1
|
Fukuda M, Takahashi K, Takarada T, Saito S, Tanaka M. Synergistic effect of cyclodextrins and electrolytes at high concentrations on protein aggregation inhibition. J Pharm Sci 2024:S0022-3549(24)00437-4. [PMID: 39374691 DOI: 10.1016/j.xphs.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
The stabilization of protein therapeutics against aggregation is crucial for maintaining their efficacy and safety. This study investigated the synergistic effects of cyclodextrins (CDs) and electrolytes at high concentrations on the stabilization of immunoglobulin G (IgG), insulin, and adeno-associated virus (AAV) vectors. The effects of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) combined with various electrolytes were evaluated using human plasma-derived IgG as a model protein. The HP-β-CD and L(+)-arginine hydrochloride combination synergistically increased the onset temperature of protein aggregation and inhibited the formation of soluble and insoluble aggregates during long-term storage. Notably, this synergistic effect was not observed when sucrose was used instead of HP-β-CD. Similar synergistic effects were observed with insulin and AAV vectors. The findings suggest that the stabilization mechanism could potentially involve enhanced interactions between HP-β-CD and IgG, preventing protein-protein interactions. However, the combination did not synergistically improve the solubility of free aromatic amino acids, including tyrosine and tryptophan. This study highlights the potential of using the combination of CDs and electrolytes as a promising formulation strategy for stabilizing complex protein therapeutics. Further studies are needed to elucidate the underlying mechanisms and generalize the approach to other proteins with varying physicochemical properties.
Collapse
Affiliation(s)
- Masakazu Fukuda
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Kanako Takahashi
- Medical Business Unit, Synplogen Co., Ltd., 6-3-7-409 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Toru Takarada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Shunsuke Saito
- Medical Business Unit, Synplogen Co., Ltd., 6-3-7-409 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Masafumi Tanaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
2
|
Aslam A, Masood F, Perveen K, Berger MR, Pervaiz A, Zepp M, Klika KD, Yasin T, Hameed A. Preparation, characterization and evaluation of HPβCD-PTX/PHB nanoparticles for pH-responsive, cytotoxic and apoptotic properties. Int J Biol Macromol 2024; 270:132268. [PMID: 38734336 DOI: 10.1016/j.ijbiomac.2024.132268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Paclitaxel (PTX) is a potent anticancer drug. However, PTX exhibits extremely poor solubility in aqueous solution along with severe side effects. Therefore, in this study, an inclusion complex was prepared between PTX and hydroxypropyl-β-cyclodextrin (HPβCD) by solvent evaporation to enhance the drug's solubility. The HPβCD-PTX inclusion complex was then encapsulated in poly-3-hydroxybutyrate (PHB) to fabricate drug-loaded nanoparticles (HPβCD-PTX/PHB NPs) by nanoprecipitation. The HPβCD-PTX/PHB NPs depicted a higher release of PTX at pH 5.5 thus demonstrating a pH-dependent release profile. The cytotoxic properties of HPβCD-PTX/PHB NPs were tested against MCF-7, MDA-MB-231 and SW-620 cell lines. The cytotoxic potential of HPβCD-PTX/PHB NPs was 2.59-fold improved in MCF-7 cells in comparison to free PTX. Additionally, the HPβCD-PTX/PHB NPs improved the antimitotic (1.68-fold) and apoptotic (8.45-fold) effects of PTX in MCF-7 cells in comparison to PTX alone. In summary, these pH-responsive nanoparticles could be prospective carriers for enhancing the cytotoxic properties of PTX for the treatment of breast cancer.
Collapse
Affiliation(s)
- Aqsa Aslam
- SA Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Farha Masood
- Department of Biosciences, COMSATS University, Islamabad, Pakistan.
| | - Kousar Perveen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Tariq Yasin
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Abdul Hameed
- SA Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
3
|
Alabrahim OA, Azzazy HMES. Antimicrobial Activities of Pistacia lentiscus Essential Oils Nanoencapsulated into Hydroxypropyl-beta-cyclodextrins. ACS OMEGA 2024; 9:12622-12634. [PMID: 38524461 PMCID: PMC10955754 DOI: 10.1021/acsomega.3c07413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/26/2024]
Abstract
The rising risks of food microbial contamination and foodborne pathogens resistance have prompted an increasing interest in natural antimicrobials as promising alternatives to synthetic antimicrobials. Essential oils (EOs) obtained from natural sources have shown promising anticancer, antimicrobial, and antioxidant activities. EOs extracted from the resins of Pistacia lentiscus var. Chia are widely utilized for the treatment of skin inflammations, gastrointestinal disorders, respiratory infections, wound healing, and cancers. The therapeutic benefits of P. lentiscusessential oils (PO) are limited by their low solubility, poor bioavailability, and high volatility. Nanoencapsulation of PO can improve their physicochemical properties and consequently their therapeutic efficacy while overcoming their undesirable side effects. Hence, PO was extracted from the resins of P. lentiscusvia hydrodistillation. Then, PO was encapsulated into (2-hydroxypropyl)-beta-cyclodextrin (HPβCD) via freeze-drying. The obtained inclusion complexes (PO-ICs) appeared as round vesicles (22.62 to 63.19 nm) forming several agglomerations (180 to 350 nm), as detected by UHR-TEM, with remarkable entrapment efficiency (89.59 ± 1.47%) and a PDI of 0.1475 ± 0.0005. Furthermore, the encapsulation and stability of PO-ICs were confirmed via FE-SEM, 1H NMR, 2D HNMR (NOESY), FT-IR, UHR-TEM, and DSC. DSC revealed a higher thermal stability of the PO-ICs, reaching 351.0 °C. PO-ICs exerted substantial antibacterial activity against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli as compared to free PO. PO-ICs showed significant enhancement in the antibacterial activity of the encapsulated PO against S. aureus with an MIC90 of 2.84 mg/mL and against P. aeruginosa with MIC90 of 3.62 mg/mL and MIC50 of 0.56 mg/mL. In addition, PO-ICs showed greater antimicrobial activity against E. coli by 6-fold with an MIC90 of 0.89 mg/mL, compared to free PO, which showed an MIC90 of 5.38 mg/mL. In conclusion, the encapsulation of PO into HPβCD enhanced its aqueous solubility, stability, and penetration ability, resulting in a significantly higher antibacterial activity.
Collapse
Affiliation(s)
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute of
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
4
|
Hu D, Xu Y, Gao C, Meng L, Feng X, Wang Z, Shen X, Tang X. Preparation and characterization of starch/PBAT film containing hydroxypropyl-β-cyclodextrin/ethyl lauroyl arginate/cinnamon essential oil microcapsules and its application in the preservation of strawberry. Int J Biol Macromol 2024; 259:129204. [PMID: 38185302 DOI: 10.1016/j.ijbiomac.2024.129204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/12/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Cinnamon essential oil (CEO) was emulsified by hydroxypropyl-β-cyclodextrin/ ethyl lauroyl arginate (HPCD/LAE) complex to make nanoemulsions, which were then incorporated into maltodextrin (MD) to prepare HPCD/LAE/CEO/MD microcapsules by spray drying. The starch/polybutylene adipate terephthalate (starch/PBAT, SP) based extrusion-blowing films containing above microcapsules were developed and used as packaging materials for strawberry preservation. The morphology, encapsulation efficiency, thermal and antibacterial properties of microcapsules with different formulations were investigated. The effects of microcapsules on the physicochemical and antimicrobial properties of SP films were evaluated. When the formula was 4 % HPCD/LAE-3% CEO-10% MD (HL-3C-MD), the microcapsule had the smallest particle size (3.3 μm), the highest encapsulation efficiency (84.51 %) of CEO and the best antibacterial effect. The mechanical and antimicrobial properties of the SP film were enhanced while the water vapor transmittance and oxygen permeability decreased with the incorporation of HL-3C-MD microcapsules. The films effectively reduced the weight loss rate (49.03 %), decay rate (40.59 %) and the total number of colonies (2.474 log CFU/g) and molds (2.936 log CFU/g), thus extending the shelf life of strawberries. This study revealed that the developed SP films containing HPCD/LAE/CEO microcapsules had potential applications in degradable bioactive food packaging materials.
Collapse
Affiliation(s)
- Dongxia Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yaoyao Xu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
5
|
Alabrahim OAA, Alwahibi S, Azzazy HMES. Improved antimicrobial activities of Boswellia sacra essential oils nanoencapsulated into hydroxypropyl-beta-cyclodextrins. NANOSCALE ADVANCES 2024; 6:910-924. [PMID: 38298595 PMCID: PMC10825941 DOI: 10.1039/d3na00882g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
Natural antimicrobials have recently gained increasing interest over synthetic antimicrobials to overcome foodborne pathogens and food microbial contamination. Essential oils (EOs) obtained from Boswellia sacra resins (BO) were utilized for respiratory disorders, rheumatoid arthritis, malignant tumors, and viral infections. Like other EOs, the therapeutic potential of BO is hindered by its low solubility and bioavailability, poor stability, and high volatility. Several studies have shown excellent physicochemical properties and outstanding therapeutic capabilities of EOs encapsulated into various nanocarriers. This study extracted BO from B. sacra resins via hydrodistillation and encapsulated it into hydroxypropyl-beta-cyclodextrins (HPβCD) using the freeze-drying method. The developed inclusion complexes of BO (BO-ICs) had high encapsulation efficiency (96.79 ± 1.17%) and a polydispersity index of 0.1045 ± 0.0006. BO-ICs showed presumably spherical vesicles (38.5 to 59.9 nm) forming multiple agglomerations (136.9 to 336.8 nm), as determined by UHR-TEM. Also, the formation and stability of BO-ICs were investigated using DSC, FTIR, FE-SEM, UHR-TEM, 1H NMR, and 2D HNMR (NOESY). BO-ICs showed greater thermal stability (362.7 °C). Moreover, compared to free BO, a remarkable enhancement in the antimicrobial activities of BO-ICs was shown against three different bacteria: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. BO-ICs displayed significant antibacterial activity against Pseudomonas aeruginosa with an MIC90 of 3.93 mg mL-1 and an MIC50 of 0.57 mg mL-1. Also, BO-ICs showed an increase in BO activity against Escherichia coli with an MIC95 of 3.97 mg mL-1, compared to free BO, which failed to show an MIC95. Additionally, BO-ICs showed a more significant activity against Staphylococcus aureus with an MIC95 of 3.92 mg mL-1. BO encapsulation showed significantly improved antimicrobial activities owing to the better stability, bioavailability, and penetration ability imparted by encapsulation into HPβCD.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt +20 02 2615 2559
| | | | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt +20 02 2615 2559
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Jena Germany
| |
Collapse
|
6
|
Su R, Su W, Cai J, Cen L, Huang S, Wang Y, Li P. Photodynamic antibacterial application of TiO 2/curcumin/hydroxypropyl-cyclodextrin and its konjac glucomannan composite films. Int J Biol Macromol 2024; 254:127716. [PMID: 37924903 DOI: 10.1016/j.ijbiomac.2023.127716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Although photodynamic therapy (PDT) has great advantages for the treatment of bacterial infections, photosensitizers (PSs) often have many disadvantages that limit their application. Improving the shortcomings of PSs and developing efficient PDT antimicrobial materials remain serious challenges. In this study, a nanocomposite drug (TiO2/curcumin/hydroxypropyl-cyclodextrin, TiO2/Cur/HPCD) was constructed and combined with konjac glucomannan to form composite films (TiO2/Cur/HPCD films, KTCHD films). The stabilities of TiO2 and Cur were improved in the presence of HPCD. The particle size of TiO2/Cur/HPCD was approximately 33.9 nm, and the addition of TiO2/Cur/HPCD enhanced the mechanical properties of the films. Furthermore, TiO2/Cur/HPCD and KTCHD films exhibited good biocompatibility and PDT antibacterial effects. The antibacterial rate of TiO2/Cur/HPCD was 74.46 % against MRSA at 500 μg/mL and 99.998 % against E. coli at 400 μg/mL, while it was adsorbed on the surface of bacteria to improve the effectiveness of the treatment. In addition, studies in mice confirmed that TiO2/Cur/HPCD and KTCHD films can treat bacterial infections and promote wound healing, with a highest wound healing rate of 84.6 % in the KTCHD-10 films + Light group on day 12. Overall, TiO2/Cur/HPCD is a promising nano-antibacterial agent and KTCHD films have the potential to be employed as antibacterial and environment-friendly trauma dressings.
Collapse
Affiliation(s)
- Rixiang Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China; Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China.
| | - Jinyun Cai
- Guangxi University of Chinese Medicine, Nanning, China
| | - Lei Cen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | | | - Yu Wang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
7
|
Bhattacharyya S, Ghosh H, Covarrubias-Zambrano O, Jain K, Swamy KV, Kasi A, Hamza A, Anant S, VanSaun M, Weir SJ, Bossmann SH, Padhye SB, Dandawate P. Anticancer Activity of Novel Difluorinated Curcumin Analog and Its Inclusion Complex with 2-Hydroxypropyl-β-Cyclodextrin against Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24076336. [PMID: 37047307 PMCID: PMC10093935 DOI: 10.3390/ijms24076336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the primary reason for cancer-related deaths in the US. Genetic mutations, drug resistance, the involvement of multiple signaling pathways, cancer stem cells (CSCs), and desmoplastic stroma, which hinders drug penetrance, contribute to poor chemotherapeutic efficacy. Hence, there is a need to identify novel drugs with improved delivery to improve treatment outcomes. Curcumin is one such compound that can inhibit multiple signaling pathways and CSCs. However, curcumin’s clinical applicability for treating PDAC is limited because of its poor solubility in water and metabolic instability. Hence, we developed a difluorinated curcumin (CDF) analog that accumulates selectively in the pancreas and inhibits PDAC growth in vitro and in vivo. In the present work, we developed its 2-hydroxy-propyl-β-cyclodextrin (HCD) inclusion complex to increase its water solubility and hydrolytic stability. The CDFHCD inclusion complex was characterized by spectroscopic, thermal, and microscopic techniques. The inclusion complex exhibited increased aqueous solubility, hydrolytic stability, and antiproliferative activity compared to parent CDF. Moreover, CDF and CDFHCD inhibited colony and spheroid formation, and induced cell cycle and apoptosis in PDAC cell lines. Hence, CDFHCD self-assembly is an efficient approach to increase water solubility and anticancer therapeutic efficacy, which now warrants advancement towards a clinical proof of concept in PDAC patients.
Collapse
Affiliation(s)
- Sangita Bhattacharyya
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Hindole Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | | | - Krishan Jain
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - K. Venkateswara Swamy
- MIT School of Bioengineering, Sciences & Research, MIT Art, Design and Technology University, Pune 412201, India
| | - Anup Kasi
- Division of Medical Oncology, University of Kansas, Kansas City, KS 66160, USA
| | - Ameer Hamza
- Pathology and Laboratory Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Scott J. Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Division of Medical Oncology, University of Kansas, Kansas City, KS 66160, USA
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stefan H. Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Subhash B. Padhye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Interdisciplinary Science & Technology Research Academy (ISTRA), Azam Campus, University of Pune, Pune 411001, India
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Correspondence: ; Tel.: +1-913-945-6336
| |
Collapse
|
8
|
Fadel H, Lotfy S, El-aleem FA, Ahmed MS, Asfour M, Taleb SA, Saad R. Preparation and evaluation of a functional effervescent powder based on inclusion complexes of orange oil and β-cyclodextrin derivatives.. [DOI: 10.21203/rs.3.rs-2226110/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Flavoured functional effervescent powders are becoming increasingly popular by consumers due to their health benefits and easy dissolution. In present study, orange flavoured effervescent powders having functional properties were prepared. Orange oil (O) was blended with different essential oils (EOs) having high antioxidant activity. The orange oil and the O-EOs blends were subjected to gas chromatography-mass spectrometry (GC-MS) analysis and evaluation of radical scavenging activity. Combinations of two water soluble β-cyclodextrine polymers, 2-hydroxypropyl-β-cyclodextrine (2-HP-β-CD) and epihydrin-β-cyclodextrin (EPI-β-CD) were prepared at different molar ratios (3: 1 and 1: 3, F1 and F2, respectively). The O-EOs blends that showed the highest antioxidant activities and best odour qualities were encapsulated with F1 and F2, separately. The orange flavoured inclusion complexes were prepared by freeze drying method. The particle sizes of the inclusion complex powders were in the nanoscale. Characterization of the inclusion complexes nanoparticles were performed by scanning electron microscopy (SEM), Fourier transform infrared microscopy (FT-IR). The results confirmed the successful formation of the inclusion complexes. However, inclusion complex of O-EOs blend with F1 (O-F1C-IC) showed the smallest particle size (113.9 ± 15.9 nm), the more negative zeta potential (-27.1 ± 1.27 mV), the highest encapsulation efficiency (95.51%) and best odour quality. Therefore, it was mixed with an effervescent powder having high acceptable characteristics. The orange flavoured effervescent powder showed superior flowability.
Collapse
|
9
|
Li X, Li G, Shan Y, Zhu X. Preparation, characterization, and antifungal property of the inclusion complex of Litsea cubeba essential oil/hydroxypropyl-β-cyclodextrin and its application in preservation of Shatang mandarin. J Food Sci 2022; 87:4714-4724. [PMID: 36121061 DOI: 10.1111/1750-3841.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
To explore the potential application of plant essential oil in the postharvest preservation of fruits, the inclusion complex (IC) of Litsea cubeba essential oil (LCEO) with hydroxypropyl-β-cyclodextrin (HPβCD), prepared by the saturated aqueous solution method, was studied. LCEO/HPβCD-IC was characterized by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), particle size distribution, and thermogravimetric-differential scanning calorimetry (TG-DSC) analysis. The formation of LCEO/HPβCD-IC was confirmed, and the volume average particle diameter was 24.376 µm. Due to the inclusion of HPβCD, the volatility of LCEO was significantly reduced and the thermal stability was significantly improved. In addition, the antifungal activities of the LCEO ICs were compared, and LCEO/HPβCD-IC was more effective against the citrus postharvest pathogens (P. italicum and G. citri-aurantii). The effects of the LCEO ICs on the postharvest quality of Shatang mandarin were studied. Compared with the control group (CK) and LCEO/βCD-IC group, the LCEO/HPβCD-IC group showed a significant delay in the decrease of good fruit rate, hardness, total soluble solids (TSSs), and Vitamin C (Vc) content, with a lower weight loss rate of Shatang mandarin. Therefore, LCEO/HPβCD-IC is expected to be used as a green preservative for the storage and preservation of citrus fruits. PRACTICAL APPLICATION: In this study, LCEO was encapsulated in HPβCD by the saturated aqueous solution method and the prepared inclusion complex was characterized. The effects of LCEO/HPβCD-IC and LCEO/βCD-IC on postharvest preservation of Shatang mandarin were compared. This work offers valuable insights into the postharvest preservation of citrus fruit by essential oil inclusion complexes.
Collapse
Affiliation(s)
- Xiang Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China
| | - Gaoyang Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China
| | - Xiangrong Zhu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China
| |
Collapse
|
10
|
Molecular modeling study of structures, Hirschfield surface, NBO, AIM, RDG, IGM and 1HNMR of thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex from QM calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Solubility and Dissolution Enhancement of Dexibuprofen with Hydroxypropylbetacyclodextrin (HPβCD) and Poloxamers (188/407) Inclusion Complexes: Preparation and In Vitro Characterization. Polymers (Basel) 2022; 14:polym14030579. [PMID: 35160569 PMCID: PMC8838044 DOI: 10.3390/polym14030579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/02/2023] Open
Abstract
The objective of this study was to improve the dissolution and solubility of dexibuprofen (DEX) using hydroxypropyl beta cyclodextrin (HPβCD) inclusion complexes and also to evaluate the effect of presence of hydrophilic polymers on solubilization efficiency of HPβCD. Three different methods (physical trituration, kneading and solvent evaporation) were used to prepare binary inclusion complexes at various drug-to-cyclodextrin weight ratios. An increase in solubility and drug release was observed with the kneading (KN) method at a DEX/HPβCD (1:4) weight ratio. The addition of hydrophilic polymers poloxamer-188 (PXM-188) and poloxamer-407 (PXM-407) at 2.5, 5.0, 10.0 and 20% w/w enhanced the complexation efficiency and solubility of DEX/HPβCD significantly. Fourier-transform infrared (FTIR) analysis revealed that DEX was successfully incorporated into the cyclodextrin cavity. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) revealed less crystallinity of the drug and its entrapment in the cyclodextrin molecular cage. The addition of PXM-188 or PXM-407 reduced the strength of the DEX endothermic peak. With the addition of hydrophilic polymers, sharp and intense peaks of DEX disappeared. Finally, it was concluded that PXM-188 at a weight ratio of 10.0% w/w was the best candidate for improving solubility, stability and release rate of DEX.
Collapse
|
12
|
Nanoemulsion of cinnamon essential oil Co-emulsified with hydroxypropyl-β-cyclodextrin and Tween-80: Antibacterial activity, stability and slow release performance. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Lachowicz M, Stańczak A, Kołodziejczyk M. Characteristic of Cyclodextrins: Their Role and Use in the Pharmaceutical Technology. Curr Drug Targets 2021; 21:1495-1510. [PMID: 32538725 DOI: 10.2174/1389450121666200615150039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
About 40% of newly-discovered entities are poorly soluble in water, and this may be an obstacle in the creation of new drugs. To address this problem, the present review article examines the structure and properties of cyclodextrins and the formation and potential uses of drug - cyclodextrin inclusion complexes. Cyclodextrins are cyclic oligosaccharides containing six or more D-(+)- glucopyranose units linked by α-1,4-glycosidic bonds, which are characterized by a favourable toxicological profile, low local toxicity and low mucous and eye irritability; they are virtually non-toxic when administered orally. They can be incorporated in the formulation of new drugs in their natural form (α-, β-, γ-cyclodextrin) or as chemically-modified derivatives. They may also be used as an excipient in drugs delivered by oral, ocular, dermal, nasal and rectal routes, as described in the present paper. Cyclodextrins are promising compounds with many beneficial properties, and their use may be increasingly profitable for pharmaceutical scientists.
Collapse
Affiliation(s)
- Malwina Lachowicz
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Andrzej Stańczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Michał Kołodziejczyk
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
14
|
Xu Y, Hou K, Gao C, Feng X, Cheng W, Wu D, Meng L, Yang Y, Shen X, Zhang Y, Tang X. Characterization of chitosan film with cinnamon essential oil emulsion co-stabilized by ethyl-N α-lauroyl-l-arginate hydrochloride and hydroxypropyl-β-cyclodextrin. Int J Biol Macromol 2021; 188:24-31. [PMID: 34364935 DOI: 10.1016/j.ijbiomac.2021.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
To improve the antimicrobial properties of chitosan films, cinnamon essential oil (CEO) nanoemulsion (1% and 3% v/v CEO) stabilized by ethyl-Nα-lauroyl-l-arginate hydrochloride (LAE) alone or co-stabilized by LAE and hydroxypropyl-β-cyclodextrin (HPCD) were incorporated into chitosan matrix. The micromorphology, physical and antimicrobial properties of the composite films were compared. The dense structure of the CEO nanoemulsion co-stabilized by LAE and HPCD reduced the water vapor permeability and water content. The incorporation of the CEO nanoemulsion co-stabilized by LAE and HPCD, reduced the adverse effects of CEO on the mechanical properties and microstructure of the film, and even slightly increased the tensile strength. In addition, the antimicrobial properties of chitosan films were enhanced due to the encapsulation and emulsification effect of HPCD and LAE on CEO. This work indicated that the prepared chitosan based edible films had the potential to be used in the field of food packaging to improve food safety.
Collapse
Affiliation(s)
- Yaoyao Xu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Kehong Hou
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weiwei Cheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuling Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
15
|
Host-guest interaction of trimethoprim drug with cyclodextrins in aqueous solutions: Calorimetric, spectroscopic, volumetric and theoretical approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Esmaeilpour D, Shityakov S, Tamaddon AM, Bordbar AK. Comparative chemical examination of inclusion complexes formed with β-cyclodextrin derivatives and basic amino acids. Carbohydr Polym 2021; 262:117868. [PMID: 33838791 DOI: 10.1016/j.carbpol.2021.117868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022]
Abstract
In this study, we have investigated the host-guest inclusion complexes between β-cyclodextrin (βCD), 2-hydroxypropyl-β-cyclodextrin (2-HPβCD), and mono-6-tosyl-β-cyclodextrin (TS-βCD) excipients and two amino acids, such as L-arginine (L-Arg) and L-lysine (L-Lys). The formation of inclusion complexes was detected, and a comparative study was conducted at different pH, density, and viscosity. A physical mixture, comprising equal amount of amino acids was used to prepare the complex in a solid-state form. The experimental parameters, such as apparent molar volume, limiting apparent molar volume, partial molar volume were analyzed by measuring density at infinite dilution. The other quantities, such as dynamic viscosity, kinematic viscosity, relative viscosity, intrinsic viscosity, spatial viscosity, activation energy were determined for amino acid/βCD complexes at various mass fractions of βCDs and different temperatures. Finally, we found moderate (R2 > 0.5) and strong (R2 > 0.7) linear relationships (p-value < 0.0001) between the dynamic viscosity and the temperature: the temperature evaluation promotes the decrease in dynamic viscosity for amnio acid-βCD (its derivatives) complexes. The results of this study emphasize important properties of analyzed complexes that can be utilized in the development of controlled drug delivery vectors.
Collapse
Affiliation(s)
- D Esmaeilpour
- Department of Chemistry, University of Isfahan, 8174673441, Iran; Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Science, Shiraz, 71345-1583, Iran
| | - S Shityakov
- Infochemistry Scientific Center, ITMO University, 191002, Saint-Petersburg, Russian Federation
| | - A M Tamaddon
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Science, Shiraz, 71345-1583, Iran; Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, 71345, Iran.
| | - A K Bordbar
- Department of Chemistry, University of Isfahan, 8174673441, Iran; California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA.
| |
Collapse
|
17
|
Inclusion complexes of β-cyclodextrin and polymorphs of mebendazole: Physicochemical characterization. Eur J Pharm Sci 2019; 127:330-338. [DOI: 10.1016/j.ejps.2018.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
|
18
|
Topuz F, Uyar T. Influence of Hydrogen-Bonding Additives on Electrospinning of Cyclodextrin Nanofibers. ACS OMEGA 2018; 3:18311-18322. [PMID: 31458408 PMCID: PMC6643398 DOI: 10.1021/acsomega.8b02662] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/14/2018] [Indexed: 06/10/2023]
Abstract
The electrospinning of highly concentrated solutions of cyclodextrin (CD) leads to bead-free nanofibers without the need of a polymeric carrier. The occurrence of numerous hydrogen bonds among CD molecules is the main driving force for their electrospinning, and hence, additives with hydrogen-bonding potential can disturb the aggregation of CD molecules and affect their electrospinning. In this study, we systematically investigated the influence of five different hydrogen-bonding additives, i.e., methylamine (MA), ethylenediamine (ED), urea, 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), on the solution behavior of hydroxypropyl-β-CD (HP-β-CD) by rheology, conductivity, and NMR analyses, and the morphology of the electrospun HP-β-CD nanofibers by scanning electron microscopy. The 1H NMR chemical shifts of the HP-β-CD protons in D2O were observed with the incorporation of hydrogen-bonding molecules due to the occurrence of intermolecular associations between HP-β-CD and additives. Dynamic light scattering measurements revealed a clear decrease in the aggregate size with the introduction of additives. Unlike other additives, which showed a general decreasing trend in viscosity with increasing additive content, the addition of MA led to a significant increase in the viscosity with increasing concentration and gave rise to HP-β-CD nanofibers at lower concentrations. The addition of low concentrations of ED, urea, TFE, and HFIP led to thinner nanofibers due to the lower viscosity of the respective solutions. Increasing additive content deteriorated the electrospinnability of HP-β-CD solutions, resulting in beaded fibers. A systematic relationship was found between the solution viscosity and morphology of the respective electrospun fibers. Overall, this study, for the first time, reports the influence of hydrogen bonding on the polymer-free electrospinning of CD molecules and shows a correlation between solution properties and morphology of their electrospun nanofibers.
Collapse
Affiliation(s)
- Fuat Topuz
- Institute of Materials Science & Nanotechnology,
UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology,
UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
19
|
Sá Couto AR, Ryzhakov A, Loftsson T. 2-Hydroxypropyl-β-Cyclodextrin Aggregates: Identification and Development of Analytical Techniques. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1971. [PMID: 30322145 PMCID: PMC6212962 DOI: 10.3390/ma11101971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/17/2023]
Abstract
It is extremely important for pharmaceutical formulators to have analytical methodology that provides efficient detection and quantification of HPβCD aggregates. Five different methods were then evaluated for their potential to detect these aggregates and to determine critical aggregation concentration (cac): osmometry, viscometry, tensiometry, dynamic light scattering (DLS), and permeability studies. Overall, tensiometry was an inadequate method with which to study HPβCD aggregation, since the addition of HPβCD to water resulted in only minor changes in surface tension. Osmolality and viscosity studies have shown that for HPβCD, solute⁻solvent interactions are the main contributors for the observed deviation from ideality. These deviations might be related to the presence of aggregates. The DLS method proved to be an effective method with which to detect HPβCD aggregates and estimate their hydrodynamic diameter, although it presented some limitations concerning their quantification. In terms of the assessed methods, permeation studies were shown to be the best to study HPβCD aggregation phenomena, since they were the only method where the detection of aggregates and the determination of apparent cac values was possible. Also, it was the least invasive for the HPβCD samples and the method that provided more conclusive data. Results suggested that HPβCD, as expected, has less tendency to form aggregates than βCD.
Collapse
Affiliation(s)
- André Rodrigues Sá Couto
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| | - Alexey Ryzhakov
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
20
|
Effect of natural and modified cyclodextrins on the excited state proton transfer of 7-hydroxy-4-methylcoumarin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Wang X, Borges CA, Ning X, Rafi M, Zhang J, Park B, Takemiya K, Sterzo CL, Taylor WR, Riley L, Murthy N. A Trimethoprim Conjugate of Thiomaltose Has Enhanced Antibacterial Efficacy In Vivo. Bioconjug Chem 2018; 29:1729-1735. [PMID: 29660287 PMCID: PMC5966298 DOI: 10.1021/acs.bioconjchem.8b00177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trimethoprim is one of the most widely used antibiotics in the world. However, its efficacy is frequently limited by its poor water solubility and dose limiting toxicity. Prodrug strategies based on conjugation of oligosaccharides to trimethoprim have great potential for increasing the solubility of trimethoprim and lowering its toxicity, but they have been challenging to develop due to the sensitivity of trimethoprim to chemical modifications, and the rapid degradation of oligosaccharides in serum. In this report, we present a trimethoprim conjugate of maltodextrin termed TM-TMP, which increased the water solubility of trimethoprim by over 100 times, was stable to serum enzymes, and was active against urinary tract infections in mice. TM-TMP is composed of thiomaltose conjugated to trimethoprim, via a self-immolative disulfide linkage, and releases 4'-OH-trimethoprim (TMP-OH) after disulfide cleavage, which is a known metabolic product of trimethoprim and is as potent as trimethoprim. TM-TMP also contains a new maltodextrin targeting ligand composed of thiomaltose, which is stable to hydrolysis by serum amylases and therefore has the metabolic stability needed for in vivo use. TM-TMP has the potential to significantly improve the treatment of a wide number of infections given its high water solubility and the widespread use of trimethoprim.
Collapse
Affiliation(s)
- Xiaojian Wang
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Clarissa A. Borges
- School of Public Health, University of California, Berkeley, California 94720, United States
| | - Xinghai Ning
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Mohammad Rafi
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Jingtuo Zhang
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Bora Park
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Kiyoko Takemiya
- Emory University School of Medicine, Department of Medicine, Division of Cardiology, Atlanta, Georgia 30322, United States
| | - Carlo Lo Sterzo
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - W. Robert Taylor
- Emory University School of Medicine, Department of Medicine, Division of Cardiology, Atlanta, Georgia 30322, United States
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia 30332, United States
- Atlanta Veterans Affairs Medical Center, Cardiology Division, Atlanta, Georgia 30033, United States
| | - Lee Riley
- School of Public Health, University of California, Berkeley, California 94720, United States
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Zhang L, Liu M, Lu C, Ren D, Fan G, Liu C, Liu M, Shu G, Peng G, Yuan Z, Zhong Z, Zhang W, Fu H. The hydroxypropyl-β-cyclodextrin complexation of toltrazuril for enhancing bioavailability. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:583-589. [PMID: 29593381 PMCID: PMC5865576 DOI: 10.2147/dddt.s157611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction Toltrazuril (Tol) is used to prevent and combat coccidiosis. However, its low aqueous solubility and poor oral bioavailability limit clinical application. Methods To overcome the shortcomings, toltrazuril–hydroxypropyl–β-cyclodextrin inclusion complex (Tol-HP-β-CD) was prepared and characterized. The comparative plasma disposition kinetics of Tol was analyzed after a single orally administered dose of 10 mg/kg Tol or Tol-HP-β-CD in rabbits. Solution-stirring method was selected to prepare the inclusion complex. Complex formation was characterized by thin-layer chromatography, Fourier transform infrared spectrophotometry, and 1H nuclear magnetic resonance spectroscopy. In plasma profile, plasma samples were collected between 1 and 10 days following administration. Plasma Tol concentrations were determined by high-performance liquid chromatography. Results In rabbit plasma, the time to peak concentration (Tmax) of Tol-HP-β-CD was shorter than that of Tol (12 h vs 24 h). Cmax (19.92±1.02 μg/mL) and area under the concentration–time curve (AUC0-∞, 1,176.86±70.26 mg/L h) of the Tol-HP-β-CD group significantly increased (p,0.01) than those of the Tol group (Cmax, 8.02±1.04 μg/mL; AUC0-∞, 514.03±66.65 mg/L h). Conclusion It can be concluded that the Tol-HP-β-CD increased the aqueous solubility and enhanced the oral bioavailability in rabbits. Complexation with HP-β-CD is a feasible way to prepare a rapidly absorbed and more bioavailable Tol oral product.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China.,Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Mengxi Liu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chaocheng Lu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dandan Ren
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoqing Fan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chang Liu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengjiao Liu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangneng Peng
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhixiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhijun Zhong
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Ijaz M, Prantl M, Lupo N, Laffleur F, Hussain Asim M, Matuszczak B, Bernkop-Schnürch A. Development of pre-activated α-cyclodextrin as a mucoadhesive excipient for intra-vesical drug delivery. Int J Pharm 2017; 534:339-347. [DOI: 10.1016/j.ijpharm.2017.10.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 01/29/2023]
|
24
|
Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.11.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Rakmai J, Cheirsilp B, Torrado-Agrasar A, Simal-Gándara J, Mejuto JC. Encapsulation of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: physiochemical characterization and evaluation of bio-efficacies. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1286523] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jaruporn Rakmai
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai Campus, Hat Yai, Thailand
| | - Benjamas Cheirsilp
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai Campus, Hat Yai, Thailand
| | - Ana Torrado-Agrasar
- Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| | - Jesús Simal-Gándara
- Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| | - Juan Carlos Mejuto
- Department of Physical Chemistry, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| |
Collapse
|
26
|
Do TT, Van Hooghten R, Van den Mooter G. A study of the aggregation of cyclodextrins: Determination of the critical aggregation concentration, size of aggregates and thermodynamics using isodesmic and K 2-K models. Int J Pharm 2017; 521:318-326. [PMID: 28216462 DOI: 10.1016/j.ijpharm.2017.02.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
The aggregation of three different cyclodextrins (CDs): 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD) was studied. The critical aggregation concentration (cac) of these three CDs is quite similar and is situated at ca. 2% (m/v). There was only a small difference in the cac values determined by DLS and 1H NMR. DLS measurements revealed that CDs in solution have three size populations wherein one of them is that of a single CD molecule. The size of aggregates determined by TEM appears to be similar to the size of the aggregates in the second size distribution determined by DLS. Isodesmic and K2-K self-assembly models were used for studying the aggregation process of HP-β-CD, HP-γ-CD and SBE-β-CD. The results showed that the aggregation process of these CDs is a cooperative one, where the first step of aggregation is less favorable than the next steps. The determined thermodynamic parameters showed that the aggregation process of all three CDs is spontaneous and exothermic and it is driven by an increase of the entropy of the environment.
Collapse
Affiliation(s)
- Thao Thi Do
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KULeuven - University of Leuven, Leuven, Belgium
| | - Rob Van Hooghten
- Department of Chemical Engineering, KULeuven - University of Leuven, Leuven, Belgium
| | - Guy Van den Mooter
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KULeuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
27
|
Lou J, Teng Z, Zhang L, Yang J, Ma L, Wang F, Tian X, An R, Yang M, Zhang Q, Xu L, Dong Z. β-Caryophyllene/Hydroxypropyl-β-Cyclodextrin Inclusion Complex Improves Cognitive Deficits in Rats with Vascular Dementia through the Cannabinoid Receptor Type 2 -Mediated Pathway. Front Pharmacol 2017; 8:2. [PMID: 28154534 PMCID: PMC5243824 DOI: 10.3389/fphar.2017.00002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023] Open
Abstract
This work was conducted to prepare β-caryophyllene-hydroxypropyl-β-cyclodextrin inclusion complex (HPβCD/BCP) and investigate its effects and mechanisms on cognitive deficits in vascular dementia (VD) rats. First, HPβCD/BCP was prepared, optimized, characterized, and evaluated. HPβCD/BCP and AM630 were then administered to VD rats to upregulate and downregulate the cannabinoid receptor type 2 (CB2). Results showed that HPβCD/BCP can significantly increase the bioavailability of BCP. Through the Morris water maze test, HPβCD/BCP can attenuate learning and memory deficits in rats. Cerebral blood flow (CBF) monitoring results indicated that HPβCD/BCP can promote the recovery of CBF. Moreover, molecular biology experiments showed that HPβCD/BCP can increase the expression levels of CB2 in brain tissues, particularly the hippocampus and white matter tissues, as well as the expression levels of PI3K and Akt. Overall, the findings demonstrated the protective effects of HPβCD/BCP against cognitive deficits induced by chronic cerebral ischemia and suggested the potential of HPβCD/BCP in the therapy of vascular dementia in the future.
Collapse
Affiliation(s)
- Jie Lou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Zhipeng Teng
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital Chongqing, China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University Chongqing, China
| | - Lianju Ma
- The Experimental Teaching Center, Chongqing Medical University Chongqing, China
| | - Fang Wang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Xiaocui Tian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Ruidi An
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Mei Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Qian Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Lu Xu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Zhi Dong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| |
Collapse
|
28
|
Ryzhakov A, Do Thi T, Stappaerts J, Bertoletti L, Kimpe K, Sá Couto AR, Saokham P, Van den Mooter G, Augustijns P, Somsen GW, Kurkov S, Inghelbrecht S, Arien A, Jimidar MI, Schrijnemakers K, Loftsson T. Self-Assembly of Cyclodextrins and Their Complexes in Aqueous Solutions. J Pharm Sci 2016; 105:2556-2569. [DOI: 10.1016/j.xphs.2016.01.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/12/2022]
|
29
|
Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin. Food Chem 2016; 208:124-31. [PMID: 27132832 DOI: 10.1016/j.foodchem.2016.03.122] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/14/2016] [Accepted: 03/31/2016] [Indexed: 11/22/2022]
Abstract
Red bell pepper carotenoids were complexed with 2-hydroxypropyl-β-cyclodextrin (2-HPβCD) in different mass ratios (1:4, 1:6, 1:8 and 1:10) through ultrasonic homogenization in order to increase carotenoid solubility and their use as natural pigment in food. Inclusion complexes, red bell pepper extract and physical mixtures were analyzed by DSC, FT-IR, (1)H NMR and DLS. Solubility assay was performed to identify the effect of complexation on the solubility of carotenoids. From characterization assays, results showed that inclusion process occurred for all tested ratios. Results for water solubility assays demonstrated clear differences between solubility index of inclusion complexes (8.06±2.59-16.55±4.40mg/mL) and physical mixtures (3.53±1.44-7.3±1.88mg/mL), while carotenoid extract was no water soluble, as expected. These results indicated that molecular inclusion of carotenoids in 2-HPβCD was efficient to enhance their solubility in water, enabling application of red bell pepper carotenoid as natural pigment and/or bioactive substances in food.
Collapse
|
30
|
Gontijo SML, Guimarães PPG, Viana CTR, Denadai ÂML, Gomes ADM, Campos PP, Andrade SP, Sinisterra RD, Cortés ME. Erlotinib/hydroxypropyl-β-cyclodextrin inclusion complex: characterization and in vitro and in vivo evaluation. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0562-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Mura P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. J Pharm Biomed Anal 2015; 113:226-38. [PMID: 25743620 DOI: 10.1016/j.jpba.2015.01.058] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/09/2023]
Abstract
Cyclodextrins are cyclic oligosaccharides able to form inclusion complexes with a variety of hydrophobic guest molecules, positively modifying their physicochemical properties. A thorough analytical characterization of cyclodextrin complexes is of fundamental importance to provide an adequate support in selection of the most suitable cyclodextrin for each guest molecule, and also in view of possible future patenting and marketing of drug-cyclodextrin formulations. The demonstration of the actual formation of a drug-cyclodextrin inclusion complex in solution does not guarantee its existence also in the solid state. Moreover, the technique used to prepare the solid complex can strongly influence the properties of the final product. Therefore, an appropriate characterization of the drug-cyclodextrin solid systems obtained has also a key role in driving in the choice of the most effective preparation method, able to maximize host-guest interactions. The analytical characterization of drug-cyclodextrin solid systems and the assessment of the actual inclusion complex formation is not a simple task and involves the combined use of several analytical techniques, whose results have to be evaluated together. The objective of the present review is to present a general prospect of the principal analytical techniques which can be employed for a suitable characterization of drug-cyclodextrin systems in the solid state, evidencing their respective potential advantages and limits. The applications of each examined technique are described and discussed by pertinent examples from literature.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino, I-50019 Florence, Italy.
| |
Collapse
|
32
|
Tuza K, Jicsinszky L, Sohajda T, Puskás I, Fenyvesi É. Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability. Beilstein J Org Chem 2014; 10:2836-43. [PMID: 25550750 PMCID: PMC4273282 DOI: 10.3762/bjoc.10.301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022] Open
Abstract
We compared the complex forming ability of α-, β- and γ-cyclodextrins (α-CD, β-CD and γ-CD) with their open ring analogs. In addition to the native cyclodextrins also modified cyclodextrins and the corresponding maltooligomers, functionalized with neutral 2-hydroxypropyl moieties, were synthesized. A new synthetic route was worked out via bromination, benzylation, deacetylation and debenzylation to obtain the 2-hydroxypropyl maltooligomer counterparts. The complexation properties of non-modified and modified cyclic and acyclic dextrins were studied and compared by photon correlation spectroscopy (PCS) and capillary electrophoresis (CE) using model guest compounds. In some cases cyclodextrins and their open-ring analogs (acyclodextrins) show similar complexation abilities, while with other guests considerably different behavior was observed depending on the molecular dimensions and chemical characteristics of the guests. This was explained by the enhanced flexibility of the non-closed rings. Even the signs of enantiorecognition were observed for the chloropheniramine/hydroxypropyl maltohexaose system. Further studies are planned to help the deeper understanding of the interactions.
Collapse
Affiliation(s)
- Kata Tuza
- CycloLab Cyclodextrin R&D Laboratory Ltd, Illatos út 7, Budapest, 1097, Hungary
| | - László Jicsinszky
- CycloLab Cyclodextrin R&D Laboratory Ltd, Illatos út 7, Budapest, 1097, Hungary
- Dipartimento di Scienza e Tecnologia del Farmaco, Universitá di Torino, via P. Giuria 9, Turin, 10125, Italy
| | - Tamás Sohajda
- CycloLab Cyclodextrin R&D Laboratory Ltd, Illatos út 7, Budapest, 1097, Hungary
| | - István Puskás
- CycloLab Cyclodextrin R&D Laboratory Ltd, Illatos út 7, Budapest, 1097, Hungary
| | - Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd, Illatos út 7, Budapest, 1097, Hungary
| |
Collapse
|
33
|
Dandawate P, Vemuri K, Khan EM, Sritharan M, Padhye S. Synthesis, characterization and anti-tubercular activity of ferrocenyl hydrazones and their β-cyclodextrin conjugates. Carbohydr Polym 2014; 108:135-44. [DOI: 10.1016/j.carbpol.2014.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/25/2014] [Accepted: 03/02/2014] [Indexed: 11/16/2022]
|
34
|
Kamimura JA, Santos EH, Hill LE, Gomes CL. Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.02.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Gomes LMM, Petito N, Costa VG, Falcão DQ, de Lima Araújo KG. Inclusion complexes of red bell pepper pigments with β-cyclodextrin: preparation, characterisation and application as natural colorant in yogurt. Food Chem 2013; 148:428-36. [PMID: 24262579 DOI: 10.1016/j.foodchem.2012.09.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 09/12/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
Abstract
This work aimed to prepare inclusion complexes between red bell pepper pigments and β-cyclodextrin using two different procedures (i.e., magnetic stirring and ultrasonic homogenisation), to characterise the prepared inclusion complexes and to evaluate the colour stability of a selected complex added to yogurt. The mass ratio of extract to β-cyclodextrin was 1:4. The formed extract: β-cyclodextrin complexes and a physical mixture of extract and β-cyclodextrin were evaluated by differential scanning calorimetry, Fourier transform-infrared spectroscopy, proton nuclear magnetic resonance, particle size distribution and Zeta potential. The obtained data showed that ultrasonic homogenisation resulted in better yield and inclusion efficiency compared to magnetic stirring. The yogurt with the added complex produced by ultrasonic homogenisation showed slower variations for the a(∗) (redness) and b(∗) (yellowness) indices compared to yogurt with added extract, indicating a higher protection of the colour during storage.
Collapse
Affiliation(s)
- Lidiane Martins Mendes Gomes
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mário Viana 523, Santa Rosa, Niterói 24241-000, Brazil
| | | | | | | | | |
Collapse
|
36
|
Wang H, Shao N, Qiao S, Cheng Y. Host–Guest Chemistry of Dendrimer–Cyclodextrin Conjugates: Selective Encapsulations of Guests within Dendrimer or Cyclodextrin Cavities Revealed by NOE NMR Techniques. J Phys Chem B 2012; 116:11217-24. [DOI: 10.1021/jp3062916] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory
of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Naimin Shao
- Shanghai Key Laboratory
of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Shengnan Qiao
- Shanghai Key Laboratory
of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory
of Regulatory
Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Shanghai Key Laboratory of Magnetic
Resonance, Department of Physics, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
37
|
Garnero C, Aiassa V, Longhi M. Sulfamethoxazole:hydroxypropyl-β-cyclodextrin complex: preparation and characterization. J Pharm Biomed Anal 2012; 63:74-9. [DOI: 10.1016/j.jpba.2012.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/30/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
|
38
|
Elshaer A, Hanson P, Worthington T, Lambert P, Mohammed AR. Preparation and characterization of amino acids-based trimethoprim salts. Pharmaceutics 2012; 4:179-96. [PMID: 24300187 PMCID: PMC3834905 DOI: 10.3390/pharmaceutics4010179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 11/16/2022] Open
Abstract
Trimethoprim (TMP) is a dihydrofolate reductase (DHFR) inhibitor which prevents the conversion of dihydrofolic acid into tetrahydrofolic acid, resulting in the depletion of the latter and leading to bacterial death. Oral bioavailability of TMP is hindered by both its low solubility and low permeability. This study aims to prepare novel salts of TMP using anionic amino acids; aspartic and glutamic acid as counter ions in order to improve solubility and dissolution. TMP salts were prepared by lyophilisation and characterized using FT-IR spectroscopy, proton nuclear magnetic resonance (1HNMR), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). Both the amino acids formed salts with TMP in a 1:1 molar ratio and showed a 280 fold improvement in solubility. Investigation of the microbiological activity of the prepared salts against TMP sensitive Escherichia coli showed that the new salts not only retained antibacterial activity but also exhibited higher zone of inhibition which was attributed to improved physicochemical characters such as higher solubility and dissolution. The results are an important finding that could potentially impact on faster onset of antibacterial activity and reduced therapeutic dose when administered to patients. Studies are underway investigating the effect of ion-pairing TMP with amino acids on the permeability profile of the drug.
Collapse
Affiliation(s)
- Amr Elshaer
- Aston Pharmacy School, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | | | | | | | | |
Collapse
|
39
|
Dandawate PR, Vyas A, Ahmad A, Banerjee S, Deshpande J, Swamy KV, Jamadar A, Dumhe-Klaire AC, Padhye S, Sarkar FH. Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm Res 2012; 29:1775-86. [PMID: 22322899 DOI: 10.1007/s11095-012-0700-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/31/2012] [Indexed: 12/14/2022]
Abstract
PURPOSE Several formulations have been proposed to improve the systemic delivery of novel cancer therapeutic compounds, including cyclodextrin derivatives. We aimed to synthesize and characterize of CDF-β-cyclodextrin inclusion complex (1:2) (CDFCD). METHODS The compound was characterized by Fourier transform infrared, differential scanning calorimetry, powder X-ray diffraction studies, H1 & C13 NMR studies and scanning electron microscopic analysis. Its activity was tested against multiple cancer cell lines, and in vivo bioavailability was checked. RESULTS CDF-β-cyclodextrin was found to lower IC(50) value by half when tested against multiple cancer cell lines. It preferentially accumulated in the pancreas, where levels of CDF-β-cyclodextrin in mice were 10 times higher than in serum, following intravenous administration of an aqueous CDF-β-cyclodextrin preparation. CONCLUSIONS Novel curcumin analog CDF preferentially accumulates in the pancreas, leading to its potent anticancer activity against pancreatic cancer cells. Synthesis of such CDF-β-cyclodextrin self-assembly is an effective strategy to enhance its bioavailability and tissue distribution, warranting further evaluation for CDF delivery in clinical settings for treatment of human malignancies.
Collapse
Affiliation(s)
- Prasad R Dandawate
- ISTRA, Department of Chemistry, MCE Society's Abeda Inamdar Senior College of Arts, Science and Commerce, Pune 411001, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Macedo OFL, Andrade GRS, Conegero LS, Barreto LS, Costa NB, Gimenez IF, Almeida LE, Kubota D. Physicochemical study and characterization of the trimethoprim/2-hydroxypropyl-γ-cyclodextrin inclusion complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 86:101-106. [PMID: 22057300 DOI: 10.1016/j.saa.2011.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
Here we report the preparation of a trimethoprim/2-hydroxypropyl-γ-cyclodextrin inclusion complex along with a physicochemical study, structural characterization, and molecular modeling of the complex. As main results, we observed from phase-solubility studies at two temperatures (20 °C and 35 °C) that the association constants decrease with increasing temperature. Values for K(1:1) constant were of the same magnitude order of those found for the parent γ-CD. The inclusion orientation as evidenced by ROESY measurements involves the inclusion of the 3,4,5-trimethoxybenzyl ring in the CD cavity from the larger rim. This is in agreement with semiempirical molecular modeling calculation.
Collapse
Affiliation(s)
- Osmir F L Macedo
- NPGQ - Núcleo de Pós-graduação em Química, Universidade Federal de Sergipe (UFS), Av. Marechal Rondon s/n, Campus Universitário Prof. José Aloísio de Campos, CEP 49100-000, São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Miranda JCD, Martins TEA, Veiga F, Ferraz HG. Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. BRAZ J PHARM SCI 2011. [DOI: 10.1590/s1984-82502011000400003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides composed of D-glucopyranoside units linked by glycosidic bonds. Their main property is the ability to modify the physicochemical and biological characteristics of low-soluble drugs through the formation of drug:CD inclusion complexes. Inclusion complexation requires that host molecules fit completely or partially within the CD cavity. This adjustment is directly related to the physicochemical properties of the guest and host molecules, easy accommodation of guest molecules within the CD cavity, stoichiometry, therapeutic dose, and toxicity. However, dosage forms may achieve a high volume, depending on the amount of CD required. Thus, it is necessary to increase solubilization efficiency in order to use smaller amounts of CD. This can be achieved by adding small amounts of water-soluble polymers to the system. This review addresses aspects related to drug complexation with CDs using water-soluble polymers to optimize the amount of CD used in the formulation in order to increase drug solubility and reduce dosage form volume.
Collapse
|
42
|
Novel 1-indanone Thiosemicarbazone Antiviral Candidates: Aqueous Solubilization and Physical Stabilization by Means of Cyclodextrins. Pharm Res 2011; 29:739-55. [DOI: 10.1007/s11095-011-0599-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
|
43
|
Kubota D, Macedo OFL, Andrade GRS, Conegero LS, Almeida LE, Costa NB, Gimenez IF. Structural and theoretical-experimental physicochemical study of trimethoprim/randomly methylated-β-cyclodextrin binary system. Carbohydr Res 2011; 346:2746-51. [PMID: 22024568 DOI: 10.1016/j.carres.2011.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/21/2011] [Accepted: 09/24/2011] [Indexed: 11/26/2022]
Abstract
Here we report the structural characterization, physicochemical study and molecular modeling of the inclusion complex of trimethoprim in randomly methylated beta-cyclodextrin. The phase-solubility diagram obtained at pH 7.0 exhibited a linear behavior for the RAMEB concentrations studied suggesting a 1:1 stoichiometry and absence of aggregation in solution. From stoichiometric determination by the continuous variation method we confirmed a 1:1 stoichiometry. To make a detailed characterization of the inclusion mode, spectroscopic measurements by infrared and 1D and 2D (1)H NMR spectroscopy provided evidence that the inclusion mode is characterized by inclusion of the trimethoxyphenyl ring in the cavity; interactions with methyl groups located in the border of the cavity were also detected. The structure proposed was also confirmed by semiempirical molecular modeling.
Collapse
Affiliation(s)
- Daniela Kubota
- Núcleo de Pós-graduação em Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus Universitário Prof. José Aloísio de Campos, CEP 49100-000 São Cristovão, SE, Brazil
| | | | | | | | | | | | | |
Collapse
|