1
|
Ahmed SA, Helmy WA, Ibrahim OA. Evaluation of lupine seeds (Lupinus albus L.) neutral extract as a texture improver in low-fat yogurt production. Int J Biol Macromol 2024; 263:130303. [PMID: 38382785 DOI: 10.1016/j.ijbiomac.2024.130303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Aqueous lupine seeds (Lupinus albus L.) extracts were evaluated as a natural fat substitute in low-fat yogurt production. Thus, the chemical composition, particle size, molecular weight, total phenolic (TPC), and total flavonoids (TFC) of the selected extract were estimated. Also, the antimicrobial activity and antioxidant capacity of selected extract were investigated. Yogurt with neutral lupine extract (NeLP) had the highest all sensorial attributes compared to other extracts. Also, the incorporation of NeLP during low-fat yogurt processing increased the solid content, and viscosity, as well as improved the textural profile and sensorial attributes without any negative effect on the yogurt's color. SEM micrographs of NeLP-yogurt microstructure showed a matrix characterized by large fused casein micelles clusters with comparatively lower porosity compared to control yogurt (without NeLP). The chemical composition of NeLP indicated that the major sugar constituents are glucose and galactose with different molar fractions. The molecular weight of NeLP is 460.5 kDa with a particle size of 1519.9 nm. Also, IC50 of NeLP is 0.589 mg/ml, while TPC and TFC are 7.17, and 0.0137 g/100 g sample, respectively. Hence, lupine neutral extract (0.25%) could be used as a fat replacer or texture improver ingredient in such low-fat yogurt which led to improved its characteristics without any negative defect during 7 days at 5 °C.
Collapse
Affiliation(s)
- Samia A Ahmed
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt.
| | - Wafaa A Helmy
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| | - Osama A Ibrahim
- Dairy Science Department, Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Pfeifer L, Mueller KK, Utermöhlen J, Erdt F, Zehge JBJ, Schubert H, Classen B. The cell walls of different Chara species are characterized by branched galactans rich in 3-O-methylgalactose and absence of AGPs. PHYSIOLOGIA PLANTARUM 2023; 175:e13989. [PMID: 37616003 DOI: 10.1111/ppl.13989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Streptophyte algae are the closest relatives to land plants; their latest common ancestor performed the most drastic adaptation in plant evolution around 500 million years ago: the conquest of land. Besides other adaptations, this step required changes in cell wall composition. Current knowledge on the cell walls of streptophyte algae and especially on the presence of arabinogalactan-proteins (AGPs), important signalling molecules in all land plants, is limited. To get deeper insights into the cell walls of streptophyte algae, especially in Charophyceae, we performed sequential cell wall extractions of four Chara species. The three species Chara globularis, Chara subspinosa and Chara tomentosa revealed comparable cell wall compositions, with pectins, xylans and xyloglucans, whereas Chara aspera stood out with higher amounts of uronic acids in the pectic fractions and lack of reactivity with antibodies binding to xylan- and xyloglucan epitopes. Search for AGPs in the four Chara species and in Nitellopsis obtusa revealed the presence of galactans with pyranosidic galactose in 1,3-, 1,6- and 1,3,6-linkage, which are typical galactan motifs in land plant AGPs. A unique feature of these branched galactans was high portions of 3-O-methylgalactose. Only Nitellopsis contained substantial amounts of arabinose A bioinformatic search for prolyl-4-hydroxylases, involved in the biosynthesis of AGPs, revealed one possible functional sequence in the genome of Chara braunii, but no hydroxyproline could be detected in the four Chara species or in Nitellopsis obtusa. We conclude that AGPs that is typical for land plants are absent, at least in these members of the Charophyceae.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jon Utermöhlen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Felicitas Erdt
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jean Bastian Just Zehge
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Hendrik Schubert
- Aquatic Ecology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
3
|
Wisuitiprot V, Ingkaninan K, Wisuitiprot W, Srivilai J, Chakkavittumrong P, Waranuch N. Effects of some medicinal plant extracts on dermal papilla cells. J Cosmet Dermatol 2022; 21:6109-6117. [PMID: 35675125 DOI: 10.1111/jocd.15148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Miniaturization of the hair follicles is evident on the balding scalp. Approved medications, topical minoxidil, and oral finasteride for the treatment of alopecia sometimes come with undesirable adverse effects. The study was to examine the bioactivity of medicinal plants for finding the promising source of anti-hair loss application. METHODS Ten ethanolic extracts were prepared from Acacia concina (Willd.) DC., Acanthus ebracteatus Vahl, Bridelia ovata Decne, Cleome viscosa L., Cocos nucifera L., Hibiscus subdariffla L., Oryza sativa L., Terminalia chebula Retz., Tinospora crispa (L.) Hook. f. & Thomson and cytotoxic tested on dermal papilla cells using MTT assay. The effect of the extracts on cell cycle was also determined using flow cytometry technique. Anti-inflammatory activity was examined by determining IL-1β inhibition in RAW 257.4 cells. In vitro study of androgenic and 5α-reductase inhibitory activities were also determined using MTT assay and enzymatic reaction couple with liquid chromatography-mass spectrometry (LC-MS), respectively. RESULTS Our results revealed that only A. ebracteatus promoted dermal papilla cell proliferation and the S and G2/M phases in cell cycle. A. ebracteatus also showed inhibitory activity against 5α-reductase and testosterone in reducing cell viability of the dermal papilla. Moreover, A. ebracteatus extract strongly inhibited LPS-stimulating IL-1β production in RAW 264.7 cells in a dose-dependent manner. CONCLUSION Our finding indicated that the ethanolic extract of A. ebracteatus is a promising candidate for anti-hair loss treatment.
Collapse
Affiliation(s)
- Vanuchawan Wisuitiprot
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand.,Cosmetics and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Wudtichai Wisuitiprot
- Sirindhorn College of Public Health Phitsanulok, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Phitsanulok, Thailand
| | - Jukkarin Srivilai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Panlop Chakkavittumrong
- Department of Internal Medicine, Faculty of Medicine, Thammasat University, Bangkok, Thailand
| | - Neti Waranuch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand.,Cosmetics and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
4
|
Matos P, Batista MT, Figueirinha A. A review of the ethnomedicinal uses, chemistry, and pharmacological properties of the genus Acanthus (Acanthaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115271. [PMID: 35430290 DOI: 10.1016/j.jep.2022.115271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Acanthus genus belongs to the Acanthaceae family, and its species are distributed in all continents, mainly in tropical and subtropical regions. Several traditional applications are referred to, but few scientific studies validate them. Despite this, studies in animal models corroborate some of its uses in folk medicine, such as anticancer, antidiabetic, anti-inflammatory, and antinociceptive, which encourages the research on plants of this genus. AIM OF THE REVIEW To our knowledge, this document is the first comprehensive review study that provides information on the geographic distribution, botanical characteristics, ethnomedicinal uses, phytochemicals, and pharmacological activities of some Acanthus species to understand the correlation between traditional uses, phytochemical, and pharmacological activities, providing perspectives for future studies. RESULTS In traditional medicine, Acanthus species are mainly used for diseases of respiratory, nervous and reproductive system, gastrointestinal and urinary tract, and skin illness. The most used species are A. montanus, A. ilicifolius, and A. ebracteatus. Chemical compounds (125) from different chemical classes were isolated and identified in seven species, mainly from A. ilicifolius, about 80, followed by A. ebracteatus and A. montanus, appearing with a slightly lower number with fewer phytochemical profile studies. Isolated phytoconstituents have been mainly alkaloids, phenylpropanoid glycosides, and phenylethanoids. In addition, aliphatic glycosides, flavonoids, lignan glycosides, megastigmane derivatives, triterpenoids, steroids, fatty acids, alcohols, hydroxybenzoic acids, simple phenols were also cited. Scientific studies from Acanthus species extracts and their phytoconstituents support their ethnomedical uses. Antimicrobial activity that is the most studied, followed by the antioxidant, anti-inflammatory, and anticancer properties, underlie many Acanthus species activities. A. dioscoridis, A. ebracteatus, A. hirsutus, A. ilicifolius, A. mollis, A. montanus, and A. polystachyus have studies on these activities, A. ilicifolius being the one with the most publications. Most studies were essentially performed in vitro. However, the anticancer, antidiabetic, anti-inflammatory and antinociceptive properties have been studied in vivo. CONCLUSION Acanthus species have remarkable phytoconstituents with different biological activities, such as antioxidant, antimicrobial, anti-inflammatory, antinociceptive, hepatoprotective, and leishmanicidal, supporting traditional uses of some species. However, many others remain unexplored. Future studies should focus on these species, especially pharmacological properties, toxicity, and action mechanisms. This review provides a comprehensive report on Acanthus genus plants, evidencing their therapeutic potential and prospects for discovering new safe and effective drugs from Acanthus species.
Collapse
Affiliation(s)
- Patrícia Matos
- University of Coimbra, Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142, Oporto, Portugal
| | - Maria Teresa Batista
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; University of Coimbra, CIEPQPF, FFUC, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142, Oporto, Portugal.
| |
Collapse
|
5
|
Li YR, Xu S, Zhang RY, Yang MX, Liu HM, Wang XD. Structural Characterization of Polysaccharides in Waste Liquor Produced by Wet Decortication of Sesame Seeds. Front Nutr 2022; 9:940442. [PMID: 35769381 PMCID: PMC9234482 DOI: 10.3389/fnut.2022.940442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
The wet decortication of sesame seeds produces wastewater containing diverse minerals and organic pollutants that could be valuable resources for the food industry. This investigation aimed to reclaim, purify, and characterize the polysaccharides contained in the waste liquor from the sesame decortication industry. The purified polysaccharide fractions were characterized using monosaccharide analysis, GPC (high-performance gel permeation chromatography), FT-IR (Fourier-transform infrared) spectroscopy, methylation analysis, 1D and 2D Nucleai Magnetic Resonance (NMR) analysis, and thermal analysis. Four fractions were found (SSP-1,-2,-3, -4), of which SSP-2 was proportionately the largest and most interesting. The backbone of SSP-2 is mainly composed of (1→2,4)-β-D-Xylp residues with side chains connected to the O-4 position, with many T-β-D-Galp and (1→5)-α-L-Araf residues, and fewer (1→4)-α-D-Glcp, (1→2)-α-L-Rhap, T-α-L-Araf, and (1→2)-β-D-GlcpA residues. An efficient method for removing the polysaccharides would simplify wastewater treatment while finding a use for them would benefit the sesame, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yao-Ran Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shuai Xu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Run-Yang Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Ming-Xuan Yang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- *Correspondence: Hua-Min Liu,
| | - Xue-De Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- Xue-De Wang,
| |
Collapse
|
6
|
Yin ZH, Liu XP, Wang JM, Xi XF, Zhang Y, Zhao RL, Kang WY. Structural Characterization and Anticoagulant Activity of a 3-O-Methylated Heteroglycan From Fruiting Bodies of Pleurotus placentodes. Front Chem 2022; 10:825127. [PMID: 35155369 PMCID: PMC8829048 DOI: 10.3389/fchem.2022.825127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pleurotus placentodes, a fungus, belongs to the Pleurotaceae family. The aim of the present study was to characterize the structure of a novel polysaccharide from fruiting bodies of P. placentodes (PPp-W) and evaluate its anticoagulant activity in vitro. The high-performance liquid chromatography and GC–MS analysis indicated that PPp-W with a molecular weight of 27.4 kDa was mainly composed of mannose (17.56%), glucose (6.37%), galactose (44.89%), and fucose (1.22%) with a certain amount of 3-O-methyled galactose. SEM, XRD, and AFM combined with Congo red test revealed that PPp-W was an irregular curly sheet with triple-helix conformation. The FT-IR, methylation, and nuclear magnetic resonance analysis indicated that PPp-W contained→6)-α-D-Galp-(1→, →6)-3-O-Me-α-D-Galp-(1→and →2, 6)-α-D-Galp-(1→ as main chain, partially substituted at O-2 and O-6 by non-reducing ends of β-D-Manp-(1→ and β-L-Fucp-(1→ with a small amount of α-1,3-linked-Glcp in backbone. PPp-W could significantly prolong APTT (12.9 ± 0.42 s, p < 0.001) and thrombin time (39.9 ± 0.28 s, p < 0.01) compared with the control group (11.45 ± 0.071 s and 38.05 ± 0.21 s), which showed that PPp-W had anticoagulant activity. These studies suggested that PPp-W was a 3-O-methylated heteroglycan and might be suitable for functional foods and natural drugs as an anticoagulant ingredient, which provided a basis for the application of polysaccharides from P. placentodes.
Collapse
Affiliation(s)
- Zhen-Hua Yin
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Xiao-Peng Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Jin-Mei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Xue-Feng Xi
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- College of Physical Education, Henan University, Kaifeng, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Shijiazhuang, China
- *Correspondence: Yan Zhang, ; Rui-Lin Zhao, ; Wen-Yi Kang,
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yan Zhang, ; Rui-Lin Zhao, ; Wen-Yi Kang,
| | - Wen-Yi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- *Correspondence: Yan Zhang, ; Rui-Lin Zhao, ; Wen-Yi Kang,
| |
Collapse
|
7
|
Yang K, Jin Y, Cai M, He P, Tian B, Guan R, Yu G, Sun P. Separation, characterization and hypoglycemic activity in vitro evaluation of a low molecular weight heteropolysaccharide from the fruiting body of Phellinus pini. Food Funct 2021; 12:3493-3503. [PMID: 33900340 DOI: 10.1039/d1fo00297j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Edible mushrooms have potential in anti-diabetic phytotherapy. They are rich in natural compounds such as polysaccharides, which have been known to have antihyperlipidemic effects since ancient times. A polysaccharide fraction of PP80 and a contained low molecular-weight (Mw), water-soluble polysaccharide (PPW-1, Mw: 3.2 kDa) were isolated from the fruiting body of Phellinus pini. Both PP80 and PPW-1 possess α-glucosidase inhibition and glucose consumption amelioration in an insulin-resistant HepG2 cell model. The α-glucosidase inhibitory activity of PPW-1 (IC50 = 2.2 ± 0.1 mg mL-1) is significantly (P < 0.01) higher than those of PP80 (IC50 = 13.1 ± 0.5 mg mL-1) and acarbose (IC50 = 4.3 ± 0.2 mg mL-1), behaving in a non-competitive inhibition manner. The structural characterization results indicated that PPW-1 is a homogeneous heteropolysaccharide composed of d-glucose, d-mannose, d-galactose and l-rhamnose. The major backbone of PPW-1 is primarily comprised of 1,6-linked glucopyranose, every third residue of which is branched at the O-3 position by a side chain consisting of 1,3-linked and terminal glucopyranose. In addition, small amounts of 1,2-linked-α-d-Manp, 1,6-linked-3-O-Me-α-d-Galp and rhamnose exist in PPW-1. In summary, PPW-1 is a novel heteropolysaccharide with potent in vitro hypoglycemic activity, and it may be a potential dietary component for improving glucose homeostasis.
Collapse
Affiliation(s)
- Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuezhong Jin
- Zhejiang Yangzhikang Bio-technology Co., Ltd, Huzhou 313200, P. R. China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Pengfei He
- Marine Fishery Institute of Zhejiang Province, Zhoushan 316021, P. R. China.
| | - Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Genrong Yu
- Hangzhou Meiyuan Food Co. Ltd, Huzhou 311106, P. R. China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
8
|
Wei H, Shi Y, Yuan Z, Huang Z, Cai F, Zhu J, Zhang W, Li J, Xiong Q, Wang Y, Wang X. Isolation, Identification, and Anti-Inflammatory Activity of Polysaccharides of Typha angustifolia. Biomacromolecules 2021; 22:2451-2459. [PMID: 34024108 DOI: 10.1021/acs.biomac.1c00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study aimed to purify, structurally characterize, and evaluate the anti-inflammatory activity of the polysaccharide extracted from Typha angustifolia. Two purified polysaccharides (PTA-1 and PTA-2) were obtained via DEAE-52 cellulose chromatography. Their structural characterizations and antioxidant activity were in vitro analyzed. To evaluate the anti-inflammatory activity of PTA-2, the levels of inflammatory cytokines, intracellular ROS production, and the inhibitory effects of the transcriptional activation of the nuclear factor kappa B (NF-κB) signaling pathway were determined. PTA-1 comprises glucose (100%) with α-(1 → 3) glycosidic bonds, and PTA-2 comprises glucose (66.7%) and rhamnose (33.3%) formed by β-(1 → 3) glycosidic bonds. PTA-1 and PTA-2 showed strong antioxidant activity in vitro. Moreover, PTA-2 intervention (50, 100, and 200 μg/mL) suppressed the production of inflammatory cytokines, the activation of NF-κB signaling, and reactive oxygen species production significantly. The results identified PTA-2 as a natural product that could be applied in anti-inflammatory drugs.
Collapse
Affiliation(s)
- Huan Wei
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yuqi Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixiang Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhinan Huang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Fuhong Cai
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jingfeng Zhu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Wanwan Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jia Li
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yunpeng Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xiaoli Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
9
|
Le Normand M, Rietzler B, Vilaplana F, Ek M. Macromolecular Model of the Pectic Polysaccharides Isolated from the Bark of Norway Spruce ( Picea abies). Polymers (Basel) 2021; 13:polym13071106. [PMID: 33807128 PMCID: PMC8038116 DOI: 10.3390/polym13071106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The bark of Norway spruce (Picea abies) contains up to 13% pectins that can be extracted by pressurized hot water, which constitute a valuable renewable resource in second-generation lignocellulosic biorefineries. This article proposes, for the first time, structural molecular models for the pectins present in spruce bark. Pectin fractions of tailored molar masses were obtained by fractionation of the pressurized hot water extract of the inner bark using preparative size-exclusion chromatography. The monosaccharide composition, average molar mass distribution, and the glycosidic linkage patterns were analyzed for each fraction. The pectin fraction with high molecular weight (Mw of 59,000 Da) contained a highly branched RG-I domain, which accounted for 80% of the fraction and was mainly substituted with arabinan and arabinogalactan (type I and II) side chains. On the other hand, the fractions with lower molar masses (Mw = 15,000 and 9000 Da) were enriched with linear homogalacturonan domains, and also branched arabinan populations. The integration of the analytical information from the macromolecular size distributions, domain composition, and branch lengths of each pectin fraction, results in a comprehensive understanding of the macromolecular architecture of the pectins extracted from the bark of Norway spruce. This paves the way for the valorization of spruce bark pectic polymers in targeted applications based on their distinct polymeric structures and properties.
Collapse
Affiliation(s)
- Myriam Le Normand
- Division of Wood Chemistry and Pulp Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; (M.L.N.); (B.R.); (M.E.)
| | - Barbara Rietzler
- Division of Wood Chemistry and Pulp Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; (M.L.N.); (B.R.); (M.E.)
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Francisco Vilaplana
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
- Correspondence:
| | - Monica Ek
- Division of Wood Chemistry and Pulp Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; (M.L.N.); (B.R.); (M.E.)
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| |
Collapse
|
10
|
Gunasekaran S, Govindan S, Ramani P. Sulfated modification, characterization and bioactivities of an acidic polysaccharide fraction from an edible mushroom Pleurotus eous (Berk.) Sacc. Heliyon 2021; 7:e05964. [PMID: 33511294 PMCID: PMC7815800 DOI: 10.1016/j.heliyon.2021.e05964] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The acidic fraction (P3a) of Pleurotus eous was successfully sulfated by sulphur trioxide-pyridine complex method. The effect of sulfate modification (SP3a) on the structure, physicochemical properties and in vitro biological activity of P3 was studied. The structural characteristics were established by UV absorption, FT-IR, HPGPC and GC-MS. Biological studies were carried out, such as in vitro antioxidant, anticoagulant, anti-tumour and antibacterial activities. The sulfation process changed its physicochemical and biological characteristics. Compared with P3a, the molecular weight of SP3a is reduced. P3a and SP3a are composed of galactose, xylose, arabinose with different molar percentages. Sulfated derivatives have strong antioxidant and anticoagulant properties. Compared with P3a, SP3a showed obvious cytotoxicity to Jurkat and HeLa cells. SP3a showed a higher inhibition zone for Gram-positive and Gram-negative bacteria. This article demonstrates that sulfation is an effective way to enhance biological activity, especially SP3a is a promising candidate for bioactive macromolecules and has great potential for industrial and biomedical applications.
Collapse
Affiliation(s)
- Sasikala Gunasekaran
- Department of Biochemistry, School of Biosciences, Periyar University, Salem, India
| | - Sudha Govindan
- Department of Biochemistry, School of Biosciences, Periyar University, Salem, India
| | - Prasanna Ramani
- Dhanvanthri Lab, Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
11
|
The anti-inflammatory properties of Acanthus Ebracteatus, Barleria Lupulina and Clinacanthus Nutans: a systematic review. Mol Biol Rep 2020; 47:9883-9894. [PMID: 33244664 DOI: 10.1007/s11033-020-06025-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 01/15/2023]
Abstract
This appraisal is comprised of the inflammatory studies that have been conducted on Clinacanthus nutans, Acanthus ebracteatus, and Barleria lupulina. The review aims to provide a comprehensive evaluation of the supporting and contradictory evidence on each plants' anti-inflammatory properties, whilst addressing the gaps in the current literature. The databases used to obtain relevant studies were Google Scholar, ResearchGate, PubMed and Nusearch (University of Nottingham). A total of 13 articles were selected for this review. A. ebracteatus was found to suppress neutrophil migration and weakly inhibits chronic inflammatory cytokines. Furthermore, B. lupulina and C. nutans were shown to possess very similar anti-inflammatory properties. The studies on C. nutans indicated that its anti-inflammatory effect is strongly related to the inhibition of toll-like receptor 4 (TLR4). Moreover, several phytoconstituents isolated from B. lupulina were shown to activate the anti-inflammatory Nrf2 pathway. Overall, all the studies have provided evidence to support the use of these plants as anti-inflammatory herbal remedies. However, their exact mechanism of action and the responsible phytoconstituents are yet to be established.
Collapse
|
12
|
Validation of a Rapid GC-MS Procedure for Quantitative Distinction between 3-O-Methyl- and 4-O-Methyl-Hexoses and Its Application to a Complex Carbohydrate Sample. SEPARATIONS 2020. [DOI: 10.3390/separations7030042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Methylation of one hydroxyl group of monosaccharides occurs in some bacteria, fungi, worms, molluscs, and also in plants. Although knowledge on the exact functions of this process is missing, methylation is an option to modulate glycan structures thereby leading to new biological activities. In plants, methylated monosaccharides are often present in minor amounts and, therefore, overseen in analytical investigations. A special difficulty is the distinction between 3-O-methyl- and 4-O-methyl-hexoses, due to similar fragmentation patterns of methylated alditol acetates in gas-chromatography with mass spectrometric detection and, in the case of galactose, identical retention times due to symmetry. We, therefore, developed and validated an easy method for the quantitative distinction between 3-O-methyl- and 4-O-methyl-hexoses and showed its functionality by quantification of 3-O-methyl galactose in a high molecular weight polysaccharide mixture from the charophyte Spirogyra. A systematic search for methylated monosaccharides in different plant lineages may offer new insights in plant cell wall evolution.
Collapse
|
13
|
Saleh SAA, Abd El-Galil AA, Sakr EAE, Taie HAA, Mostafa FA. Physiochemical, kinetic and thermodynamic studies on Aspergillus wewitschiae MN056175 inulinase with extraction of prebiotic and antioxidant Cynara scolymus leaves fructo-oligosaccharides. Int J Biol Macromol 2020; 163:1026-1036. [PMID: 32663564 DOI: 10.1016/j.ijbiomac.2020.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
Utilization of agricultural wastes as cheap natural resources for production of bioactive products is currently attracting global attention. For this purpose, this study focused on isolation of Aspergillus wewitschiae MN056175 as promising producer of inulinase, then investigating physiochemical, kinetics and thermodynamics of the obtained inulinase, and its ability to extract bioactive fructo-oligosaccharides (FOS) from Cynara scolymus leaves (artichoke leaves, AL). A. wewitschiae MN056175 inulinase gave the maximum activity at temperature 60 °C and inulin concentration 1%. The kinetics including Km and Vmax were determined to be 105.26 mg·ml-1 and 83.33 μmol·ml-1·min-1, respectively. The thermodynamics including, Ea (activation energy) and Ed (activation energy for denaturation) were determined to be 21.82 and 73.21 kJ·mol-1, Kd, T1/2, D-value, ΔH°, ΔG° and ΔS° at 40, 50 and 60 °C which indicated the stability of A. wewitschiae MN056175 inulinase. Moreover, this inulinase was capable of hydrolyzing Cynara scolymus leaves into reducing sugar and 15 FOS with different DP, total carbohydrate, and protein content under different conditions designed by central composite design (CCD). The 15 AL FOS showed different high antioxidant and prebiotic activities. Central FOS with probiotic bacteria exhibited significant antimicrobial activity against tested gram positive bacteria in a way higher than those recorded against gram negative bacteria.
Collapse
Affiliation(s)
- Shireen A A Saleh
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Asmaa A Abd El-Galil
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ebtehag A E Sakr
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Faten A Mostafa
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt.
| |
Collapse
|
14
|
Polysaccharides from sunflower stalk pith: Chemical, structural and functional characterization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.04.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Yin Z, Zhang W, Zhang J, Liu H, Guo Q, Chen L, Wang J, Kang W. Two Novel Polysaccharides in Psoralea corylifolia L and anti-A549 Lung Cancer Cells Activity In Vitro. Molecules 2019; 24:E3733. [PMID: 31623207 PMCID: PMC6833038 DOI: 10.3390/molecules24203733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022] Open
Abstract
Two novel water soluble heteroglycan (PCp-I and PCp-II) with anti-A549 lung cancer cells activity were isolated from Psoralea corylifolia L. Their average molecular weights were 2.721 × 104 and 2.850 × 104. PCp-I and PCp-II had the same monosaccharide composition, but their molar ratios were different. Based on methylation and NMR spectroscopy, the part structure of PCp-I was identified. The results of scanning electron microscope (SEM) showed that PCp-I had an irregular porous structure and PCp-II was flaky and irregularly curved. The results of thermogravimetry-differential scanning calorimetry (TG-DSC) showed that PCp-I and PCp-II had good thermal stability. Furthermore, PCp-I and PCp-II exhibited significant anti-A549 lung cancer cells activity (IC50 = 64.84 and 126.30 μM) in vitro.
Collapse
Affiliation(s)
- Zhenhua Yin
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China.
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Wei Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Juanjuan Zhang
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China.
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Huili Liu
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China.
| | - Qingfeng Guo
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China.
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Lin Chen
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China.
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China.
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| |
Collapse
|
16
|
Khamwut A, Jevapatarakul D, Reamtong O, T-Thienprasert NP. In vitro evaluation of anti-epidermoid cancer activity of Acanthus ebracteatus protein hydrolysate and their effects on apoptosis and cellular proteins. Oncol Lett 2019; 18:3128-3136. [PMID: 31452790 PMCID: PMC6704294 DOI: 10.3892/ol.2019.10647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/29/2019] [Indexed: 01/20/2023] Open
Abstract
Acanthus ebracteatus Vahl. is commonly consumed with the aim of curing cancer, inflammatory conditions and skin diseases in traditional Thai medicine. It is known to contain various phytochemicals; however, very little is known about the effects of A. ebracteatus protein hydrolysate on cancer cells, including its molecular mechanisms. The present study therefore investigated the anti-cancer activity of A. ebracteatus protein hydrolysates against epidermoid cancer of the skin cell line A431. Their effects on the apoptosis pathway and expression of proteins involved in the regulation of apoptosis, cell proliferation or cell cycle were also investigated. Crude extract of protein hydrolysate, partially purified peptides and purified peptides extracted from the aerial part of A. ebracteatus were administered to the A431 cells. The cytotoxicity effects were then determined using an MTT assay. As a result, A. ebracteatus protein hydrolysate significantly inhibited A431 cells with half inhibitory concentration equals to 425.9 ng protein/ml. By performing Annexin V assay, the partially purified peptides of A. ebracteatus were demonstrated to enhance the apoptosis pathway. Furthermore, western blot analysis revealed that the partially purified peptides of A. ebracteatus increased protein expression levels of RelA (p65) and Cyclin D1 proteins. However, A. ebracteatus did not increase the expression levels of p53-serine 15 phosphorylation (Ser15P).
Collapse
Affiliation(s)
- Ariya Khamwut
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Damita Jevapatarakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
17
|
Bac VH, Paulsen BS, Truong LV, Koschella A, Trinh TC, Wold CW, Yogarajah S, Heinze T. Neutral Polysaccharide from the Leaves of Pseuderanthemum carruthersii: Presence of 3- O-Methyl Galactose and Anti-Inflammatory Activity in LPS-Stimulated RAW 264.7 Cells. Polymers (Basel) 2019; 11:polym11071219. [PMID: 31336597 PMCID: PMC6680566 DOI: 10.3390/polym11071219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Pseuderanthemum carruthersii (Seem.) Guillaumin is a native tree in Vietnam. The water extract of the leaves from this tree gives a highly viscous product that has been used to heal wounds and treat inflammations. Our previous studies showed that the leaves of P. carruthersii have a high content of polysaccharides. In this study, the structure and influence of the neutral polysaccharide from Pseuderanthemum carruthersii (PCA1) on lipopolysaccharide (LPS)-stimulated RAW264.7 cells were investigated. The PCA1 isolated from P. carruthersii is a galactan-type polysaccharide, containing galactose (77.0%), 3-O-methyl galactose (20.0%), and arabinose (3.0%). Linkage analysis of PCA1 showed that both the 3-O-methyl galactose and galactose were 1,4-linked. The presence of 3-O-methyl galactose units as part of the polysaccharide is important and can be used as a chemotaxonomic marker. The molecular weight of the PCA1 was 170 kDa. A PCA1 concentration of 30–40 μg/mL strongly inhibited TNFα, IL-1β, and IL-6 inflammatory cytokine production, and reactive oxygen species (ROS) release. PCA1 had inhibitory activities on pro-inflammatory cytokine and ROS release in LPS-stimulated mouse macrophages in vitro through MAPK signaling.
Collapse
Affiliation(s)
- Vo Hoai Bac
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
- Department of Pharmacy, Section of Pharmaceutical Chemistry, University of Oslo, 0316 Oslo, Norway.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Berit Smestad Paulsen
- Department of Pharmacy, Section of Pharmaceutical Chemistry, University of Oslo, 0316 Oslo, Norway
| | - Le Van Truong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Andreas Koschella
- Friedrich Schiller University of Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstrasse, D-07743 Jena, Germany
| | - Tat Cuong Trinh
- Key Laboratory for Enzyme and Protein Technology, Hanoi University of Science, Hanoi, Vietnam
| | - Christian Winther Wold
- Department of Pharmacy, Section of Pharmaceutical Chemistry, University of Oslo, 0316 Oslo, Norway
| | - Suthajini Yogarajah
- Department of Pharmacy, Section of Pharmaceutical Chemistry, University of Oslo, 0316 Oslo, Norway
| | - Thomas Heinze
- Friedrich Schiller University of Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstrasse, D-07743 Jena, Germany
| |
Collapse
|
18
|
Characterization of chemical, molecular, thermal and rheological properties of medlar pectin extracted at optimum conditions as determined by Box-Behnken and ANFIS models. Food Chem 2019; 271:650-662. [DOI: 10.1016/j.foodchem.2018.07.211] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022]
|
19
|
Uysal S, Aumeeruddy-Elalfi Z, Zengin G, Aktumsek A, Mašković PZ, Vujić JM, Mahomoodally MF. In vitro antioxidant, cytotoxicity and chemical profile of different extracts from Acanthus hirsutus Boiss used in Anatolian folk medicine. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Govindaraj D, Rajan M, Hatamleh AA, Munusamy MA. From waste to high-value product: Jackfruit peel derived pectin/apatite bionanocomposites for bone healing applications. Int J Biol Macromol 2017; 106:293-301. [PMID: 28782611 DOI: 10.1016/j.ijbiomac.2017.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 02/08/2023]
Abstract
Public requirements encouraged by the current asset framework drive industry to expand its general effectiveness by enhancing existing procedures or finding new uses for waste. Thus, the aim of this study was the isolation, fabrication, and characterization of pectin derived from jackfruit (Artocarpus heterophyllus) peels and the generation of hybrid of pectin (P)/apatite (HA) (P/HA) bionanocomposites. In this process, the natural pectin polymer derived from the peel of jackfruits was used in different concentrations for the fabrication of HA bionanocomposites. Characterization of the isolated pectin and bionanocomposites samples was performed with 1H NMR and 13C NMR, FTIR, XRD, SEM-EDX, and HR-TEM. Cytocompatibility, ALP, fibroblast stem cells, anti-inflammatory and cell adhesion testing of the fabricated bionanocomposites was showed good biocompatibility. Our results signify that the fabricated bionanocomposites might be applicable as bone graft materials.
Collapse
Affiliation(s)
- Dharman Govindaraj
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| | - Ashraf A Hatamleh
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
21
|
Southeast Asian Medicinal Plants as a Potential Source of Antituberculosis Agent. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7185649. [PMID: 29081822 PMCID: PMC5610802 DOI: 10.1155/2017/7185649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/23/2017] [Accepted: 05/18/2017] [Indexed: 01/19/2023]
Abstract
Despite all of the control strategies, tuberculosis (TB) is still a major cause of death globally and one-third of the world's population is infected with TB. The drugs used for TB treatment have drawbacks of causing adverse side effects and emergence of resistance strains. Plant-derived medicines have since been used in traditional medical system for the treatment of numerous ailments worldwide. There were nine major review publications on antimycobacteria from plants in the last 17 years. However, none is focused on Southeast Asian medicinal plants. Hence, this review is aimed at highlighting the medicinal plants of Southeast Asian origin evaluated for anti-TB. This review is based on literatures published in various electronic database. A total of 132 plants species representing 45 families and 107 genera were reviewed; 27 species representing 20.5% exhibited most significant in vitro anti-TB activity (crude extracts and/or bioactive compounds 0–<10 µg/ml). The findings may motivate various scientists to undertake the project that may result in the development of crude extract that will be consumed as complementary or alternative TB drug or as potential bioactive compounds for the development of novel anti-TB drug.
Collapse
|
22
|
Acanthus ebracteatus Vahl. extract-loaded cellulose acetate ultrafine fibers as a topical carrier for controlled-release applications. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1658-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
O'Rourke C, Gregson T, Murray L, Sadler IH, Fry SC. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-D-galactose residues. ANNALS OF BOTANY 2015; 116:225-36. [PMID: 26113633 PMCID: PMC4512192 DOI: 10.1093/aob/mcv089] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/13/2015] [Accepted: 04/28/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS During evolution, plants have acquired and/or lost diverse sugar residues as cell-wall constituents. Of particular interest are primordial cell-wall features that existed, and in some cases abruptly changed, during the momentous step whereby land-plants arose from charophytic algal ancestors. METHODS Polysaccharides were extracted from four charophyte orders [Chlorokybales (Chlorokybus atmophyticus), Klebsormidiales (Klebsormidium fluitans, K. subtile), Charales (Chara vulgaris, Nitella flexilis), Coleochaetales (Coleochaete scutata)] and an early-diverging land-plant (Anthoceros agrestis). 'Pectins' and 'hemicelluloses', operationally defined as extractable in oxalate (100 °C) and 6 m NaOH (37 °C), respectively, were acid- or Driselase-hydrolysed, and the monosaccharides analysed chromatographically. One unusual monosaccharide, 'U', was characterized by (1)H/(13)C-nuclear magnetic resonance spectroscopy and also enzymically. KEY RESULTS 'U' was identified as 3-O-methyl-D-galactose (3-MeGal). All pectins, except in Klebsormidium, contained acid- and Driselase-releasable galacturonate, suggesting homogalacturonan. All pectins, without exception, released rhamnose and galactose on acid hydrolysis; however, only in 'higher' charophytes (Charales, Coleochaetales) and Anthoceros were these sugars also efficiently released by Driselase, suggesting rhamnogalacturonan-I. Pectins of 'higher' charophytes, especially Chara, contained little arabinose, instead possessing 3-MeGal. Anthoceros hemicelluloses were rich in glucose, xylose, galactose and arabinose (suggesting xyloglucan and arabinoxylan), none of which was consistently present in charophyte hemicelluloses. CONCLUSIONS Homogalacturonan is an ancient streptophyte feature, albeit secondarily lost in Klebsormidium. When conquering the land, the first embryophytes already possessed rhamnogalacturonan-I. In contrast, charophyte and land-plant hemicelluloses differ substantially, indicating major changes during terrestrialization. The presence of 3-MeGal in charophytes and lycophytes but not in the 'intervening' bryophytes confirms that cell-wall chemistry changed drastically between major phylogenetic grades.
Collapse
Affiliation(s)
- Christina O'Rourke
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK and
| | - Timothy Gregson
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK and
| | - Lorna Murray
- EastChem School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | - Ian H Sadler
- EastChem School of Chemistry, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JJ, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK and
| |
Collapse
|
24
|
Wu J, Zheng J, Xia X, Kan J. Purification and Structural Identification of Polysaccharides from Bamboo Shoots (Dendrocalamus latiflorus). Int J Mol Sci 2015; 16:15560-77. [PMID: 26184163 PMCID: PMC4519913 DOI: 10.3390/ijms160715560] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 11/17/2022] Open
Abstract
Three kinds of polysaccharides, namely, BSP1A, BSP2A, and BSP3B, were isolated from raw bamboo shoot (Dendrocalamus latiflorus) after purification and classification by DEAE cellulose-52 (ion-exchange chromatography) and Sephadex G-50. The molecular weights of BSP1A, BSP2A, and BSP3B were 10.2, 17.0 and 20.0 kDa, respectively, which were measured through GPC (gel performance chromatography) methods. BSP1A contained arabinose, glucose, and galactose in a molar ratio of 1.0:40.6:8.7. BSP2A and BSP3B contained arabinose, xylose, glucose, and galactose in molar ratios of 6.6:1.0:5.2:10.4 and 8.5:1.0:5.1:11.1, respectively. The existence of the O-glycopeptide bond in BSP1A, BSP2A, and BSP3B was demonstrated by β-elimination reaction. FTIR spectra of the three polysaccharides showed that both BSP2A and BSP3B contained β-D-pyranose sugar rings. However, BSP1A exhibited both β-D-pyranose and α-D-pyranose sugar rings. Congo red test indicated that BSP1A and BSP2A displayed triple helix structures, but BSP3B did not. NMR spectroscopy revealed that BSP1A may exhibit a β-1,6-Glucan pyran type as the main link, and few 1,6-glycosidic galactose pyranose and arabinose bonds were connected; BSP2A mainly demonstrated → 5)β-Ara(1 → and → 3)β-Gal(1 → connection. Furthermore, BSP3B mainly presented → 3)β-Glu(1 → and → 3)β-Gal(1 → connection and may also contain few other glycosidic bonds.
Collapse
Affiliation(s)
- Jinsong Wu
- College of Food Science, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Agricultural Product Processing, Southwest University, Chongqing 400715, China.
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Agricultural Product Processing, Southwest University, Chongqing 400715, China.
| | - Xuejuan Xia
- College of Food Science, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Agricultural Product Processing, Southwest University, Chongqing 400715, China.
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Agricultural Product Processing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
25
|
Harding SE, Adams GG, Almutairi F, Alzahrani Q, Erten T, Samil Kök M, Gillis RB. Ultracentrifuge Methods for the Analysis of Polysaccharides, Glycoconjugates, and Lignins. Methods Enzymol 2015; 562:391-439. [DOI: 10.1016/bs.mie.2015.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Gopi D, Kanimozhi K, Bhuvaneshwari N, Indira J, Kavitha L. Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:589-97. [PMID: 24095769 DOI: 10.1016/j.saa.2013.09.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/04/2013] [Accepted: 09/07/2013] [Indexed: 05/22/2023]
Abstract
Hydroxyapatite [HAP, Ca10(PO4)6(OH)2] is the main inorganic component of natural bone and is widely used in various biomedical applications. In this paper, we have reported the synthesis of HAP nanoparticles by banana peel pectin mediated green template method. The pectin extracted from the peels of banana and its various concentrations were exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology of HAP. The extracted pectin was characterized by spectral techniques like Fourier transform infrared spectroscopy (FTIR) for the functional group analysis, proton-1 nuclear magnetic resonance spectroscopy ((1)H NMR) and carbon-13 nuclear magnetic resonance spectroscopy ((13)C NMR) for the identification of H and C atoms in the extracted pectin, respectively. The HAP nanoparticles were synthesized using different concentrations of the as-extracted pectin. The purity, crystallinity and morphology of the as-synthesized HAP nanoparticles were evaluated by FTIR, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) and transmission electron microscopy (TEM), respectively. Moreover the antibacterial activity of HAP nanoparticles was evaluated against the gram positive and negative bacteria like Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The experimental results revealed that the HAP nanoparticles synthesized in the presence of an optimized concentration of pectin are pure, low crystalline, spherical and discrete particles with reduced size. Also, the HAP sample derived in the presence of pectin showed an enhanced antibacterial activity than that of the HAP synthesized in the absence of pectin. Hence, the HAP nanoparticles synthesized using pectin as a green template can act as a good biomaterial for biomedical applications.
Collapse
Affiliation(s)
- D Gopi
- Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu, India; Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu, India.
| | | | | | | | | |
Collapse
|
27
|
You L, Gao Q, Feng M, Yang B, Ren J, Gu L, Cui C, Zhao M. Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities. Food Chem 2013; 138:2242-9. [DOI: 10.1016/j.foodchem.2012.11.140] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/28/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
|
28
|
Staudacher E. Methylation--an uncommon modification of glycans. Biol Chem 2013; 393:675-85. [PMID: 22944672 DOI: 10.1515/hsz-2012-0132] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/27/2012] [Indexed: 11/15/2022]
Abstract
A methyl (Me) group on a sugar residue is a rarely reported event. Until now, this type of modification has been found in the animal kingdom only in worms and molluscs, whereas it is more frequently present in some species of bacteria, fungi, algae and plants, but not in mammals. The monosaccharides involved as well as the positions of the Me groups on the sugar vary with species. Methylation appears to play a role in some recognition events, but details are still unknown. This review summarises the current knowledge on methylation of sugars in all types of organism.
Collapse
Affiliation(s)
- Erika Staudacher
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
29
|
Acanthus ebracteatus Vahl. ethanol extract enhancement of the efficacy of the collagen scaffold in wound closure: a study in a full-thickness-wound mouse model. J Biomed Biotechnol 2012; 2012:754527. [PMID: 23093862 PMCID: PMC3471030 DOI: 10.1155/2012/754527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/25/2012] [Accepted: 08/26/2012] [Indexed: 12/20/2022] Open
Abstract
Acanthus ebracteatus Vahl. is a Thai herb that is effective in wound healing. We sought to quantitatively determine whether or not the combined application of Acanthus ebracteatus Vahl. and a collagen scaffold will increase wound closure and angiogenesis. Balb/c mice (body weight: 22-25 g) were anesthetized with sodium thiopental. The dorsal skin incision measuring 1.5 × 1.5 cm was made and then deepened using scissors to produce a full-thickness incision down to the level of the panniculus carnosus. The size of the wound was approximately 10% of the total body surface area. The collagen sheet was implanted onto the wound. Animals were divided into 4 major groups as follows: wound with normal saline (W-NSS), wound treated with 0.3 g/kg BW of Acanthus ebracteatus Vahl. extract (W-AE (0.3 g/kg.bw)), wound implanted with collagen scaffold (W-Coll), and wound implanted with collagen scaffold and treated with 0.3 g/kg BW of Acanthus ebracteatus Vahl. (W-Coll-AE combination). On day 14, the W-Coll-AE group showed decreased wound areas and increased capillary vascularity (CV) when compared to the other 3 groups, W-NSS, W-AE0.3, and W-Coll. In the present study, the combination of AE0.3 with collagen showed the best effect on skin angiogenesis and promoted wound closure with less neutrophil infiltration.
Collapse
|
30
|
Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA. Purification, characterization and antioxidant activity of polysaccharides extracted from the fibrous pulp of Mangifera pajang fruits. Lebensm Wiss Technol 2012. [DOI: 10.1016/j.lwt.2012.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Mahasiripanth T, Hokputsa S, Niruthisard S, Bhattarakosol P, Patumraj S. Effects of Acanthus ebracteatus Vahl on tumor angiogenesis and on tumor growth in nude mice implanted with cervical cancer. Cancer Manag Res 2012; 4:269-79. [PMID: 22977311 PMCID: PMC3437799 DOI: 10.2147/cmar.s33596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose The aim of this study was to examine the effects of the crude extract of Acanthus ebracteatus Vahl (AE) on tumor growth and angiogenesis by utilizing a tumor model in which nude mice were implanted with cervical cancer cells containing human papillomavirus 16 DNA (HPV-16 DNA). Materials and methods The growth-inhibitory effect of AE was investigated in four different cell types: CaSki (HPV-16 positive), HeLa (HPV-18 positive), hepatocellular carcinoma cells (HepG2), and human dermal fibroblast cells (HDFs). The cell viabilities and IC50 values of AE were determined in cells incubated with AE for different lengths of time. To conduct studies in vivo, female BALB/c nude mice (aged 6–7 weeks, weighing 20–25 g) were used. A cervical cancer-derived cell line (CaSki) with integrated HPV-16 DNA was injected subcutaneously (1 × 107 cells/200 μL) in the middle dorsum of each animal (HPV group). One week after injection, mice were fed orally with AE crude extract at either 300 or 3000 mg/kg body weight/day for 14 or 28 days (HPV-AE groups). Tumor microvasculature and capillary vascularity were determined using laser scanning confocal microscopy. Tumor tissue was collected from each mouse to evaluate tumor histology and vascular endothelial growth factor (VEGF) immunostaining. Results The time-response curves of AE and the dose-dependent effect of AE on growth inhibition were determined. After a 48-hour incubation period, the IC50 of AE in CaSki was discovered to be significantly different from that of HDFs (P < 0.05). A microvascular network was observed around the tumor area in the HPV group on days 21 and 35. Tumor capillary vascularity in the HPV group was significantly increased compared with the control group (P < 0.001). High-dose treatment of AE extract (HPV-3000AE group) significantly attenuated the increase in VEGF expression and tumor angiogenesis in mice that received either the 14- or 28-day treatment period (P < 0.001). Conclusion Our novel findings demonstrated that AE crude extract could inhibit cervical cancer growth, VEGF expression, and angiogenesis in a CaSki-cell transplant model in mice.
Collapse
|
32
|
Azmi AFMN, Mustafa S, Hashim DM, Manap YA. Prebiotic activity of polysaccharides extracted from Gigantochloa levis (Buluh beting) shoots. Molecules 2012; 17:1635-51. [PMID: 22314383 PMCID: PMC6268289 DOI: 10.3390/molecules17021635] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/28/2011] [Accepted: 01/13/2012] [Indexed: 12/21/2022] Open
Abstract
Bamboo shoot crude polysaccharides (BSCP) extracted from the shoots of Gigantochloa levis gave about 3.27 ± 0.18% on dry basis and a very minute percentage of protein (0.02 ± 0.01%). The molecular weight of BSCP estimated by gel chromatography was found to be around 7.49 × 103 Da, while the molecular weights of purified fractions (F1 to F5) were around 1550.96, 1471.63, 1685.78, 1691.61 and 1551.67 Da, respectively. The FTIR spectrum of BSCP revealed the possibility that the extract contains β-glucan, which can be considered a valuable compound for the medical and food industries. These relate to the resistance of BSCP towards artificial human gastric juice which is more than 99%. Prebiotic activity tested using BSCP as a carbon source showed significant increase in the growth of B. animalis ATCC 1053, B. longum BB 536 and L. acidophilus ATCC 4356 as compared to the use of FOS. Survivality of S. choleraesuis JCM 6977 was found to be slower in both BSCP and FOS. Study conducted reflects a good sign for the BSCP to be exploited as a promising prebiotic.
Collapse
Affiliation(s)
- Aida Firdaus Muhammad Nurul Azmi
- Department of Microbiology, Faculty Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
- Department of Food Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 Serdang Selangor, Malaysia
- Author to whom correspondence should be addressed;
| | - Dzulkifly Md. Hashim
- Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 Serdang Selangor, Malaysia
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Yazid Abdul Manap
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
33
|
Hussein M, Hassan FA, Abdel Daym H, Salama A, Enab A, Abd El-Galil AA. Utilization of some plant polysaccharides for improving yoghurt consistency. ANNALS OF AGRICULTURAL SCIENCES 2011; 56:97-103. [DOI: 10.1016/j.aoas.2011.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
34
|
Fan L, Gao S, Wang L, Wu P, Cao M, Zheng H, Xie W, Zhou J. Synthesis and anticoagulant activity of pectin sulfates. J Appl Polym Sci 2011. [DOI: 10.1002/app.35239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Harput US, Arihan O, Iskit AB, Nagatsu A, Saracoglu I. Antinociceptive, Free Radical–Scavenging, and Cytotoxic Activities of Acanthus hirsutus Boiss. J Med Food 2011; 14:767-74. [DOI: 10.1089/jmf.2010.0195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ummuhan Sebnem Harput
- Department of Pharmacognosy Faculty of Pharmacy; Hacettepe University, Ankara, Turkey
| | - Okan Arihan
- Department of Pharmacology, Faculty of Medicine; Hacettepe University, Ankara, Turkey
| | - Alper B. Iskit
- Department of Pharmacology, Faculty of Medicine; Hacettepe University, Ankara, Turkey
| | - Akito Nagatsu
- College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Iclal Saracoglu
- Department of Pharmacognosy Faculty of Pharmacy; Hacettepe University, Ankara, Turkey
| |
Collapse
|
36
|
Jiang C, Wang M, Liu J, Gan D, Zeng X. Extraction, preliminary characterization, antioxidant and anticancer activities in vitro of polysaccharides from Cyclina sinensis. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.11.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Kumar A, Chauhan GS. Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.05.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Burana-Osot J, Pattanapanyasat K, Soonthornchareonnon N, Sukapirom K, Toida T. Characterisation and immuno-stimulating activity of polysaccharides from Thai medicinal plants. Nat Prod Res 2010; 24:1403-12. [DOI: 10.1080/14786410902940974] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- J. Burana-Osot
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Silpakorn University , Nakorn-Pathom 73000 , Thailand
| | - K. Pattanapanyasat
- b Office for Research and Development, Faculty of Medicine , Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - N. Soonthornchareonnon
- c Department of Pharmacognosy, Faculty of Pharmacy , Mahidol University , Bangkok 10400 , Thailand
| | - K. Sukapirom
- b Office for Research and Development, Faculty of Medicine , Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - T. Toida
- d Graduate School of Pharmaceutical Sciences , Chiba University , Chiba 263-8522 , Japan
| |
Collapse
|
39
|
Zhang Y, Lu X, Zhang Y, Qin L, Zhang J. Sulfated modification and immunomodulatory activity of water-soluble polysaccharides derived from fresh Chinese persimmon fruit. Int J Biol Macromol 2010; 46:67-71. [DOI: 10.1016/j.ijbiomac.2009.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/18/2009] [Accepted: 10/06/2009] [Indexed: 11/15/2022]
|
40
|
Li MY, Xiao Q, Pan JY, Wu J. Natural products from semi-mangrove flora: source, chemistry and bioactivities. Nat Prod Rep 2008; 26:281-98. [PMID: 19177225 DOI: 10.1039/b816245j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the source, chemistry and bioactivities of natural products from semi-mangrove species worldwide. The chemotaxonomy of semi-mangrove plants and total synthesis of heritol analogues, which are potential biocompatible pesticides, are discussed.1 Introduction, 2 Acanthaceae, 2.1 Acanthus, 2.1.1 Aliphatic glycosides, 2.1.2 Alkaloids, 2.1.3 Flavonoids, 2.1.4 Lignan glycosides, 2.1.5 Megastigmane and phenolic glycosides, 2.1.6 Phenylethanol glycosides, 2.1.7 Triterpenoids, 2.1.8 Miscellaneous, 2.1.9 Bioactivities, 3 Euphorbiaceae, 3.1 Excoecaria, 3.1.1 Diterpenoids, 3.1.2 Miscellaneous, 3.1.3 Bioactivities, 4 Lythraceae, 4.1 Pemphis acidula, 5 Sterculiaceae, 5.1 Heritiera littoralis, 5.1.1 Flavones, 5.1.2 Triterpenoids, 5.1.3 Benzene derivatives, 5.1.4 Sesquiterpenes, 5.1.5 Steroids, 6 Total syntheses of heritol and its analogues, 7 Chemotaxonomy and concluding remarks, 8 Acknowledgements 9 References.
Collapse
Affiliation(s)
- Min-Yi Li
- Key Laboratory of Marine Bio-resources Sustainable Utilization/Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, South China Sea Institute of Oceanology. 164 West Xingang Road, Guangzhou, 510301, China
| | | | | | | |
Collapse
|
41
|
Yang C, He N, Ling X, Ye M, Zhang C, Shao W, Yao C, Wang Z, Li Q. The isolation and characterization of polysaccharides from longan pulp. Sep Purif Technol 2008. [DOI: 10.1016/j.seppur.2008.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Inngjerdingen M, Inngjerdingen KT, Patel TR, Allen S, Chen X, Rolstad B, Morris GA, Harding SE, Michaelsen TE, Diallo D, Paulsen BS. Pectic polysaccharides from Biophytum petersianum Klotzsch, and their activation of macrophages and dendritic cells. Glycobiology 2008; 18:1074-84. [PMID: 18809620 DOI: 10.1093/glycob/cwn090] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Malian medicinal plant Biophytum petersianum Klotzsch (Oxalidaceae) is used as a treatment against various types of illnesses related to the immune system, such as joint pains, inflammations, fever, malaria, and wounds. A pectic polysaccharide obtained from a hot water extract of the aerial parts of B. petersianum has previously been reported to consist of arabinogalactans types I and II (AG-I and AG-II), probably linked to a rhamnogalacturonan backbone. We describe here further structural characteristics of the main polysaccharide fraction (BP1002) and fractions obtained by enzymatic degradations using endo-alpha-d-(1-->4)-polygalacturonase (BP1002-I to IV). The results indicate that in addition to previously reported structures, rhamnogalacturan type II and xylogalacturonan areas appear to be present in the pectic polymer isolated from the plant. Atomic force microscopy confirmed the presence of branched structures, as well as a polydisperse nature. We further tested whether the BP1002 main fraction or the enzymatically degraded products could induce immunomodulating activity through stimulation of subsets of leukocytes. We found that macrophages and dendritic cells were activated by BP1002 fractions, while there was little response of T cells, B cells, and NK cells. The enzymatic treatment of the BP1002 main fraction gave important information on the structure-activity relations. It seems that the presence of rhamnogalacturonan type I is important for the bioactivity, as the bioactivity decreases with the decreased amounts of rhamnose, galactose, and arabinose. The demonstration of bioactivity by the plant extracts might indicate the mechanisms behind the traditional medical use of the plant.
Collapse
Affiliation(s)
- Marit Inngjerdingen
- Department of Pharmaceutical Chemistry, School of Pharmacy, P.O. Box 1068, Blindern, N-0316 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Navarro DA, Stortz CA. The system of xylogalactans from the red seaweed Jania rubens (Corallinales, Rhodophyta). Carbohydr Res 2008; 343:2613-22. [PMID: 18667196 DOI: 10.1016/j.carres.2008.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/09/2008] [Accepted: 06/11/2008] [Indexed: 10/22/2022]
Abstract
The main acidic polysaccharides from the red seaweed Jania rubens share the general characteristics of corallinans (agar-like xylogalactans). After fractionation by ion-exchange chromatography, ten fractions were separated and characterized by sugar composition, other components, methylation, ethylation, desulfation-methylation, and NMR analyses. The main group of fractions carry the agaran disaccharidic repeating unit [-->3)-beta-D-Gal-(1-->4)-alpha-L-Gal-(1-->] substituted mainly on O-6 of the beta-D-Gal unit by beta-xylosyl side stubs, and less with sulfate or methoxyl groups, and also on O-2 of the alpha-l-Gal unit with methoxyl or sulfate, or less on O-3 of the same unit with methoxyl groups. These features are somehow common to the four members of the order already studied. However, a sugar uncommon to the order appears in moderate proportions for all the fractions: it is 3,6-anhydro-l-galactose (partly sulfated or methoxylated on O-2) replacing the L-Gal unit. Besides, several other structural features never found in the order (and uncommon in any polysaccharide) appear in some minor fractions: the presence of side stubs of 2,3-di- and 3-O-methyl-D-galactose, and also part of the 3-O-methyl-L-galactose acting as side stubs. These results show that, although the main features of the corallinean xylogalactans are common to all the species studied, each one has minor characteristics of its own.
Collapse
Affiliation(s)
- Diego A Navarro
- Departamento de Química Orgánica, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | | |
Collapse
|
44
|
Koschella A, Inngjerdingen K, Paulsen BS, Morris GA, Harding SE, Heinze T. Unconventional Methyl Galactan Synthesized via the Thexyldimethylsilyl Intermediate: Preparation, Characterization, and Properties. Macromol Biosci 2008; 8:96-105. [PMID: 17902190 DOI: 10.1002/mabi.200700120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reaction of a beta-(1 --> 4) linked galactan with TDMS chloride followed by methylation and desilylation yields methyl galactans with unconventional functionalization patterns. The products were characterized via FTIR and NMR of the intact polymer and by CE after controlled depolymerization. A TDMS-derivatized methyl galactan contains differently methylated secondary hydroxyl groups. SEC and analytical ultracentrifugation showed a consistent decrease in the molecular weight after the consecutive reaction steps. Biological studies revealed that the methyl galactans are less active in complement fixation assays as compared with a 3-O-methyl galactan-enriched polysaccharide fraction isolated from Acanthus ebracteatus.
Collapse
Affiliation(s)
- Andreas Koschella
- Center of Excellence for Polysaccharide Research, Friedrich Schiller University of Jena, Humboldtstrasse 10, Jena, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Preparation, partial characterization and bioactivity of water-soluble polysaccharides from boat-fruited sterculia seeds. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.05.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Fang X, Jiang B, Wang X. Purification and Partial Characterization of an Acidic Polysaccharide with Complement Fixing Ability from the Stems of Avicennia Marina. BMB Rep 2006; 39:546-55. [PMID: 17002875 DOI: 10.5483/bmbrep.2006.39.5.546] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An acidic polysaccharide fraction that had high anticomplementary activity was isolated from the stems of Grey Mangrove in 0.15% yield. The final fractions was designated HAM-3-IIb-II. The polysaccharide fraction appeared to be homogenous by high performance size exclusion chromatography with an estimated molecular weight of 105 kDa. The isolated polysaccharide is more effective than polysaccharide K (PSK) in its anticomplementary activity at 58 microg/ml of PSK and 23 microg/ml of HAM-3-IIb-II that inhibit 50% of complement activity in the complement fixation assay. Structural studies indicated that HAM-3-IIb-II was rich in galacturonic acid along with arabinose, galactose and rhamnose, characterizing a pectin-type polysaccharide, which was also confirmed by FT-IR spectrum. The presence of rich neutral sugar side chains of arabinogalactans may have contributed to the expression of high activity. Traditionally, this mangrove plant is used for medicinal purposes and it appears to have some scientific applications.
Collapse
Affiliation(s)
- Xubo Fang
- The Key Laboratory of Food Science and Safety, Ministry of Education, Southern Yangtze University, Wuxi 214036, China
| | | | | |
Collapse
|
47
|
Leung MYK, Liu C, Koon JCM, Fung KP. Polysaccharide biological response modifiers. Immunol Lett 2006; 105:101-14. [PMID: 16554097 DOI: 10.1016/j.imlet.2006.01.009] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/23/2006] [Accepted: 01/30/2006] [Indexed: 11/29/2022]
Abstract
Biological response modifiers (BRMs) are substances which augment immune response. BRMs can be cytokines which are produced endogenously in our body by immune cells or derivatives of bacteria, fungi, brown algae, Aloe vera and photosynthetic plants. Such exogeneous derivatives (exogeneous BRMs) can be nucleic acid (CpG), lipid (lipotechoic acid), protein or polysaccharide in nature. The receptors for these exogeneous BRMs are pattern recognition receptors. The binding of exogeneous BRMs to pattern recognition receptors triggers immune response. Exogenous BRMs have been reported to have anti-viral, anti-bacterial, anti-fungal, anti-parasitic, and anti-tumor activities. Among different exogeneous BRMs, polysaccharide BRMs have the widest occurrence in nature. Some polysaccharide BRMs have been tested for their therapeutic properties in human clinical trials. An overview of current understandings of polysaccharide BRMs is summarized in this review.
Collapse
Affiliation(s)
- M Y K Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | | | | | | |
Collapse
|
48
|
Inngjerdingen KT, Coulibaly A, Diallo D, Michaelsen TE, Paulsen BS. A complement fixing polysaccharide from Biophytum petersianum Klotzsch, a medicinal plant from Mali, West Africa. Biomacromolecules 2006; 7:48-53. [PMID: 16398497 DOI: 10.1021/bm050330h] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biophytum petersianum Klotzsch (syn. Biophytum sensitivum (L.) DC) is a medicinal plant having a traditional use, among others, as a wound healing remedy in Mali and other countries. As a water extract of the aerial parts of the plant is a frequently used preparation, we decided to look for a bioactive polysaccharide in this extract. One of the obtained polysaccharide fractions, BP100 III, isolated from a 100 degrees C water extract from the aerial parts of B. petersianum and having a monosaccharide composition typical for pectic substances, was shown to exhibit potent dose-dependent complement fixating activity. The BP100 III fraction was subjected to degradation by endo-alpha-d-(1-->4)-polygalacturonase, and three fractions were obtained by gel filtration. The highest molecular weight fraction, BP100 III.1, had a more potent activity in the complement test system than the native polymer, while the two lower molecular weight fractions were less active than the native polymer. The major part of BP100 III.1 consists of galacturonic acid and rhamnose, with branches being present on both the rhamnose and galacturonic acid residues. Arabinogalactan type II is also present in the polymer, indicating that BP100 III.1 has a structure typical of the hairy region of pectins. The major part of the two other fractions is a galacturonan, containing a strikingly high number of branch points, some to which xylose is attached. These results indicate that the pectic substance in B. petersianum contains both rhamnogalacturonan and xylogalacturonan regions.
Collapse
Affiliation(s)
- Kari T Inngjerdingen
- School of Pharmacy, Department of Pharmaceutical Chemistry, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| | | | | | | | | |
Collapse
|
49
|
Water-soluble polysaccharides with pharmaceutical importance from Durian rinds (Durio zibethinus Murr.): isolation, fractionation, characterisation and bioactivity. Carbohydr Polym 2004. [DOI: 10.1016/j.carbpol.2004.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|