1
|
Taylor A, Xu J, Rogozinski N, Fu H, Molina Cortez L, McMahan S, Perez K, Chang Y, Pan Z, Yang H, Liao J, Hong Y. Reduced Graphene-Oxide-Doped Elastic Biodegradable Polyurethane Fibers for Cardiomyocyte Maturation. ACS Biomater Sci Eng 2024; 10:3759-3774. [PMID: 38800901 DOI: 10.1021/acsbiomaterials.3c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Conductive biomaterials offer promising solutions to enhance the maturity of cultured cardiomyocytes. While the conventional culture of cardiomyocytes on nonconductive materials leads to more immature characteristics, conductive microenvironments have the potential to support sarcomere development, gap junction formation, and beating of cardiomyocytes in vitro. In this study, we systematically investigated the behaviors of cardiomyocytes on aligned electrospun fibrous membranes composed of elastic and biodegradable polyurethane (PU) doped with varying concentrations of reduced graphene oxide (rGO). Compared to PU and PU-4%rGO membranes, the PU-10%rGO membrane exhibited the highest conductivity, approaching levels close to those of native heart tissue. The PU-rGO membranes retained anisotropic viscoelastic behavior similar to that of the porcine left ventricle and a superior tensile strength. Neonatal rat cardiomyocytes (NRCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on the PU-rGO membranes displayed enhanced maturation with cell alignment and enhanced sarcomere structure and gap junction formation with PU-10%rGO having the most improved sarcomere structure and CX-43 presence. hiPSC-CMs on the PU-rGO membranes exhibited a uniform and synchronous beating pattern compared with that on PU membranes. Overall, PU-10%rGO exhibited the best performance for cardiomyocyte maturation. The conductive PU-rGO membranes provide a promising matrix for in vitro cardiomyocyte culture with promoted cell maturation/functionality and the potential for cardiac disease treatment.
Collapse
Affiliation(s)
- Alan Taylor
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nicholas Rogozinski
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Huikang Fu
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lia Molina Cortez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Sara McMahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Karla Perez
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yan Chang
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Zui Pan
- Department of Graduate Nursing, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
2
|
Yang GD, Ma DS, Ma CY, Bai Y. Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction. Curr Stem Cell Res Ther 2024; 19:942-958. [PMID: 37612870 DOI: 10.2174/1574888x18666230823091017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
Collapse
Affiliation(s)
- Guo-Dong Yang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
3
|
Sigaroodi F, Rahmani M, Parandakh A, Boroumand S, Rabbani S, Khani MM. Designing cardiac patches for myocardial regeneration–a review. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2180510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kashiyama N, Kormos RL, Matsumura Y, D'Amore A, Miyagawa S, Sawa Y, Wagner WR. Adipose-derived stem cell sheet under an elastic patch improves cardiac function in rats after myocardial infarction. J Thorac Cardiovasc Surg 2022; 163:e261-e272. [PMID: 32636026 DOI: 10.1016/j.jtcvs.2020.04.150] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Although adipose-derived stem cells (ADSCs) have shown promise in cardiac regeneration, stable engraftment is still challenging. Acellular bioengineered cardiac patches have shown promise in positively altering ventricular remodeling in ischemic cardiomyopathy. We hypothesized that combining an ADSC sheet approach with a bioengineered patch would enhance ADSC engraftment and positively promote cardiac function compared with either therapy alone in a rat ischemic cardiomyopathy model. METHODS Cardiac patches were generated from poly(ester carbonate urethane) urea and porcine decellularized cardiac extracellular matrix. ADSCs constitutively expressing green fluorescent protein were established from F344 rats and transplanted as a cell sheet over the left ventricle 3 days after left anterior descending artery ligation with or without an overlying cardiac patch. Cardiac function was serially evaluated using echocardiography for 8 weeks, comparing groups with combined cells and patch (group C, n = 9), ADSCs alone (group A, n = 7), patch alone (group P, n = 6) or sham groups (n = 7). RESULTS Much greater numbers of ADSCs survived in the C versus A groups (P < .01). At 8 weeks posttransplant, the percentage fibrotic area was lower (P < .01) in groups C and P compared with the other groups and vasculature in the peri-infarct zone was greater in group C versus other groups (P < .01), and hepatocyte growth factor expression was higher in group C than in other groups (P < .05). Left ventricular ejection fraction was higher in group C versus other groups. CONCLUSIONS A biodegradable cardiac patch enhanced ADSC engraftment, which was associated with greater cardiac function and neovascularization in the peri-infarct zone following subacute myocardial infarction.
Collapse
Affiliation(s)
- Noriyuki Kashiyama
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pa; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa; Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Robert L Kormos
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pa; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pa
| | - Yasumoto Matsumura
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Fondazione RiMED, Palermo, Italy
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
5
|
Chang T, Liu C, Lu K, Wu Y, Xu M, Yu Q, Shen Z, Jiang T, Zhang Y. Biomaterials based cardiac patches for the treatment of myocardial infarction. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2021; 94:77-89. [DOI: 10.1016/j.jmst.2021.03.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Silveira-Filho LM, Coyan GN, Adamo A, Luketich SK, Menallo G, D'Amore A, Wagner WR. Can a Biohybrid Patch Salvage Ventricular Function at a Late Time Point in the Post-Infarction Remodeling Process? ACTA ACUST UNITED AC 2021; 6:447-463. [PMID: 34095634 PMCID: PMC8165254 DOI: 10.1016/j.jacbts.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/15/2023]
Abstract
A simple, biohybrid patch made of polymer (PECUU) and ECM, without cellular components, was able to induce positive remodeling features when applied over chronic infarcts with severely dilated hearts and high cardiac function impairment in rats. The remodeling benefit was particularly notable in a subgroup of the sickest rats with very low initial ejection fraction in which the echocardiographic endpoints were found to improve after treatment. This technological approach may hold promise for future translation to patients in a chronic scenario.
A biohybrid patch without cellular components was implanted over large infarcted areas in severely dilated hearts. Nonpatched animals were assigned to control or losartan therapy. Patch-implanted animals responded with better morphological and functional echocardiographic endpoints, which were more evident in a subgroup of animals with very low pre-treatment ejection fraction (<35%). Patched animals also had smaller infarcts than both nonpatched groups. This simple approach could hold promise for clinical translation and be applied using minimally invasive procedures over the epicardium in a large set of patients to induce better ventricular remodeling, especially among those who are especially frail.
Collapse
Key Words
- AT1R, angiotensin 1 receptor
- ECM, extracellular matrix
- EDA, end-diastolic area
- EF, ejection fraction
- ESA, end-systolic area
- FS, fractional shortening
- HF, heart failure
- LV, left ventricle
- LVEF, left ventricular ejection fraction
- LVFW, left ventricular free wall
- LVdd, left ventricular end-diastolic diameter
- LVsd, left ventricular end-systolic diameter
- M1, macrophage type 1
- M2, macrophage type 2
- MI, myocardial infarction
- MT, Masson trichrome
- PBS, phosphate-buffered saline
- PECUU, poly(ester carbonate urethane) urea
- PEUU, poly(ester urethane) urea
- SMA, smooth muscle actin
- biomaterial
- cardiac patch
- left ventricular remodeling
- myocardial infarction
Collapse
Affiliation(s)
- Lindemberg M Silveira-Filho
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Campinas, Sao Paulo, Brazil
| | - Garrett N Coyan
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Arianna Adamo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samuel K Luketich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Giorgio Menallo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,RiMED Foundation, Palermo, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Fujimoto KL, Yamawaki-Ogata A, Uto K, Usui A, Narita Y, Ebara M. Long term efficacy and fate of a right ventricular outflow tract replacement using an elastomeric cardiac patch consisting of caprolactone and D,L-lactide copolymers. Acta Biomater 2021; 123:222-229. [PMID: 33476828 DOI: 10.1016/j.actbio.2021.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
For decades, researchers have investigated the ideal material for clinical use in the cardiovascular field. Several substitute materials are used clinically, but each has drawbacks. Recently we developed biodegradable and elastic poly(ε-caprolactone-co-D,L-lactide) (P(CL-DLLA)) copolymers by adjusting the CL/DLLA composition, and evaluated the long-term efficacy and outcomes of these copolymers when used for right ventricular outflow tract (RVOT) replacement. This P(CL-DLLA) material was processed into a circular patch and used to replace a surgical defect in the RVOT of adult rats. Control rats were implanted with expanded polytetrafluoroethylene (ePTFE). Histologic evaluation was performed at 8, 24, and 48 weeks post-surgery. All animals survived the surgery with no aneurysm formation or thrombus. In all periods, ePTFE demonstrated fibrous tissue. In contrast, at 8 weeks P(CL-DLLA) showed infiltration of macrophages and fibroblast-like cells into the remaining material. At 24 weeks, P(CL-DLLA) was absorbed completely, and muscle-like tissue was present with positive staining for α-sarcomeric actinin and cardiac troponin T (cTnT). At 48 weeks, the cTnT-positive area had increased. The biodegradable and elastic P(CL-DLLA) induced cardiac regeneration throughout the 48-week study period. Future application of this material as a cardiovascular scaffold seems promising. STATEMENT OF SIGNIFICANCE: Biomaterials for reconstruction of tissue deficiencies in cardiovascular surgery require having suitable mechanical properties for cardiac tissue and biodegradation resulting in native tissue growth. Several biodegradable polymers such as poly-ε-caprolactone (PCL) and polylactic acid (PLA) have excellent biocompatibility and already been widely used clinically. In general, PCL and PLA are quite mechanically rigid. Meanwhile, significant elasticity is required in the high-pressure environment of the heart while the material is being replaced by new tissue. The present study provides a novel four-armed crosslinked poly(ε-caprolactone-co-D,L-lactide) (i.e., P(CL-DLLA)) material for cardiac patch, which was demonstrated properties including tissue-compatible, super-elastic nature, that made it suitable for long-term, in vivo RVOT repair. This super-elastic biomaterial could be useful for reconstruction of various muscular tissues deficiencies.
Collapse
|
8
|
Portillo Esquivel LE, Zhang B. Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomater Sci Eng 2021; 7:1000-1021. [PMID: 33591735 DOI: 10.1021/acsbiomaterials.0c01805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death around the world, being responsible for 31.8% of all deaths in 2017 (Roth, G. A. et al. The Lancet 2018, 392, 1736-1788). The leading cause of CVD is ischemic heart disease (IHD), which caused 8.1 million deaths in 2013 (Benjamin, E. J. et al. Circulation 2017, 135, e146-e603). IHD occurs when coronary arteries in the heart are narrowed or blocked, preventing the flow of oxygen and blood into the cardiac muscle, which could provoke acute myocardial infarction (AMI) and ultimately lead to heart failure and death. Cardiac regenerative therapy aims to repair and refunctionalize damaged heart tissue through the application of (1) intramyocardial cell delivery, (2) epicardial cardiac patch, and (3) acellular biomaterials. In this review, we aim to examine these current approaches and challenges in the cardiac regenerative therapy field.
Collapse
Affiliation(s)
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.,School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontaria L8S 4L8, Canada
| |
Collapse
|
9
|
Liu K, Wei S, Song L, Liu H, Wang T. Conductive Hydrogels-A Novel Material: Recent Advances and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7269-7280. [PMID: 32574052 DOI: 10.1021/acs.jafc.0c00642] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A conductive hydrogel is a kind of polymer material having substantial potential applications with various properties, including high toughness, self-recoverability, electrical conductivity, transparency, freezing resistance, stimuli responsiveness, stretchability, self-healing, and strain sensitivity. Herein, according to the current research status of conductive hydrogels, properties of conductive hydrogels, preparation methods of different conductive hydrogels, and their application in different fields, such as sensor and actuator fabrication, biomedicine, and soft electronics, are introduced. Furthermore, the development direction and application prospects of conductive hydrogels are proposed.
Collapse
Affiliation(s)
- Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Shan Wei
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Longxiang Song
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China
| |
Collapse
|
10
|
Zanjanizadeh Ezazi N, Ajdary R, Correia A, Mäkilä E, Salonen J, Kemell M, Hirvonen J, Rojas OJ, Ruskoaho HJ, Santos HA. Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol sebacate)/Nanoparticle-Based Composite Patch for Myocardial Infarction Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6899-6909. [PMID: 31967771 PMCID: PMC7450488 DOI: 10.1021/acsami.9b21066] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heart tissue engineering is critical in the treatment of myocardial infarction, which may benefit from drug-releasing smart materials. In this study, we load a small molecule (3i-1000) in new biodegradable and conductive patches for application in infarcted myocardium. The composite patches consist of a biocompatible elastomer, poly(glycerol sebacate) (PGS), coupled with collagen type I, used to promote cell attachment. In addition, polypyrrole is incorporated because of its electrical conductivity and to induce cell signaling. Results from the in vitro experiments indicate a high density of cardiac myoblast cells attached on the patches, which stay viable for at least 1 month. The degradation of the patches does not show any cytotoxic effect, while 3i-1000 delivery induces cell proliferation. Conductive patches show high blood wettability and drug release, correlating with the rate of degradation of the PGS matrix. Together with the electrical conductivity and elongation characteristics, the developed biomaterial fits the mechanical, conductive, and biological demands required for cardiac treatment.
Collapse
Affiliation(s)
- Nazanin Zanjanizadeh Ezazi
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical
Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Alexandra Correia
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Marianna Kemell
- Department of Chemistry, University of
Helsinki, FI-00014 Helsinki, Finland
| | - Jouni Hirvonen
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Orlando J. Rojas
- Department of Bioproducts and Biosystems, School of Chemical
Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
- Departments of Chemical
& Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Heikki J. Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hélder A. Santos
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
- E-mail: .
Tel: +358 2941 59661
| |
Collapse
|
11
|
McMahan S, Taylor A, Copeland KM, Pan Z, Liao J, Hong Y. Current advances in biodegradable synthetic polymer based cardiac patches. J Biomed Mater Res A 2020; 108:972-983. [PMID: 31895482 DOI: 10.1002/jbm.a.36874] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022]
Abstract
The number of people affected by heart disease such as coronary artery disease and myocardial infarction increases at an alarming rate each year. Currently, the methods to treat these diseases are restricted to lifestyle change, pharmaceuticals, and eventually heart transplant if the condition is severe enough. While these treatment options are the standard for caring for patients who suffer from heart disease, limited regenerative ability of the heart restricts the effectiveness of treatment and may lead to other heart-related health problems in the future. Because of the increasing need for more effective therapeutic technologies for treating diseased heart tissue, cardiac patches are now a large focus for researchers. The cardiac patches are designed to be integrated into the patients' natural tissue to introduce mechanical support and healing to the damaged areas. As a promising alternative, synthetic biodegradable polymer based biomaterials can be easily manipulated to customize material properties, as well as possess certain desired characteristics for cardiac patch use. This comprehensive review summarizes recent works on synthetic biodegradable cardiac patches implanted into infarcted animal models. In addition, this review describes the basic requirements that should be met for cardiac patch development, and discusses the inspirations to designing new biomaterials and technologies for cardiac patches.
Collapse
Affiliation(s)
- Sara McMahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Alan Taylor
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Katherine M Copeland
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Zui Pan
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
12
|
Wang C, Wang H, Zou F, Chen S, Wang Y. Development of Polyhydroxyalkanoate-Based Polyurethane with Water-Thermal Response Shape-Memory Behavior as New 3D Elastomers Scaffolds. Polymers (Basel) 2019; 11:E1030. [PMID: 31212611 PMCID: PMC6631955 DOI: 10.3390/polym11061030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 01/01/2023] Open
Abstract
In this study, we report the synthesis of a novel bio-based material from polyhydroxyalkanoate (PHA) with good shape-memory effect (SME) and rapid recovery. In this PHA-based polyurethane (PHP), telechelic-hydroxylated polyhydroxyalkanoate (PHA-diols) and polyethylene glycol (PEG) were used as soft segments, providing thermo-responsive domains and water-responsive regions, respectively. Thus, PHP possesses good thermal-responsive SME, such as high shape fixing (>99%) and shape recovery ratio (>90%). Upon immersing in water, the storage modulus of PHP decreased considerably owing to disruption of hydrogen bonds in the PHP matrix. Their water-responsive SME is also suitable for rapid shape recovery (less than 10 s). Furthermore, these outstanding properties can trigger shape-morphing, enabling self-folding and self-expansion of shapes into three-dimensional (3D) scaffolds for potential biomedical applications.
Collapse
Affiliation(s)
- Cai Wang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Han Wang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Faxing Zou
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shaojun Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen Key Laboratory of Special Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat Biomed Eng 2019; 3:632-643. [PMID: 30988471 DOI: 10.1038/s41551-019-0380-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/05/2019] [Indexed: 01/10/2023]
Abstract
Acellular epicardial patches that treat myocardial infarction by increasing the mechanical integrity of damaged left ventricular tissues exhibit widely scattered therapeutic efficacy. Here, we introduce a viscoelastic adhesive patch, made of an ionically crosslinked transparent hydrogel, that accommodates the cyclic deformation of the myocardium and outperforms most existing acellular epicardial patches in reversing left ventricular remodelling and restoring heart function after both acute and subacute myocardial infarction in rats. The superior performance of the patch results from its relatively low dynamic modulus, designed at the so-called 'gel point' via finite-element simulations of left ventricular remodelling so as to balance the fluid and solid properties of the material.
Collapse
|
14
|
Wang Z, Ma Y, Wang Y, Liu Y, Chen K, Wu Z, Yu S, Yuan Y, Liu C. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers. Acta Biomater 2018; 71:279-292. [PMID: 29549052 DOI: 10.1016/j.actbio.2018.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/15/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022]
Abstract
Poly (glycerol sebacate) (PGS), a tough elastomer, has been widely explored in tissue engineering due to the desirable mechanical properties and biocompatibility. However, the complex curing procedure (high temperature and vacuum) and limited hydrophilicity (∼90° of wetting angle) greatly impede its functionalities. To address these challenges, a urethane-based low-temperature setting, PEGylated PGS bioelastomer was developed with and without solvent. By simultaneously tailoring PEG and hexamethylene diisocyanate (HDI) contents, the elastomers X-P-mUs (X referred to the PEG content and m referred to HDI content) with a broad ranging mechanical properties and customized hydrophilicity were constructed. The X-P-mUs synthesized exhibited adjustable tensile Young's modulus, ultimate tensile strength and elongation at break in the range of 1.0 MPa-14.2 MPa, 0.3 MPa-7.6 MPa and 53.6%-272.8%, with the water contact angle varying from 28.6° to 71.5°, respectively. Accordingly, these elastomers showed favorable biocompatibility in vitro and mild host response in vivo. Furthermore, the potential applications of X-P-mU elastomers prepared with solvent-base and solvent-free techniques in biomedical fields were investigated. The results showed that these X-P-mU elastomers with high molding capacity at mild temperature could be easily fabricated into various shapes, used as reinforcement for fragile materials, and controllable delivery of drugs and proteins with excellent bioactivity, demonstrating that the X-P-mU elastomers could be tailored as potential building blocks for diverse applications in biomedical research. STATEMENT OF SIGNIFICANCE Poly(glycerol sebacate) (PGS), a tough biodegradable elastomer, has received great attentions in biomedical field. But the complex curing procedure and limited hydrophilicity greatly hamper its functionality. Herein, a urethane-based low-temperature setting, PEGylated PGS (PEGS-U) bioelastomer with highly-customized mechanical properties, hydrophilicity and biodegradability was first explored. The synthesized PEGS-U showed favorable biocompatibility both in vitro and in vivo. Furthermore, the PEGS-U elastomer could be easily fabricated into various shapes, used as reinforcement for fragile materials, and controllable delivery of drugs and proteins with excellent bioactivity. This versatile, user-tunable bioelastomers should be a promising biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - YanXiang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yutong Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kai Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zihan Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shuang Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
15
|
Shiekh PA, Singh A, Kumar A. Engineering Bioinspired Antioxidant Materials Promoting Cardiomyocyte Functionality and Maturation for Tissue Engineering Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3260-3273. [PMID: 29303551 DOI: 10.1021/acsami.7b14777] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oxidative stress plays an important role in various pathological conditions, such as wound healing, inflammation, myocardial infarction, and biocompatibility of the materials. Antioxidant polymers to attenuate oxidative stress is an emerging field of biomaterial research with a huge impact in the field of tissue engineering and regenerative medicine. We describe here the fabrication and evaluation of an elastomeric antioxidant polyurethane (PUAO) for tissue engineering applications. Uniaxial and cyclic tensile testing, thermal analysis, degradation, cytotoxicity and antioxidant analysis was carried out. An in vitro oxidative stress model demonstrated that PUAO reduced intracellular oxidative stress in H9C2 cardiomyocytes (p < 0.05) and attenuated reactive oxygen species (ROS) induced cell death (p < 0.001). Under simulated ischemic reperfusion, PUAO could rescue hypoxia induced cell death. Further as a proof of concept, neonatal rat cardiomyocytes cultured on PUAO film displayed synchronous beating with mature phenotype showing expression of cardiac specific α-actinin, troponin-T, and connexin-43 proteins. Intracellular calcium transients established the functionality of cultured cardiomyocytes on PUAO film. Our study demonstrated the potential of this biomaterial to be developed into tissue engineered scaffold to attenuate oxidative stress for treatment of diseased conditions with increased oxidative stress, such as cardiovascular diseases, chronic wound healing, and myocardial infarction.
Collapse
Affiliation(s)
- Parvaiz A Shiekh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016, Uttar Pradesh, India
| | - Anamika Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
16
|
Artificial Cardiac Muscle with or without the Use of Scaffolds. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8473465. [PMID: 28875152 PMCID: PMC5569873 DOI: 10.1155/2017/8473465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
During the past several decades, major advances and improvements now promote better treatment options for cardiovascular diseases. However, these diseases still remain the single leading cause of death worldwide. The rapid development of cardiac tissue engineering has provided the opportunity to potentially restore the contractile function and retain the pumping feature of injured hearts. This conception of cardiac tissue engineering can enable researchers to produce autologous and functional biomaterials which represents a promising technique to benefit patients with cardiovascular diseases. Such an approach will ultimately reshape existing heart transplantation protocols. Notable efforts are accelerating the development of cardiac tissue engineering, particularly to create larger tissue with enhanced functionality. Decellularized scaffolds, polymer synthetics fibrous matrix, and natural materials are used to build robust cardiac tissue scaffolds to imitate the morphological and physiological patterns of natural tissue. This ultimately helps cells to implant properly to obtain endogenous biological capacity. However, newer designs such as the hydrogel scaffold-free matrix can increase the applicability of artificial tissue to engineering strategies. In this review, we summarize all the methods to produce artificial cardiac tissue using scaffold and scaffold-free technology, their advantages and disadvantages, and their relevance to clinical practice.
Collapse
|
17
|
Gu X, Matsumura Y, Tang Y, Roy S, Hoff R, Wang B, Wagner WR. Sustained viral gene delivery from a micro-fibrous, elastomeric cardiac patch to the ischemic rat heart. Biomaterials 2017; 133:132-143. [PMID: 28433936 DOI: 10.1016/j.biomaterials.2017.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023]
Abstract
Biodegradable and elastomeric patches have been applied to the surface of infarcted hearts as temporary mechanical supports to effectively alter adverse left ventricular remodeling processes. In this report, recombinant adeno-associated virus (AAV), known for its persistent transgene expression and low pathogenicity, was incorporated into elastomeric polyester urethane urea (PEUU) and polyester ether urethane urea (PEEUU) and processed by electrospinning into two formats (solid fibers and core-sheath fibers) designed to influence the controlled release behavior. The extended release of AAV encoding green fluorescent protein (GFP) was assessed in vitro. Sustained and localized viral particle delivery was achieved over 2 months in vitro. The biodegradable cardiac patches with or without AAV-GFP were implanted over rat left ventricular lesions three days following myocardial infarction to evaluate the transduction effect of released viral vectors. AAV particles were directly injected into the infarcted hearts as a control. Cardiac function and remodeling were significantly improved for 12 weeks after patch implantation compared to AAV injection. More GFP genes was expressed in the AAV patch group than AAV injection group, with both α-SMA positive cells and cardiac troponin T positive cells transduced in the patch group. Overall, the extended release behavior, prolonged transgene expression, and elastomeric mechanical properties make the AAV-loaded scaffold an attractive option for cardiac tissue engineering where both gene delivery and appropriate mechanical support are desired.
Collapse
Affiliation(s)
- Xinzhu Gu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yasumoto Matsumura
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Souvik Roy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Richard Hoff
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bing Wang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
18
|
D'Amore A, Yoshizumi T, Luketich SK, Wolf MT, Gu X, Cammarata M, Hoff R, Badylak SF, Wagner WR. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials 2016; 107:1-14. [PMID: 27579776 DOI: 10.1016/j.biomaterials.2016.07.039] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 01/28/2023]
Abstract
As an intervention to abrogate ischemic cardiomyopathy, the concept of applying a temporary, local patch to the surface of the recently infarcted ventricle has been explored from a number of design perspectives. Two important features considered for such a cardiac patch include the provision of appropriate mechanical support and the capacity to influence the remodeling pathway by providing cellular or biomolecule delivery. The objective of this report was to focus on these two features by first evaluating the incorporation of a cardiac extracellular matrix (ECM) component, and second by evaluating the impact of patch anisotropy on the pathological remodeling process initiated by myocardial infarction. The functional outcomes of microfibrous, elastomeric, biodegradable cardiac patches have been evaluated in a rat chronic infarction model. Ten weeks after infarction and 8 wk after patch epicardial placement, echocardiographic function, tissue-level structural remodeling (e.g., biaxial mechanical response and microstructural analysis), and cellular level remodeling were assessed. The results showed that the incorporation of a cardiac ECM altered the progression of several keys aspects of maladaptive remodeling following myocardial infarction. This included decreasing LV global mechanical compliance, inhibiting echocardiographically-measured functional deterioration, mitigating scar formation and LV wall thinning, and promoting angiogenesis. In evaluating the impact of patch anisotropy, no effects from the altered patch mechanics were detected after 8 wk, possibly due to patch fibrous encapsulation. Overall, this study demonstrates the benefit of a cardiac patch design that combines both ventricle mechanical support, through a biodegradable, fibrillary elastomeric component, and the incorporation of ECM-based hydrogel components.
Collapse
Affiliation(s)
- Antonio D'Amore
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Fondazione RiMED, Italy; DICGIM, Università di Palermo, Italy
| | - Tomo Yoshizumi
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel K Luketich
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew T Wolf
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinzhu Gu
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Richard Hoff
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical Engineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Yoshizumi T, Zhu Y, Jiang H, D'Amore A, Sakaguchi H, Tchao J, Tobita K, Wagner WR. Timing effect of intramyocardial hydrogel injection for positively impacting left ventricular remodeling after myocardial infarction. Biomaterials 2016; 83:182-93. [PMID: 26774561 PMCID: PMC4754148 DOI: 10.1016/j.biomaterials.2015.12.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 01/09/2023]
Abstract
Intramyocardial injection of various injectable hydrogel materials has shown benefit in positively impacting the course of left ventricular (LV) remodeling after myocardial infarction (MI). However, since LV remodeling is a complex, time dependent process, the most efficacious time of hydrogel injection is not clear. In this study, we injected a relatively stiff, thermoresponsive and bioabsorbable hydrogel in rat hearts at 3 different time points - immediately after MI (IM), 3 d post-MI (3D), and 2 w post-MI (2W), corresponding to the beginnings of the necrotic, fibrotic and chronic remodeling phases. The employed left anterior descending coronary artery ligation model showed expected infarction responses including functional loss, inflammation and fibrosis with distinct time dependent patterns. Changes in LV geometry and contractile function were followed by longitudinal echocardiography for 10 w post-MI. While all injection times positively affected LV function and wall thickness, the 3D group gave better functional outcomes than the other injection times and also exhibited more local vascularization and less inflammatory markers than the earlier injection time. The results indicate an important role for injection timing in the increasingly explored concept of post-MI biomaterial injection therapy and suggest that for hydrogels with mechanical support as primary function, injection at the beginning of the fibrotic phase may provide improved outcomes.
Collapse
Affiliation(s)
- Tomo Yoshizumi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yang Zhu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hongbin Jiang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hirokazu Sakaguchi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jason Tchao
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Kimimasa Tobita
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
20
|
Annabi N, Shin SR, Tamayol A, Miscuglio M, Afshar M, Assmann A, Mostafalu P, Sun JY, Mithieux S, Cheung L, Tang X(S, Weiss AS, Khademhosseini A. Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:40-9. [PMID: 26551969 PMCID: PMC4863466 DOI: 10.1002/adma.201503255] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/30/2015] [Indexed: 04/14/2023]
Abstract
A highly elastic hybrid hydrogel of methacryloyl-substituted recombinant human tropoelastin (MeTro) and graphene oxide (GO) nanoparticles are developed. The synergistic effect of these two materials significantly enhances both ultimate strain (250%), reversible rotation (9700°), and the fracture energy (38.8 ± 0.8 J m(-2) ) in the hybrid network. Furthermore, improved electrical signal propagation and subsequent contraction of the muscles connected by hybrid hydrogels are observed in ex vivo tests.
Collapse
Affiliation(s)
- Nasim Annabi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115-5000, USA
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Mario Miscuglio
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Mohsen Afshar
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Alexander Assmann
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Cardiovascular Surgery, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Pooria Mostafalu
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Jeong-Yun Sun
- Department of Material Science and Engineering, Seoul National University, Seoul 151-742, South Korea
| | - Suzanne Mithieux
- School of Molecular Bioscience, University of Sydney, Sydney, 2006, Australia
| | - Louis Cheung
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - Anthony S. Weiss
- School of Molecular Bioscience, University of Sydney, Sydney, 2006, Australia
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
21
|
ÇELEBİ SALTIK B, ÖTEYAKA MÖ. Cardiac patch design: compatibility of nanofiber materials prepared byelectrospinning method with stem cells. Turk J Biol 2016. [DOI: 10.3906/biy-1506-82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
22
|
Fan Z, Li X, Niu H, Guan J. Myocardial Regenerative Medicine. POLYMERIC BIOMATERIALS FOR TISSUE REGENERATION 2016:353-386. [DOI: 10.1007/978-981-10-2293-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Kai D, Wang QL, Wang HJ, Prabhakaran MP, Zhang Y, Tan YZ, Ramakrishna S. Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomater 2014; 10:2727-38. [PMID: 24576580 DOI: 10.1016/j.actbio.2014.02.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 11/30/2022]
Abstract
Myocardial infarction (MI) leads to the loss of cardiomyocytes, followed by left ventricular (LV) remodeling and cardiac dysfunction. The authors hypothesize that an elastic, biodegradable nanofibrous cardiac patch loaded with mesenchymal stem cells (MSC) could restrain LV remodeling and improve cardiac function after MI. Poly(ε-caprolactone)/gelatin (PG) nanofibers were fabricated by electrospinning, and the nanofibers displayed a porous and uniform nanofibrous structure with a diameter of 244±51nm. An MI model was established by ligation of the left anterior descending coronary artery of female Sprague-Dawley rats. The PG nanofibrous patch seeded with MSC, isolated from rat bone marrow, was implanted on the epicardium of the infarcted region of the LV wall of the heart. After transplantation, the PG-cell patch restricted the expansion of the LV wall effectively and reduced the scar size, and the density of the microvessels increased. Cells within the patch were able to migrate towards the scar tissue, and promoted new blood vessel formation at the infarct site. Angiogenesis and the cardiac functions improved significantly after 4weeks of implantation. The MSC-seeded PG nanofibrous patches are demonstrated to provide sufficient mechanical support, to induce angiogenesis and to accelerate cardiac repair in a rat model of MI. The study highlights the positive impact of implantation of an MSC-seeded PG nanofibrous patch as a novel constituent for MI repair.
Collapse
Affiliation(s)
- Dan Kai
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China; NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore
| | - Qiang-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Rd, Shanghai 200032, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Rd, Shanghai 200032, China
| | - Molamma P Prabhakaran
- Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Rd, Shanghai 200032, China.
| | - Seeram Ramakrishna
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China; NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore; Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore; Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore.
| |
Collapse
|
24
|
Serpooshan V, Zhao M, Metzler SA, Wei K, Shah PB, Wang A, Mahmoudi M, Malkovskiy AV, Rajadas J, Butte MJ, Bernstein D, Ruiz-Lozano P. Use of bio-mimetic three-dimensional technology in therapeutics for heart disease. Bioengineered 2014; 5:193-7. [PMID: 24637710 PMCID: PMC4101012 DOI: 10.4161/bioe.27751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Due to the limited self-renewal capacity of cardiomyocytes, the mammalian heart exhibits impaired regeneration and insufficient ability to restore heart function after injury. Cardiovascular tissue engineering is currently considered as a promising alternative therapy to restore the structure and function of the failing heart. Recent evidence suggests that the epicardium may play critical roles in regulation of myocardial development and regeneration. One of the mechanisms that has been proposed for the restorative effect of the epicardium is the specific physiomechanical cues that this layer provides to the cardiac cells. In this article we explore whether a new generation of epicardium-mimicking, acellular matrices can be utilized to enhance cardiac healing after injury. The matrix consists of a dense collagen scaffold with optimized biomechanical properties approaching those of embryonic epicardium. Grafting the epicardial patch onto the ischemic myocardium--promptly after the incidence of infarct--resulted in preserved contractility, attenuated ventricular remodeling, diminished fibrosis, and vascularization within the injured tissue in the adult murine heart.
Collapse
Affiliation(s)
| | - Mingming Zhao
- Stanford University; Department of Pediatrics; Stanford, CA USA
| | - Scott A Metzler
- Stanford University; Department of Pediatrics; Stanford, CA USA
| | - Ke Wei
- Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| | - Parisha B Shah
- Stanford University; Department of Pediatrics; Stanford, CA USA
| | - Andrew Wang
- Stanford University; Department of Pediatrics; Stanford, CA USA
| | | | - Andrey V Malkovskiy
- Stanford University; Biomaterials and Advanced Drug Delivery Laboratory; Stanford, CA USA
| | - Jayakumar Rajadas
- Stanford University; Biomaterials and Advanced Drug Delivery Laboratory; Stanford, CA USA
| | - Manish J Butte
- Stanford University; Department of Pediatrics; Stanford, CA USA
| | | | - Pilar Ruiz-Lozano
- Stanford University; Department of Pediatrics; Stanford, CA USA
- Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| |
Collapse
|
25
|
Bouten CVC, Dankers PYW. Cardiac patching and the regeneration of infarcted myocardium: where do we go from here? Future Cardiol 2014; 10:167-70. [DOI: 10.2217/fca.13.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
EVALUATION OF: Serpooshan V, Zhao M, Metzler SA et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function postmyocardial infarction. Biomaterials 34, 9048–9055 (2013). The decline of cardiac function in the post-myocardial infarcted (MI) heart is due to two essential problems: massive loss of contractile cardiomyocytes, and loss of structural and mechanical tissue integrity due to ongoing remodeling of scar tissue, often leading to left ventricular dilation. Serpooshan et al. demonstrate that an engineered acellular type I collagen patch with optimized mechanical properties, grafted onto the epicardium of infarcted adult murine hearts following ligation of the left anterior descending artery, significantly improves cardiac function and reduces left ventricular remodeling 4 weeks postinjury. While these short-term results are encouraging and, like in other studies, prove the relevance of mechanically supporting the injured myocardium, optimization of the approach in terms of time and manner of intervention, as well as origin of the biomaterial, is needed to warrant future clinical application.
Collapse
Affiliation(s)
- Carlijn VC Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Patricia YW Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
26
|
Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:85-123. [PMID: 24741694 PMCID: PMC3925010 DOI: 10.1002/adma.201303233] [Citation(s) in RCA: 882] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life.
Collapse
Affiliation(s)
- Nasim Annabi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ali Tamayol
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jorge Alfredo Uquillas
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohsen Akbari
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Luiz E. Bertassoni
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chaenyung Cha
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gulden Camci-Unal
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehmet R. Dokmeci
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, Biomedical Engineering Building 3.110B, The University of Texas at Austin, 1 University Station, C0800, Austin, Texas, 78712–1062, USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
27
|
Nelson DM, Hashizume R, Yoshizumi T, Blakney AK, Ma Z, Wagner WR. Intramyocardial injection of a synthetic hydrogel with delivery of bFGF and IGF1 in a rat model of ischemic cardiomyopathy. Biomacromolecules 2014; 15:1-11. [PMID: 24345287 DOI: 10.1021/bm4010639] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is increasingly appreciated that the properties of a biomaterial used in intramyocardial injection therapy influence the outcomes of infarcted hearts that are treated. In this report the extended in vivo efficacy of a thermally responsive material that can deliver dual growth factors while providing a slow degradation time and high mechanical stiffness is examined. Copolymers consisting of N-isopropylacrylamide, 2-hydroxyethyl methacrylate, and degradable methacrylate polylactide were synthesized. The release of bioactive basic fibroblast growth factor (bFGF) and insulin-like growth factor 1 (IGF1) from the gel and loaded poly(lactide-co-glycolide) microparticles was assessed. Hydrogel with or without loaded growth factors was injected into 2 week-old infarcts in Lewis rats and animals were followed for 16 weeks. The hydrogel released bioactive bFGF and IGF1 as shown by mitogenic effects on rat smooth muscle cells in vitro. Cardiac function and geometry were improved for 16 weeks after hydrogel injection compared to saline injection. Despite demonstrating that left ventricular levels of bFGF and IGF1 were elevated for two weeks after injection of growth factor loaded gels, both functional and histological assessment showed no added benefit to inclusion of these proteins. This result points to the complexity of designing appropriate materials for this application and suggests that the nature of the material alone, without exogenous growth factors, has a direct ability to influence cardiac remodeling.
Collapse
Affiliation(s)
- Devin M Nelson
- Department of Bioengineering and ‡McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15219, United States
| | | | | | | | | | | |
Collapse
|
28
|
Dunn DA, Hodge AJ, Lipke EA. Biomimetic materials design for cardiac tissue regeneration. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:15-39. [DOI: 10.1002/wnan.1241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/10/2013] [Accepted: 07/29/2013] [Indexed: 01/12/2023]
Affiliation(s)
- David A. Dunn
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | | | | |
Collapse
|
29
|
Lakshmanan R, Krishnan UM, Sethuraman S. Polymeric scaffold aided stem cell therapeutics for cardiac muscle repair and regeneration. Macromol Biosci 2013; 13:1119-34. [PMID: 23982911 DOI: 10.1002/mabi.201300223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/05/2013] [Indexed: 12/13/2022]
Abstract
The constantly expanding repository of novel polymers and stem cells has opened up new vistas in the field of cardiac tissue engineering. Successful regeneration of the complex cardiac tissue mainly centres on the appropriate scaffold material with topographical features that mimic the native environment. The integration of stem cells on these scaffolds is expected to enhance the regeneration potential. This review elaborates on the interplay of these vital factors in achieving the functional cardiac tissue. The recent advances in polymers, nanocomposites, and stem cells from different sources are highlighted. Special emphasis is laid on the clinical trials involving stem cells and the state-of-the-art materials to obtain a balanced perspective on the translational potential of this strategy.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | | | | |
Collapse
|
30
|
Hashizume R, Fujimoto KL, Hong Y, Guan J, Toma C, Tobita K, Wagner WR. Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia-reperfusion injury: a preclinical study of a porous polyurethane material in a porcine model. J Thorac Cardiovasc Surg 2012; 146:391-9.e1. [PMID: 23219497 DOI: 10.1016/j.jtcvs.2012.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/06/2012] [Accepted: 11/06/2012] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Myocardial infarction (MI) can lead to irreversible adverse left ventricular remodeling resulting in subsequent severe dysfunction. The objective of this study was to investigate the potential for biodegradable, elastomeric patch implantation to positively alter the remodeling process after MI in a porcine model. METHODS Yorkshire pigs underwent a 60-minute catheter balloon occlusion of the left circumflex artery. Two weeks after MI animals underwent epicardial placement of a biodegradable, porous polyurethane (poly(ester urethane)urea; PEUU) patch (MI+PEUU, n = 7) or sham surgery (MI+sham, n = 8). Echocardiography before surgery and at 4 and 8 weeks after surgery measured the end-diastolic area (EDA) and fractional area change (%FAC). All animals were humanely killed 8 weeks after surgery and hearts were histologically assessed. RESULTS At 8 weeks, echocardiography revealed greater EDA values in the MI+sham group (23.6 ± 6.6 cm(2), mean ± standard deviaation) than in the MI+PEUU group (15.9 ± 2.5 cm(2)) (P < .05) and a lower %FAC in the MI+sham group (24.8 ± 7.6) than in the MI+PEUU group (35.9 ± 7.8) (P < .05). The infarcted ventricular wall was thicker in the MI+PEUU group (1.56 ± 0.5 cm) than in the MI+sham group (0.91 ± 0.24 cm) (P < .01). CONCLUSIONS Biodegradable elastomeric PEUU patch implantation onto the porcine heart 2 weeks post-MI attenuated left ventricular adverse remodeling and functional deterioration and was accompanied by increased neovascularization. These findings, although limited to a 2-month follow-up, may suggest an attractive clinical option to moderate post-MI cardiac failure.
Collapse
Affiliation(s)
- Ryotaro Hashizume
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa, USA
| | | | | | | | | | | | | |
Collapse
|