1
|
Yamaguchi T. Atrial structural remodeling and atrial fibrillation substrate: A histopathological perspective. J Cardiol 2025; 85:47-55. [PMID: 38810728 DOI: 10.1016/j.jjcc.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Atrial fibrillation (AF) substrate progresses with the advancement of atrial structural remodeling, resulting in AF perpetuation and recurrence. Although fibrosis is considered a hallmark of atrial structural remodeling, the histological background has not been fully elucidated because obtaining atrial specimens is difficult, especially in patients not undergoing open-heart surgery. Bipolar voltage reduction evaluated using electroanatomic mapping during AF ablation is considered a surrogate marker for the progression of structural remodeling; however, histological validation is lacking. We developed an intracardiac echocardiography-guided endomyocardial atrial biopsy technique to evaluate atrial structural remodeling in patients undergoing catheter ablation for nonvalvular AF. The histological factors associated with a decrease in bipolar voltage were interstitial fibrosis, as well as an increase in myocardial intercellular space preceding fibrosis, myofibrillar loss, and a decrease in cardiomyocyte nuclear density, which is a surrogate marker for cardiomyocyte density. Cardiomyocyte hypertrophy is closely associated with a decrease in cardiomyocyte nuclear density, suggesting that hypertrophic changes compensate for cardiomyocyte loss. Electron microscopy also revealed that increased intercellular spaces indicated the leakage of plasma components owing to increased vascular permeability. Additionally, amyloid deposition was observed in 4 % of biopsy cases. Only increased intercellular space and interstitial fibrosis were significantly higher for long-standing persistent AF than for paroxysmal AF and associated with recurrence after AF ablation, suggesting that this interstitial remodeling is the AF substrate. An increase in intercellular space that occurs early in AF formation is a therapeutic target for the AF substrate, which prevents irreversible interstitial degeneration due to collagen accumulation. This endomyocardial atrial biopsy technique will allow the collection of atrial tissue from a wide variety of patients and significantly facilitate the elucidation of the mechanisms of atrial cardiomyopathy, structural remodeling, and AF substrates.
Collapse
|
2
|
Galeone A, Buccoliero C, Barile B, Nicchia GP, Onorati F, Luciani GB, Brunetti G. Cellular and Molecular Mechanisms Activated by a Left Ventricular Assist Device. Int J Mol Sci 2023; 25:288. [PMID: 38203459 PMCID: PMC10779015 DOI: 10.3390/ijms25010288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Left ventricular assist devices (LVADs) represent the final treatment for patients with end-stage heart failure (HF) not eligible for transplantation. Although LVAD design has been further improved in the last decade, their use is associated with different complications. Specifically, inflammation, fibrosis, bleeding events, right ventricular failure, and aortic valve regurgitation may occur. In addition, reverse remodeling is associated with substantial cellular and molecular changes of the failing myocardium during LVAD support with positive effects on patients' health. All these processes also lead to the identification of biomarkers identifying LVAD patients as having an augmented risk of developing associated adverse events, thus highlighting the possibility of identifying new therapeutic targets. Additionally, it has been reported that LVAD complications could cause or exacerbate a state of malnutrition, suggesting that, with an adjustment in nutrition, the general health of these patients could be improved.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| |
Collapse
|
3
|
Kurekova S, Tomaskova ZS, Andelova N, Macejova D, Cervienkova M, Brtko J, Ferko M, Grman M, Mackova K. The effect of all-trans retinoic acid on the mitochondrial function and survival of cardiomyoblasts exposed to local photodamage. Cell Biol Int 2022; 46:947-964. [PMID: 35191136 DOI: 10.1002/cbin.11784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/30/2021] [Accepted: 02/12/2022] [Indexed: 11/06/2022]
Abstract
This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Simona Kurekova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Zuzana Sevcikova Tomaskova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Dana Macejova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Michaela Cervienkova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237, Bratislava, Slovakia
| | - Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Katarina Mackova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| |
Collapse
|
4
|
Abstract
This review provides a comprehensive overview of the past 25+ years of research into the development of left ventricular assist device (LVAD) to improve clinical outcomes in patients with severe end-stage heart failure and basic insights gained into the biology of heart failure gleaned from studies of hearts and myocardium of patients undergoing LVAD support. Clinical aspects of contemporary LVAD therapy, including evolving device technology, overall mortality, and complications, are reviewed. We explain the hemodynamic effects of LVAD support and how these lead to ventricular unloading. This includes a detailed review of the structural, cellular, and molecular aspects of LVAD-associated reverse remodeling. Synergisms between LVAD support and medical therapies for heart failure related to reverse remodeling, remission, and recovery are discussed within the context of both clinical outcomes and fundamental effects on myocardial biology. The incidence, clinical implications and factors most likely to be associated with improved ventricular function and remission of the heart failure are reviewed. Finally, we discuss recognized impediments to achieving myocardial recovery in the vast majority of LVAD-supported hearts and their implications for future research aimed at improving the overall rates of recovery.
Collapse
Affiliation(s)
| | | | - Gabriel Sayer
- Cardiovascular Research Foundation, New York, NY (D.B.)
| | - Nir Uriel
- Cardiovascular Research Foundation, New York, NY (D.B.)
| |
Collapse
|
5
|
Collins HE, Kane MS, Litovsky SH, Darley-Usmar VM, Young ME, Chatham JC, Zhang J. Mitochondrial Morphology and Mitophagy in Heart Diseases: Qualitative and Quantitative Analyses Using Transmission Electron Microscopy. FRONTIERS IN AGING 2021; 2:670267. [PMID: 35822027 PMCID: PMC9261312 DOI: 10.3389/fragi.2021.670267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
Transmission electron microscopy (TEM) has long been an important technique, capable of high degree resolution and visualization of subcellular structures and organization. Over the last 20 years, TEM has gained popularity in the cardiovascular field to visualize changes at the nanometer scale in cardiac ultrastructure during cardiovascular development, aging, and a broad range of pathologies. Recently, the cardiovascular TEM enabled the studying of several signaling processes impacting mitochondrial function, such as mitochondrial fission/fusion, autophagy, mitophagy, lysosomal degradation, and lipophagy. The goals of this review are to provide an overview of the current usage of TEM to study cardiac ultrastructural changes; to understand how TEM aided the visualization of mitochondria, autophagy, and mitophagy under normal and cardiovascular disease conditions; and to discuss the overall advantages and disadvantages of TEM and potential future capabilities and advancements in the field.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, KY, United States
| | - Mariame Selma Kane
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Silvio H. Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor M. Darley-Usmar
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Hiraiwa H, Okumura T, Shimizu S, Arao Y, Oishi H, Kato H, Kuwayama T, Yamaguchi S, Haga T, Yokoi T, Kondo T, Sugiura Y, Kano N, Watanabe N, Fukaya K, Furusawa K, Sawamura A, Morimoto R, Fujimoto K, Mutsuga M, Usui A, Murohara T. Pathological changes of the myocardium in reworsening of anthracycline-induced cardiomyopathy after explant of a left ventricular assist device. NAGOYA JOURNAL OF MEDICAL SCIENCE 2021; 82:129-134. [PMID: 32273641 PMCID: PMC7103868 DOI: 10.18999/nagjms.82.1.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report the long-term changes in cardiac function and pathological findings after successful explantation of a left ventricular assist device in a 42-year-old patient with anthracycline-induced cardiomyopathy with reworsening heart failure. Endomyocardial biopsy samples revealed that the cardiomyocyte diameter decreased and collagen volume fraction increased just after left ventricular assist device explantation. The collagen volume fraction decreased after 6 months, despite preserved systolic function. At 5 years after left ventricular assist device explantation, the systolic function markedly decreased and cardiomyocyte diameter increased. Pathological changes of the myocardium may enable the identification of cardiac dysfunction prior to echocardiographic changes in patients with reworsening heart failure after left ventricular assist device explantation.
Collapse
Affiliation(s)
- Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Cardiology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Yoshihito Arao
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideo Oishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroo Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tasuku Kuwayama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoaki Haga
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuyoshi Yokoi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Sugiura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoaki Kano
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Watanabe
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Fukaya
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Furusawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akinori Sawamura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuro Fujimoto
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Comparison of electron microscopic findings and clinical presentation in three patients with mitochondrial cardiomyopathy caused by the mitochondrial DNA mutation m.3243A > G. Med Mol Morphol 2020; 54:181-186. [PMID: 33113037 DOI: 10.1007/s00795-020-00268-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
Mitochondrial cardiomyopathy can be described as a condition characterized by abnormal heart-muscle structure and/or function, secondary to mutations in nuclear or mitochondrial DNA. Its severity can range from subclinical to critical conditions. We presented three cases of mitochondrial cardiomyopathy with m.3243A > G mutation and compared the clinical manifestations with the histological findings for each of these cases. All cases showed cardiac hypertrophy, juvenile-onset diabetes mellitus, and hearing loss. Case 1 (43-year-old male) showed less cardiac involvement and shorter duration of mitochondrial disease-related symptoms than case 2 (67-year-old female) and case 3 (51-year-old male), who showed the most advanced cardiac condition and longest duration from the manifestation of heart failure. The histological findings revealed that cardiomyocytes from case 1 showed no hypertrophy and mitochondrial degeneration in electron microscopy. Alternatively, cases 2 and 3 showed hypertrophy in their cardiomyocytes, and mitochondrial degeneration (e.g. onion-like lesions, swollen cristae, and lamellar bodies) was most apparent in case 3. These results suggested that mitochondrial degeneration, as evaluated by electron microscopy, might be correlated with impaired heart function in patients with mitochondrial cardiomyopathy.
Collapse
|
8
|
TLR4 Activation Promotes the Progression of Experimental Autoimmune Myocarditis to Dilated Cardiomyopathy by Inducing Mitochondrial Dynamic Imbalance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3181278. [PMID: 30046376 PMCID: PMC6038665 DOI: 10.1155/2018/3181278] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/11/2018] [Accepted: 04/02/2018] [Indexed: 11/17/2022]
Abstract
Mitochondrial dynamic imbalance associates with several cardiovascular diseases. However, the role of mitochondrial dynamics in TLR4 activation-mediated dilated cardiomyopathy (DCM) progress remains unknown. A model of experimental autoimmune myocarditis (EAM) was established in BALB/c mice on which TLR4 activation by LPS-EB or TLR4 inhibition by LPS-RS was performed to induce chronic inflammation for 5 weeks. TLR4 activation promoted the transition of EAM to DCM as demonstrated by increased cardiomyocyte apoptosis, myocardial fibrosis, ventricular dilatation, and declined heart function. TLR4 inhibition mitigated the above DCM changes. Transmission electron microscope study showed that mitochondria became fragmented, also with damaged crista in ultrastructure in EAM mice. TLR4 activation aggravated the above mitochondrial aberration, and TLR4 inhibition alleviated it. The mitochondrial dynamic imbalance and damage in DCM development were mainly associated with OPA1 downregulation, which may be caused by elevated TNF-α level and ROS stress after TLR4 activation. Furthermore, OMA1/YME1L abnormal degradation was involved in the OPA1 dysfunction, and intervening OMA1/YME1L in H9C2 significantly alleviated mitochondrial fission, ultrastructure damage, and cell apoptosis induced by TNF-α and ROS. These data indicate that TLR4 activation resulted in OPA1 dysfunction, promoting mitochondrial dynamic imbalance and damage, which may involve in the progress of EAM to DCM.
Collapse
|
9
|
Xiao M, Zhong H, Xia L, Tao Y, Yin H. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med 2017; 111:316-327. [PMID: 28456642 DOI: 10.1016/j.freeradbiomed.2017.04.363] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
Mitochondrial lipids are essential for maintaining the integrity of mitochondrial membranes and the proper functions of mitochondria. As the "powerhouse" of a cell, mitochondria are also the major cellular source of reactive oxygen species (ROS). Oxidative stress occurs when the antioxidant system is overwhelmed by overproduction of ROS. Polyunsaturated fatty acids in mitochondrial membranes are primary targets for ROS attack, which may lead to lipid peroxidation (LPO) and generation of reactive lipids, such as 4-hydroxynonenal. When mitochondrial lipids are oxidized, the integrity and function of mitochondria may be compromised and this may eventually lead to mitochondrial dysfunction, which has been associated with many human diseases including cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. How mitochondrial lipids are oxidized and the underlying molecular mechanisms and pathophysiological consequences associated with mitochondrial LPO remain poorly defined. Oxidation of the mitochondria-specific phospholipid cardiolipin and generation of bioactive lipids through mitochondrial LPO has been increasingly recognized as an important event orchestrating apoptosis, metabolic reprogramming of energy production, mitophagy, and immune responses. In this review, we focus on the current understanding of how mitochondrial LPO and generation of bioactive lipid mediators in mitochondria are involved in the modulation of mitochondrial functions in the context of relevant human diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Mengqing Xiao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huiqin Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Lin Xia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Yongzhen Tao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.
| |
Collapse
|
10
|
Bultman SJ, Holley DW, G de Ridder G, Pizzo SV, Sidorova TN, Murray KT, Jensen BC, Wang Z, Bevilacqua A, Chen X, Quintana MT, Tannu M, Rosson GB, Pandya K, Willis MS. BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo. Cardiovasc Pathol 2016; 25:258-269. [PMID: 27039070 DOI: 10.1016/j.carpath.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022] Open
Abstract
There has been an increasing recognition that mitochondrial perturbations play a central role in human heart failure. Mitochondrial networks, whose function is to maintain the regulation of mitochondrial biogenesis, autophagy ('mitophagy') and mitochondrial fusion/fission, are new potential therapeutic targets. Yet our understanding of the molecular underpinning of these processes is just emerging. We recently identified a role of the SWI/SNF ATP-dependent chromatin remodeling complexes in the metabolic homeostasis of the adult cardiomyocyte using cardiomyocyte-specific and inducible deletion of the SWI/SNF ATPases BRG1 and BRM in adult mice (Brg1/Brm double mutant mice). To build upon these observations in early altered metabolism, the present study looks at the subsequent alterations in mitochondrial quality control mechanisms in the impaired adult cardiomyocyte. We identified that Brg1/Brm double-mutant mice exhibited increased mitochondrial biogenesis, increases in 'mitophagy', and alterations in mitochondrial fission and fusion that led to small, fragmented mitochondria. Mechanistically, increases in the autophagy and mitophagy-regulated proteins Beclin1 and Bnip3 were identified, paralleling changes seen in human heart failure. Evidence for perturbed cardiac mitochondrial dynamics included decreased mitochondria size, reduced numbers of mitochondria, and an altered expression of genes regulating fusion (Mfn1, Opa1) and fission (Drp1). We also identified cardiac protein amyloid accumulation (aggregated fibrils) during disease progression along with an increase in pre-amyloid oligomers and an upregulated unfolded protein response including increased GRP78, CHOP, and IRE-1 signaling. Together, these findings described a role for BRG1 and BRM in mitochondrial quality control, by regulating mitochondrial number, mitophagy, and mitochondrial dynamics not previously recognized in the adult cardiomyocyte. As critical to the pathogenesis of heart failure, epigenetic mechanisms like SWI/SNF chromatin remodeling seem more intimately linked to cardiac function and mitochondrial quality control mechanisms than previously realized.
Collapse
Affiliation(s)
- Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darcy Wood Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | - Tatiana N Sidorova
- Departments of Medicine and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katherine T Murray
- Departments of Medicine and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Zhongjing Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Ariana Bevilacqua
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xin Chen
- Department of Neurosurgery, Shandong Provincial Hospital affiliated to Shandong University, 250021, Jinan, PR China
| | - Megan T Quintana
- Department of Surgery, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Manasi Tannu
- School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gary B Rosson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|