch
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Favero G, Paganelli C, Buffoli B, Rodella LF, Rezzani R. Endothelium and its alterations in cardiovascular diseases: life style intervention. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801896. [PMID: 24719887 PMCID: PMC3955677 DOI: 10.1155/2014/801896] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/11/2014] [Indexed: 01/07/2023]
Abstract
The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions.
Collapse
Affiliation(s)
- Gaia Favero
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Corrado Paganelli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
32
|
Vigorito C, Giallauria F. Effects of exercise on cardiovascular performance in the elderly. Front Physiol 2014; 5:51. [PMID: 24600400 PMCID: PMC3929838 DOI: 10.3389/fphys.2014.00051] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/27/2014] [Indexed: 12/18/2022] Open
Abstract
Progressive aging induces several structural and functional alterations in the cardiovascular system, among whom particularly important are a reduced number of myocardial cells and increased interstitial collagen fibers, which result in impaired left ventricular diastolic function. Even in the absence of cardiovascular disease, aging is strongly associated to a age-related reduced maximal aerobic capacity. This is due to a variety of physiological changes both at central and at peripheral level. Physical activity (PA) appears in general to have a positive effect on several health outcomes in the elderly. This review aims to illustrate the beneficial effects of exercise on the physiologic decline of cardiovascular performance occurring with age. Furthermore, it will be stressed also the positive effect of physical activity in elderly patients affected by cardiovascular diseases, such as heart failure and hypertension, and multiple comorbidities which may significantly worse prognosis in this high risk population.
Collapse
Affiliation(s)
- Carlo Vigorito
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; School of Science and Technology, University of New England Armidale, NSW, Australia
| |
Collapse
|
33
|
Shantsila E, Wrigley BJ, Blann AD, Gill PS, Lip GY. A contemporary view on endothelial function in heart failure. Eur J Heart Fail 2014; 14:873-81. [DOI: 10.1093/eurjhf/hfs066] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Eduard Shantsila
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital; Birmingham B18 7QH UK
| | - Benjamin J. Wrigley
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital; Birmingham B18 7QH UK
| | - Andrew D. Blann
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital; Birmingham B18 7QH UK
| | - Paramjit S. Gill
- Primary Care Clinical Sciences; University of Birmingham; Birmingham UK
| | - Gregory Y.H. Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital; Birmingham B18 7QH UK
| |
Collapse
|
34
|
De Biase C, De Rosa R, Luciano R, De Luca S, Capuano E, Trimarco B, Galasso G. Effects of physical activity on endothelial progenitor cells (EPCs). Front Physiol 2014; 4:414. [PMID: 24550833 PMCID: PMC3909827 DOI: 10.3389/fphys.2013.00414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/29/2013] [Indexed: 12/28/2022] Open
Abstract
Physical activity has a therapeutic role in cardiovascular disease (CVD), through its beneficial effects on endothelial function and cardiovascular system. Circulating endothelial progenitor cells (EPCs) are bone marrow (BM) derived cells that represent a novel therapeutic target in CVD patients, because of their ability to home to sites of ischemic injury and repair the damaged vessels. Several studies show that physical activity results in a significant increase in circulating EPCs, and, in particular, there are some evidence of the beneficial exercise-induced effects on EPCs activity in CVD settings, including coronary artery disease (CAD), heart failure (HF), and peripheral artery disease (PAD). The aim of this paper is to review the current evidence about the beneficial effects of physical exercise on endothelial function and EPCs levels and activity in both healthy subjects and patients with CVD.
Collapse
Affiliation(s)
- Chiara De Biase
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Roberta De Rosa
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Rossella Luciano
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Stefania De Luca
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Ernesto Capuano
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Gennaro Galasso
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| |
Collapse
|
35
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
36
|
Alba AC, Delgado DH, Rao V, Walter S, Guyatt G, Ross HJ. Are endothelial progenitor cells a prognostic factor in patients with heart failure? Expert Rev Cardiovasc Ther 2014; 10:167-75. [DOI: 10.1586/erc.11.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Möbius-Winkler S, Linke A, Adams V, Schuler G, Erbs S. How to improve endothelial repair mechanisms: the lifestyle approach. Expert Rev Cardiovasc Ther 2014; 8:573-80. [DOI: 10.1586/erc.10.7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Foresta C, De Toni L, Ferlin A, Di Mambro A. Clinical implication of endothelial progenitor cells. Expert Rev Mol Diagn 2014; 10:89-105. [DOI: 10.1586/erm.09.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Song M, Jang H, Lee J, Kim JH, Kim SH, Sun K, Park Y. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials 2013; 35:2436-45. [PMID: 24378015 DOI: 10.1016/j.biomaterials.2013.12.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/08/2013] [Indexed: 01/09/2023]
Abstract
Regeneration of chronic myocardial infarction (CMI) is one of the challenging issues due to its limited regeneration activity compared to acute or sub-acute stage. In this study, we examined whether combination of stem cell homing factor (SDF-1) and angiogenic peptides (Ac-SDKP) injected with biomimetic hydrogels promote regeneration of cardiac function in a CMI model. We evaluated the regeneration of chronically infarcted myocardium using injectable biomimetic hydrogels containing two therapeutic factors; stromal-derived factor-1 (SDF-1) and Ac-SDKP for stem cell homing and angiogenesis, respectively. Injection of the two therapeutic factors into the infarct region of the left ventricle showed that the biomimetic hydrogels containing two therapeutic factor exhibited significantly improved left ventricle function, increased angiogenesis, decreased infarct size and greatest wall thickness within the infarct region at 4 weeks post-treatment. From these results, it is clear that hydrogels containing two therapeutic factors showed synergistic effects on regeneration in the chronic heart failure model. In conclusion, these results suggest that combination of stem cell homing factor with angiogenic peptides recruit stem cells to the microenvironments, increase the expression of angiogenic genes, enhance the matured vessel formation and improve the cardiac function in chronic MI.
Collapse
Affiliation(s)
- Myeongjin Song
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea
| | - Hwanseok Jang
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea; Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea
| | - Jaeyeon Lee
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea
| | - Ji Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Kyung Sun
- Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea; Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Yongdoo Park
- Korea Artificial Organ Center, Korea University, Seoul 136-705, Republic of Korea; Department of Biomedical Engineering, College of Medicine, Korea University, Seoul 136-705, Republic Korea.
| |
Collapse
|
40
|
You T, Arsenis NC, Disanzo BL, Lamonte MJ. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms. Sports Med 2013; 43:243-56. [PMID: 23494259 DOI: 10.1007/s40279-013-0023-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.
Collapse
Affiliation(s)
- Tongjian You
- Department of Exercise and Health Sciences, College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Despite remarkable progress in the therapeutic approach of patients with chronic heart failure (CHF), exercise intolerance remains one of the hallmarks of the disease. During the past two decades, evidence has accumulated to underscore the key role of both endothelial dysfunction and skeletal muscle wasting in the process that gradually leads to physical incapacity. Whereas reverse ventricular remodeling has been attributed to aerobic exercise training, the vast majority of studies conducted in this specific patient population emphasize the reversal of peripheral abnormalities. In this review, we provide a general overview on underlying pathophysiological mechanisms. In addition, emphasis is put on recently identified pathways, which contribute to a deeper understanding of the main causes of exercise tolerance and the potential for reversal through exercise training. Recently, deficient bone marrow-related endothelial repair mechanisms have received considerable attention. Both acute exercise bouts, as well as exercise training, affect the mobilization of endothelial progenitor cells and their function. The observed changes following exercise training are believed to significantly contribute to improvement of peripheral endothelial function, as well as exercise capacity. With regard to skeletal muscle dysfunction and energy deprivation, adiponectin has been suggested to play a significant role. The demonstration of local skeletal muscle adiponectin resistance may provide an interesting and new link between the insulin resistant state and skeletal muscle wasting in CHF patients.
Collapse
|
42
|
Koutroumpi M, Dimopoulos S, Psarra K, Kyprianou T, Nanas S. Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects. World J Cardiol 2012; 4:312-26. [PMID: 23272272 PMCID: PMC3530787 DOI: 10.4330/wjc.v4.i12.312] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 02/06/2023] Open
Abstract
Circulating bone-marrow-derived cells, named endothelial progenitor cells (EPCs), are capable of maintaining, generating, and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury. Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role. Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk. In this review, we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension, obstructive sleep-apnea syndrome, obesity, diabetes mellitus, peripheral arterial disease, coronary artery disease, pulmonary hypertension, and heart failure. Recent studies have introduced the novel concept that physical activity, either performed as a single exercise session or performed as part of an exercise training program, results in a significant increase of circulating EPCs. In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations.
Collapse
Affiliation(s)
- Matina Koutroumpi
- Matina Koutroumpi, Stavros Dimopoulos, Serafim Nanas, Cardiopulmonary Exercise Testing and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | | | | | | | | |
Collapse
|
43
|
Acute and chronic effects of exercise on circulating endothelial progenitor cells in healthy and diseased patients. Clin Res Cardiol 2012; 102:249-57. [DOI: 10.1007/s00392-012-0517-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
|
44
|
Gao M, Patel R, Ahmad I, Fleming J, Edwards J, McCracken S, Sahadevan K, Seywright M, Norman J, Sansom O, Leung HY. SPRY2 loss enhances ErbB trafficking and PI3K/AKT signalling to drive human and mouse prostate carcinogenesis. EMBO Mol Med 2012; 4:776-90. [PMID: 22649008 PMCID: PMC3494076 DOI: 10.1002/emmm.201100944] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 04/06/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023] Open
Abstract
Loss of SPRY2 and activation of receptor tyrosine kinases are common events in prostate cancer (PC). However, the molecular basis of their interaction and clinical impact remains to be fully examined. SPRY2 loss may functionally synergize with aberrant cellular signalling to drive PC and to promote treatment-resistant disease. Here, we report evidence for a positive feedback regulation of the ErbB-PI3K/AKT cascade by SPRY2 loss in in vitro as well as pre-clinical in vivo models and clinical PC. Reduction in SPRY2 expression resulted in hyper-activation of PI3K/AKT signalling to drive proliferation and invasion by enhanced internalization of EGFR/HER2 and their sustained signalling at the early endosome in a PTEN-dependent manner. This involved p38 MAPK activation by PI3K to facilitate clathrin-mediated ErbB receptor endocytosis. Finally, in vitro and in vivo inhibition of PI3K suppressed proliferation and invasion, supporting PI3K/AKT as a target for therapy particularly in patients with PTEN-haploinsufficient-, low SPRY2- and ErbB-expressing tumours. In conclusion, SPRY2 is an important tumour suppressor in PC since its loss drives the PI3K/AKT pathway via functional interaction with the ErbB system.
Collapse
Affiliation(s)
- Meiling Gao
- Beatson Institute for Cancer ResearchGlasgow, UK
| | | | - Imran Ahmad
- Beatson Institute for Cancer ResearchGlasgow, UK
- Institute for Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
| | | | - Joanne Edwards
- Institute for Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
| | - Stuart McCracken
- Northern Institute for Cancer Research, Medical School, University of Newcastle-upon-TyneNewcastle-upon-Tyne, UK
| | - Kanagasabai Sahadevan
- Northern Institute for Cancer Research, Medical School, University of Newcastle-upon-TyneNewcastle-upon-Tyne, UK
| | - Morag Seywright
- Department of Pathology, NHS Greater Glasgow and ClydeGlasgow, UK
| | - Jim Norman
- Beatson Institute for Cancer ResearchGlasgow, UK
| | - Owen Sansom
- Beatson Institute for Cancer ResearchGlasgow, UK
| | - Hing Y Leung
- Beatson Institute for Cancer ResearchGlasgow, UK
- Institute for Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
| |
Collapse
|
45
|
Jenkins NT, Martin JS, Laughlin MH, Padilla J. Exercise-induced Signals for Vascular Endothelial Adaptations: Implications for Cardiovascular Disease. CURRENT CARDIOVASCULAR RISK REPORTS 2012; 6:331-346. [PMID: 22844545 PMCID: PMC3404842 DOI: 10.1007/s12170-012-0241-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article reviews recent advances in our understanding of hemodynamic signals, external/compressive forces, and circulating factors that mediate exercise training-induced vascular adaptations, with particular attention to the roles of these signals in prevention and treatment of endothelial dysfunction and cardiovascular (CV) diseases.
Collapse
Affiliation(s)
| | | | - M. Harold Laughlin
- Biomedical Sciences, University of Missouri, Columbia, MO
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Jaume Padilla
- Biomedical Sciences, University of Missouri, Columbia, MO
| |
Collapse
|
46
|
Mezzani A, Grassi B, Jones AM, Giordano A, Corrà U, Porcelli S, Della Bella S, Taddeo A, Giannuzzi P. Speeding of pulmonary VO2 on-kinetics by light-to-moderate-intensity aerobic exercise training in chronic heart failure: clinical and pathophysiological correlates. Int J Cardiol 2012; 167:2189-95. [PMID: 22703939 DOI: 10.1016/j.ijcard.2012.05.124] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/09/2012] [Accepted: 05/28/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pulmonary VO2 on-kinetics during light-to-moderate-intensity constant-work-rate exercise, an experimental model mirroring energetic transitions during daily activities, has been shown to speed up with aerobic exercise training (AET) in normal subjects, but scant data are available in chronic heart failure (CHF). METHODS AND RESULTS Thirty CHF patients were randomized to 3 months of light-to-moderate-intensity AET (CHF-AET) or control (CHF-C). Baseline and end-protocol evaluations included i) one incremental cardiopulmonary exercise test with near infrared spectroscopy analysis of peak deoxygenated hemoglobin+myoglobin concentration changes (Δ[deoxy(Hb+Mb)]) in vastus lateralis muscle, ii) 8 light-to-moderate-intensity constant-work-rate exercise tests for VO2 on-kinetics phase I duration, phase II τ, and mean response time (MRT) assessment, and iii) circulating endothelial progenitor cell (EPC) measurement. Reference values were obtained in 7 age-matched normals (N). At end-protocol, phase I duration, phase II τ, and MRT were significantly reduced (-12%, -22%, and -19%, respectively) and peak VO2, peak Δ[deoxy(Hb+Mb)], and EPCs increased (9%, 20%, and 98%, respectively) in CHF-AET, but not in CHF-C. Peak Δ[deoxy(Hb+Mb)] and EPCs relative increase correlated significantly to that of peak VO2 (r=0.61 and 0.64, respectively, p<0.05). CONCLUSIONS Light-to-moderate-intensity AET determined a near-normalization of pulmonary VO2 on-kinetics in CHF patients. Such a marked plasticity has important implications for AET intensity prescription, especially in patients more functionally limited and with high exercise-related risk. The AET-induced simultaneous improvement of phase I and phase II, associated with an increase of peak peripheral oxygen extraction and EPCs, supports microcirculatory O2 delivery impairment as a key factor determining exercise intolerance in CHF.
Collapse
Affiliation(s)
- Alessandro Mezzani
- Exercise Pathophysiology Laboratory, Cardiac Rehabilitation Division, S Maugeri Foundation IRCCS, Scientific Institute of Veruno, Veruno, NO, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Galetta F, Carpi A, Abraham N, Guidotti E, Russo MA, Camici M, Antonelli A, Franzoni F, Santoro G. Age related cardiovascular dysfunction and effects of physical activity. Front Biosci (Elite Ed) 2012; 4:2617-37. [PMID: 22652665 DOI: 10.2741/e570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of the present article is to review the principal pathogenetic pathways of age-related cardiovascular changes and the positive effects of physical activity on these changes as well as on related cardiovascular dysfunction. The ageing mechanisms reviewed have been grouped into reduced tolerance of oxidative stress, loss of cardiac stem cells, cardiovascular remodeling and impairment of neurovegetative control. New pathogenetic conditions and their tests are described (sirtuines, telomere length, heart rate variability). Age related cardiovascular changes predispose the individual to arterial hypertension, heart failure and arrythmia. A broad spectrum of tests are available to indentify and monitor the emerging cardiovascular dysfunction. Physical activity influences all age related cardiovascular mechanisms, improves cardiovascular function and even, at moderate intensity can reduce mortality and heart attack risk. It is likely that the translation of laboratory studies to humans will improve understanding and stimulate the use of physical activity to benefit cardiovascular patients.
Collapse
Affiliation(s)
- Fabio Galetta
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Van Craenenbroeck EM, Conraads VM. Mending injured endothelium in chronic heart failure: a new target for exercise training. Int J Cardiol 2012; 166:310-4. [PMID: 22578733 DOI: 10.1016/j.ijcard.2012.04.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 12/16/2022]
Abstract
The recognition that poor cardiac performance is not the sole determinant of exercise intolerance in CHF patients has altered the target of exercise training. Endothelial dysfunction impairs exercise-induced vasodilation, thereby limiting oxygen supply to working muscles and increasing ventricular afterload. Since the 1990s, it has become clear that partial correction of this maladaptive reaction is a premise for the success of exercise training. Growing evidence indicates that increased NO bioavailability and reduction in oxidative stress result from regular physical activity. However, the basic concept of endothelial dysfunction has shifted from a pure "damage model" to a more dynamic process in which endothelial repair fails to keep pace with local injury. Indeed, recent evidence indicates that endothelial progenitor cells (EPC) and circulating angiogenic cells (CAC) contribute substantially to preservation of a structurally and functionally intact endothelium. In chronic heart failure, however, these endogenous repair mechanisms appear to be disrupted. In this review, we aim to give an overview on what is currently known about the influence of physical exercise on recruitment of EPC and activation of CAC in this particular patient group.
Collapse
|
49
|
Alev C, Ii M, Asahara T. Endothelial progenitor cells: a novel tool for the therapy of ischemic diseases. Antioxid Redox Signal 2011; 15:949-65. [PMID: 21254837 DOI: 10.1089/ars.2010.3872] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Circulating endothelial progenitor cells (EPCs) are believed to home to sites of neovascularization, contributing to vascular regeneration either directly via incorporation into newly forming vascular structures or indirectly via the secretion of pro-angiogenic growth factors, thereby enhancing the overall vascular and hemodynamic recovery of ischemic tissues. The therapeutic application of EPCs has been shown to be effective in animal models of ischemia, and we as well as other groups involved in clinical trials have demonstrated that the use of EPCs was safe and feasible for the treatment of critical limb ischemia and cardiovascular diseases. However, many issues in the field of EPC biology, especially in regard to the proper and unambiguous molecular characterization of these cells, still remain unresolved, hampering not only basic research but also the effective therapeutic use and widespread application of these cells. Further, recent evidence suggests that several diseases and pathological conditions are correlated with a reduction in the number and biological activity of EPCs, making the development of novel strategies to overcome the current limitations and shortcomings of this promising but still limited therapeutic tool by refinement and improvement of EPC purification, expansion, and administration techniques, a rather pressing issue.
Collapse
Affiliation(s)
- Cantas Alev
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | |
Collapse
|
50
|
Telomere/telomerase system impairment in circulating angiogenic cells of geriatric patients with heart failure. Int J Cardiol 2011; 164:99-105. [PMID: 21737157 DOI: 10.1016/j.ijcard.2011.06.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/09/2011] [Accepted: 06/15/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND The functional characteristics of circulating angiogenic cells (CACs) are impaired in congestive heart failure (CHF) patients, suggesting that CAC dysfunction could contribute to CHF pathogenesis. However, the underlying mechanisms are only partly unraveled. No data are currently available regarding telomere/telomerase system in CACs of CHF patients. METHODS CACs were obtained from 80 subjects: 40 healthy control subjects (CTR) [median age (IQR), 80 (76-85 yrs)] and 40 patients affected by post-ischemic cardiomyopathy CHF [median age (IQR), 82 (77-89)]. CAC and leukocyte telomere length, assessed as T/S ratio, and telomerase (TERT) activity were determined in all the enrolled subjects. Specificity and sensitivity of CAC and leukocyte T/S in discriminating between CHF and CTR were evaluated using Receiver Operator Characteristic (ROC) curve analysis and reported as AUC values. CD34+/VEGFR2+ number and pro-inflammatory cytokines plasma levels, such as IL-6 and TNF-α, were also measured. RESULTS CAC T/S and TERT activity were significantly reduced in CHF patients compared to CTR subjects. In leukocytes, only a significant T/S reduction was observed. AUC values were higher for CAC T/S with respect to leukocyte T/S (AUC=0.89, and AUC=0.73, P<0.01, respectively). In multivariate analysis, leukocyte T/S, CAC T/S, CAC TERT activity and NT-proBNP levels were confirmed as parameters significantly associated with CHF. CD34+/VEGFR2+ number, IL-6 and TNF-α plasma levels were significantly increased in CHF patients. CONCLUSIONS CACs from CHF patients are characterized by telomere/telomerase system impairment, providing new insight into the clinical relevance of CACs in CHF pathogenesis.
Collapse
|