1
|
Luo T, Zhang GH, Guo YF, Dong H. Highly Reactive Glycosylation with 1- O-(Methylthio)thiocarbonyl Glycosyl Donors under Acidic to Neutral Reaction Conditions. J Org Chem 2024; 89:14315-14327. [PMID: 39268645 DOI: 10.1021/acs.joc.4c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
In this study, we have successfully developed a glycosylation method using 1-O-(methylthio)thiocarbonyl-glycoses as donors. Such xanthate donors are easily accessible and shelf-stable. The glycosylation reaction could be promoted by cations (acidic to neutral conditions) under mild conditions, exhibiting a reactivity intermediate between that with glycosyl trichloroacetimidate as the donor and that with thioglycoside as the donor. This methodology tolerates both "armed" and "disarmed" glycosyl donors, as well as various sugar acceptors, and affords the corresponding glycosides in good to excellent yields. Based on the relative higher reactivity of such xanthate donors than thioglycoside donors under the same glycosylation conditions, a trisaccharide was further synthesized in a one-pot glycosylation strategy.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Guo-Hui Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Yang-Fan Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| |
Collapse
|
2
|
Kashiwagi GA, Petrosilli L, Escopy S, Lay L, Stine KJ, De Meo C, Demchenko AV. HPLC-Based Automated Synthesis and Purification of Carbohydrates. Chemistry 2024; 30:e202401214. [PMID: 38684455 DOI: 10.1002/chem.202401214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Reported herein is a new HPLC-based automated synthesizer (HPLC-A) capable of a temperature-controlled synthesis and purification of carbohydrates. The developed platform allows to perform various protecting group manipulations as well as the synthesis of O- and N-glycosides. A fully automated synthesis and purification was showcased in application to different carbohydrate derivatives including glycosides, oligosaccharides, glycopeptides, glycolipids, and nucleosides.
Collapse
Affiliation(s)
- Gustavo A Kashiwagi
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Laura Petrosilli
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
- Department of Chemistry, University of Milan, Via Golgi 19, Milan, 20133, Italy
| | - Samira Escopy
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via Golgi 19, Milan, 20133, Italy
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Cristina De Meo
- Department of Chemistry, Southern Illinois University Edwardsville, 1 Hairpin Dr., Edwardsville, Illinois, 62025, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501Laclede Ave, St. Louis, Missouri, 63103, USA
| |
Collapse
|
3
|
DeLucia AA, Olshansky L. Carboxylate Shift Dynamics in Biomimetic Co 2(μ-OH) 2 Complexes. Inorg Chem 2024; 63:1109-1118. [PMID: 38170989 DOI: 10.1021/acs.inorgchem.3c03470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Carboxylate shift mechanisms provide low-energy pathways to accommodate changes in oxidation state and coordination number required during catalysis in metalloenzyme active sites. These processes are challenging to observe in their native enzymes and molecular models can provide insight into their mechanistic details. We report here the direct observation of a carboxylate shift reaction in biomimetic yet structurally stable dicobalt complexes featuring both monodentate and bridging acetate ligands, as well as intramolecular hydrogen-bonding interactions. Subjecting the series of complexes [Co2(μ-OH)2(μ-1,3-OAc)(κ-OAc)2(pyR)4]PF6 ([1R]PF6, OAc = acetate, pyR = pyridine with para-R substituents: OMe, H, or CN) to a Lewis acid triggers conversion of a monodentate acetate to a μ-1,3 bridging mode, forming [Co2(μ-OH)2(μ-1,3-OAc)2(pyR)4]2+ ([2R]2+). [2R]2+ is susceptible to solvent binding, affording [Co2(μ-OH)2(μ-1,3-OAc)(κ-OAc)(MeCN)(pyR)4]2+ ([3R]2+) in MeCN. These reaction products and intermediates were isolated and characterized in the solid state by isotopic labeling and Fourier transform infrared (FTIR) spectroscopy, as well as by X-ray diffraction. The kinetics of the formation and decay of [1R]+, [2R]2+, and [3R]2+ were also examined in situ by 1H-NMR spectroscopy to provide a kinetic model for the carboxylate shift reaction. The rate constants extracted from global fit analyses of these reactions increase with increasing electron donation from R. Leveraging robust diamagnetic CoIII complexes, these studies provide mechanistic details of carboxylate shift reactivity and highlight the utility of ligand dynamicity in mediating the transient formation of unstable metal complexes.
Collapse
Affiliation(s)
- Alyssa A DeLucia
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Lisa Olshansky
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| |
Collapse
|
4
|
Traboni S, Bedini E, Capasso D, Esposito F, Iadonisi A. Adaptation of Zemplén's conditions for a simple and highly selective approach to methyl 1,2-trans glycosides. Carbohydr Res 2023; 528:108824. [PMID: 37141732 DOI: 10.1016/j.carres.2023.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
1,2-trans methyl glycosides can be readily obtained from peracetylated sugars through their initial conversion into glycosyl iodide donors and subsequent exposure of these latter to a slight excess of sodium methoxide in methanol. Under these conditions a varied set of mono- and disaccharide precursors afforded the corresponding 1,2-trans glycosides with concomitant de-O-acetylation in satisfying yields (in the range 59-81%). A similar approach also proved effective when using GlcNAc glycosyl chloride as the donor.
Collapse
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Domenica Capasso
- Center for Life Sciences and Technologies (CESTEV), University of Naples Federico II, 80145, Naples, Italy
| | - Fabiana Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy.
| |
Collapse
|
5
|
Walczak D, Sikorski A, Grzywacz D, Nowacki A, Liberek B. Identification of the furanose ring conformations and the factors driving their adoption. Carbohydr Res 2023; 526:108780. [PMID: 36944302 DOI: 10.1016/j.carres.2023.108780] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Three groups of furanoses with restricted freedom of rotation on the C3-C4, C2-C3, and C1-C2 bonds, respectively, are presented. Conformational analysis of these furanoses is conducted based on the proton nuclear magnetic resonance (1H NMR) spectroscopy, density functional theory (DFT) calculations, and X-ray analysis. It is shown that the particular group of the presented furanoses is locked in the specific conformation. These are the 1T2-like, the 0E-like, and the 3T4-like conformation, respectively. Characteristic 1H NMR spectra of these three conformations are presented and the factors influencing the conformational preferences of the analyzed furanoses are discussed.
Collapse
Affiliation(s)
- Dominik Walczak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Daria Grzywacz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Andrzej Nowacki
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Beata Liberek
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
6
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Palos Pacheco R, Kegel LL, Pemberton JE. Interfacial and Solution Aggregation Behavior of a Series of Bioinspired Rhamnolipid Congeners Rha-C14-C x ( x = 6, 8, 10, 12, 14). J Phys Chem B 2021; 125:13585-13596. [PMID: 34860023 DOI: 10.1021/acs.jpcb.1c09435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhamnolipids are glycolipids produced by microorganisms with outstanding surfactant properties. They are a class of biosurfactants that are potential candidates for biodegradable and nontoxic replacements of current specialty synthetic surfactants. Building on our previous efforts in developing an efficient and practical chemical methodology to synthesize rhamnolipids allows us to now explore the tunability of rhamnolipid properties. Here, we explore the impact on solution self-assembly and adsorption at the air/water interface of symmetry of the two lipid tails for diastereomeric mixtures of a series of monorhamnolipids of the generic structure Rha-C14-Cx. Surface activity of the anionic forms of these molecules at pH 8 is described by surface tensiometry. Characteristics of their aggregation behavior in aqueous solutions including hydrodynamic radius, aggregation number, and aggregate morphology are determined using dynamic light scattering and time-resolved fluorescence quenching spectroscopy. The solution aggregation behavior of this series is found to unexpectedly vary in a nonmonotonic fashion. This is explained by molecular structural attributes of each series member that result in differences in the respective intermolecular interactions of various parts of these surfactants.
Collapse
Affiliation(s)
- Ricardo Palos Pacheco
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Laurel L Kegel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
8
|
Traboni S, Bedini E, Silipo A, Vessella G, Iadonisi A. Solvent‐Free Glycosylation from per‐
O
‐Acylated Donors Catalyzed by Methanesulfonic Acid. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Emiliano Bedini
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Giulia Vessella
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| |
Collapse
|
9
|
Apostol CR, Tanguturi P, Szabò LZ, Varela D, Gilmartin T, Streicher JM, Polt R. Synthesis and In Vitro Characterization of Glycopeptide Drug Candidates Related to PACAP 1-23. Molecules 2021; 26:4932. [PMID: 34443519 PMCID: PMC8401035 DOI: 10.3390/molecules26164932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/05/2023] Open
Abstract
The search for efficacious treatment of neurodegenerative and progressive neuroinflammatory diseases continues, as current therapies are unable to halt or reverse disease progression. PACAP represents one potential therapeutic that provides neuroprotection effects on neurons, and also modulates inflammatory responses and circulation within the brain. However, PACAP is a relatively long peptide hormone that is not trivial to synthesize. Based on previous observations that the shortened isoform PACAP1-23 is capable of inducing neuroprotection in vitro, we were inspired to synthesize shortened glycopeptide analogues of PACAP1-23. Herein, we report the synthesis and in vitro characterization of glycosylated PACAP1-23 analogues that interact strongly with the PAC1 and VPAC1 receptors, while showing reduced activity at the VPAC2 receptor.
Collapse
Affiliation(s)
- Christopher R. Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| | - Parthasaradhireddy Tanguturi
- Department of Pharmacology, College of Medicine, The University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA; (P.T.); (J.M.S.)
| | - Lajos Z. Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| | - Daniel Varela
- Facultat de Quìmica Tarragona, Universitat Rovera I Virgili, 43007 Barcelona, Spain; (D.V.); (T.G.)
| | - Thiago Gilmartin
- Facultat de Quìmica Tarragona, Universitat Rovera I Virgili, 43007 Barcelona, Spain; (D.V.); (T.G.)
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724, USA; (P.T.); (J.M.S.)
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721, USA; (C.R.A.); (L.Z.S.)
| |
Collapse
|
10
|
Groenevelt JM, Corey DJ, Fehl C. Chemical Synthesis and Biological Applications of O-GlcNAcylated Peptides and Proteins. Chembiochem 2021; 22:1854-1870. [PMID: 33450137 DOI: 10.1002/cbic.202000843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Indexed: 12/25/2022]
Abstract
All human cells use O-GlcNAc protein modifications (O-linked N-acetylglucosamine) to rapidly adapt to changing nutrient and stress conditions through signaling, epigenetic, and proteostasis mechanisms. A key challenge for biologists in defining precise roles for specific O-GlcNAc sites is synthetic access to homogenous isoforms of O-GlcNAc proteins, a result of the non-genetically templated, transient, and heterogeneous nature of O-GlcNAc modifications. Toward a solution, this review details the state of the art of two strategies for O-GlcNAc protein modification: advances in "bottom-up" O-GlcNAc peptide synthesis and direct "top-down" installation of O-GlcNAc on full proteins. We also describe key applications of synthetic O-GlcNAc peptide and protein tools as therapeutics, biophysical structure-function studies, biomarkers, and as disease mechanistic probes to advance translational O-GlcNAc biology.
Collapse
Affiliation(s)
- Jessica M Groenevelt
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Daniel J Corey
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
11
|
Rodríguez-Mayor AV, Peralta-Camacho GJ, Cárdenas-Martínez KJ, García-Castañeda JE. Development of Strategies for Glycopeptide Synthesis: An Overview on the Glycosidic Linkage. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200701121037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoproteins and glycopeptides are an interesting focus of research, because of
their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate,
carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in
biological processes. It has been established that natural glycoconjugates could be an important
source of templates for the design and development of molecules with therapeutic applications.
However, isolating large quantities of glycoconjugates from biological sources
with the required purity is extremely complex, because these molecules are found in heterogeneous
environments and in very low concentrations. As an alternative to solving this
problem, the chemical synthesis of glycoconjugates has been developed. In this context,
several methods for the synthesis of glycopeptides in solution and/or solid-phase have been
reported. In most of these methods, glycosylated amino acid derivatives are used as building
blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter
for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the
chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and
have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which
may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding.
This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.
Collapse
|
12
|
Mehta AY, Veeraiah RKH, Dutta S, Goth CK, Hanes MS, Gao C, Stavenhagen K, Kardish R, Matsumoto Y, Heimburg-Molinaro J, Boyce M, Pohl NLB, Cummings RD. Parallel Glyco-SPOT Synthesis of Glycopeptide Libraries. Cell Chem Biol 2020; 27:1207-1219.e9. [PMID: 32610041 PMCID: PMC7556346 DOI: 10.1016/j.chembiol.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Glycan recognition is typically studied using free glycans, but glycopeptide presentations represent more physiological conditions for glycoproteins. To facilitate studies of glycopeptide recognition, we developed Glyco-SPOT synthesis, which enables the parallel production of diverse glycopeptide libraries at microgram scales. The method uses a closed system for prolonged reactions required for coupling Fmoc-protected glycoamino acids, including O-, N-, and S-linked glycosides, and release conditions to prevent side reactions. To optimize reaction conditions and sample reaction progress, we devised a biopsy testing method. We demonstrate the efficient utilization of such microscale glycopeptide libraries to determine the specificity of glycan-recognizing antibodies (e.g., CTD110.6) using microarrays, enzyme specificity on-array and in-solution (e.g., ST6GalNAc1, GCNT1, and T-synthase), and binding kinetics using fluorescence polarization. We demonstrated that the glycosylation on these peptides can be expanded using glycosyltransferases both in-solution and on-array. This technology will promote the discovery of biological functions of peptide modifications by glycans.
Collapse
Affiliation(s)
- Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ravi Kumar H Veeraiah
- Department of Chemistry, Indiana University, 120A Simon Hall, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Sucharita Dutta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Robert Kardish
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Michael Boyce
- Department of Biochemistry and Program in Cell and Molecular Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, 120A Simon Hall, 212 South Hawthorne Drive, Bloomington, IN 47405, USA.
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Apostol CR, Hay M, Polt R. Glycopeptide drugs: A pharmacological dimension between "Small Molecules" and "Biologics". Peptides 2020; 131:170369. [PMID: 32673700 PMCID: PMC7448947 DOI: 10.1016/j.peptides.2020.170369] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Peptides are an important class of molecules with diverse biological activities. Many endogenous peptides, especially neuropeptides and peptide hormones, play critical roles in development and regulating homeostasis. Furthermore, as drug candidates their high receptor selectivity and potent binding leads to reduced off-target interactions and potential negative side effects. However, the therapeutic potential of peptides is severely hampered by their poor stability in vivo and low permeability across biological membranes. Several strategies have been successfully employed over the decades to address these concerns, and one of the most promising strategies is glycosylation. It has been demonstrated in numerous cases that glycosylation is an effective synthetic approach to improve the pharmacokinetic profiles and membrane permeability of peptides. The effects of glycosylation on peptide stability and peptide-membrane interactions in the context of blood-brain barrier penetration will be explored. Numerous examples of glycosylated analogues of endogenous peptides targeting class A and B G-protein coupled receptors (GPCRs) with an emphasis on O-linked glycopeptides will be reviewed. Notable examples of N-, S-, and C-linked glycopeptides will also be discussed. A small section is devoted to synthetic methods for the preparation of glycopeptides and requisite amino acid glycoside building blocks.
Collapse
Affiliation(s)
- Christopher R Apostol
- Dept. of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA.
| | - Meredith Hay
- Evelyn F. McKnight Brain Institute, Dept. of Physiology, The University of Arizona, Tucson, AZ 85724, USA
| | - Robin Polt
- Dept. of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Hogan DE, Tian F, Malm SW, Kegel LL, Szabo LZ, Hunjan AS, Pemberton JE, Klimecki WT, Polt R, Maier RM. Biodegradability and Toxicity of Cellobiosides and Melibiosides. J SURFACTANTS DETERG 2020; 23:715-724. [PMID: 34305390 DOI: 10.1002/jsde.12421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In 2014, almost 16 million tons of surfactants were used globally for cleaning and industrial applications. As a result, massive quantities disperse into environmental compartments every day. There is great market interest in developing highly biodegradable, less-toxic, and renewable alternatives to currently used petroleum-based surfactants. Glycolipid surfactants, composed of a sugar head-group and lipid tail, are effective surfactants and emulsifiers with a high tolerance to electrolytes and are easily tailored to address specific needs. The green synthesis and surfactant characteristics of a suite of cellobiosides and melibiosides were recently described. The biodegradability and toxicity of 1°-alkyl-O-cellobiosides, 2°-alkyl-O-cellobiosides, and 1°-alkyl-O-melibiosides with straight-chain alkyl tails of 8, 10, and 12 are reported in this study. Biodegradability was assessed by quantifying mineralization (CO2 evolution). All of the glycosides were inherently biodegradable and most were readily biodegradable according to OECD and EPA definitions. The Microtox acute toxicity assay showed both chain length and head group had significant effects on toxicity, but most of the molecules were practically non-toxic according to EPA definitions with EC50 values > 100 mg L-1. Cytotoxicity to human lung (H1299) and keratinocyte cell lines (HaCaT) was measured by xCELLigence and MTS assays. Cytotoxicity values were comparable to similar glycosides previously reported. IC50 values were determined but, in general, exceeded surfactant concentrations that are found in the environment. These data demonstrate the promising nature of these molecules as green alternatives to petrochemical surfactants.
Collapse
Affiliation(s)
- David E Hogan
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721
| | - Fei Tian
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721
| | - Scott W Malm
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721
| | - Laurel L Kegel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721
| | - Lajos Z Szabo
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721
| | - Anoop S Hunjan
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, 85721
| | - Jeanne E Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721
| | - Walter T Klimecki
- College of Veterinary Medicine, University of Arizona, Tucson, AZ, 85721
| | - Robin Polt
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721
| | - Raina M Maier
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
15
|
De Leon CA, Lang G, Saavedra MI, Pratt MR. Simple and Efficient Preparation of O- and S-GlcNAcylated Amino Acids through InBr 3-Catalyzed Synthesis of β- N-Acetylglycosides from Commercially Available Reagents. Org Lett 2018; 20:5032-5035. [PMID: 30088936 DOI: 10.1021/acs.orglett.8b02182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The facile synthesis of serine, threonine, and cysteine β-glycosides using commercially available peracetylated β- N-acetylglucosamine (β-Ac4GlcNAc) and catalytic amounts of indium bromide (InBr3) is described. This method involves only inexpensive reagents that require no further modification or special handling. The reagents are simply mixed, dissolved, and refluxed to afford the GlcNAcylated amino acids in great yields (70-80%). This operationally simple procedure should facilitate the study of O-GlcNAcylation without necessitating expertise in synthetic carbohydrate chemistry.
Collapse
|
16
|
Palos Pacheco R, Eismin RJ, Coss CS, Wang H, Maier RM, Polt R, Pemberton JE. Synthesis and Characterization of Four Diastereomers of Monorhamnolipids. J Am Chem Soc 2017; 139:5125-5132. [DOI: 10.1021/jacs.7b00427] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ricardo Palos Pacheco
- Department
of Chemistry and Biochemistry and ‡Department of Soil, Water and Environmental
Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Ryan J. Eismin
- Department
of Chemistry and Biochemistry and ‡Department of Soil, Water and Environmental
Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Clifford S. Coss
- Department
of Chemistry and Biochemistry and ‡Department of Soil, Water and Environmental
Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Hui Wang
- Department
of Chemistry and Biochemistry and ‡Department of Soil, Water and Environmental
Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Raina M. Maier
- Department
of Chemistry and Biochemistry and ‡Department of Soil, Water and Environmental
Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Robin Polt
- Department
of Chemistry and Biochemistry and ‡Department of Soil, Water and Environmental
Science, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeanne E. Pemberton
- Department
of Chemistry and Biochemistry and ‡Department of Soil, Water and Environmental
Science, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
17
|
Preparation of S-glycoside surfactants and cysteine thioglycosides using minimally competent Lewis acid catalysis. Carbohydr Res 2016; 422:1-4. [PMID: 26795078 DOI: 10.1016/j.carres.2015.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/03/2015] [Accepted: 12/26/2015] [Indexed: 11/21/2022]
Abstract
Here we report a method for the preparation of anomerically pure β-S-glycopyranosides (1,2-trans-glycosides) from the corresponding peracetate donors. S-glycosylation was performed in CHCl3 at reflux in the presence of a catalytic amount of InBr3. Deacylation of the intermediate peracetates were achieved under Zemplén conditions. Five pyranose examples, monosaccharides D-glucose and D-galactose and disaccharides cellobiose, maltose, and lactose, were used as donors, and five thiols including an α/ω dithiol and Fmoc-L-cysteine were used as acceptors. Melting points, high res MS, [α]D and NMR data ((1)H and (13)C, including COSY, HSQC and HMBC) are reported for compounds not previously described.
Collapse
|
18
|
Thorsheim K, Siegbahn A, Johnsson RE, Stålbrand H, Manner S, Widmalm G, Ellervik U. Chemistry of xylopyranosides. Carbohydr Res 2015; 418:65-88. [PMID: 26580709 DOI: 10.1016/j.carres.2015.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/22/2022]
Abstract
Xylose is one of the few monosaccharidic building blocks that are used by mammalian cells. In comparison with other monosaccharides, xylose is rather unusual and, so far, only found in two different mammalian structures, i.e. in the Notch receptor and as the linker between protein and glycosaminoglycan (GAG) chains in proteoglycans. Interestingly, simple soluble xylopyranosides can not only initiate the biosynthesis of soluble GAG chains but also function as inhibitors of important enzymes in the biosynthesis of proteoglycans. Furthermore, xylose is a major constituent of hemicellulosic xylans and thus one of the most abundant carbohydrates on Earth. Altogether, this has spurred a strong interest in xylose chemistry. The scope of this review is to describe synthesis of xylopyranosyl donors, as well as protective group chemistry, modifications, and conformational analysis of xylose.
Collapse
Affiliation(s)
- Karin Thorsheim
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Anna Siegbahn
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Richard E Johnsson
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Henrik Stålbrand
- Centre for Molecular Protein Science, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sophie Manner
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
19
|
Abstract
Naturally occurring glycopeptides and glycoproteins play important roles in biological processes. Glycosylation is one of the most common post-translational modifications in vivo. Glycopeptides are involved in cell signaling and sorting, providing cell surface markers for recognition. From the drug design and synthesis perspective, modification of a peptide through glycosylation results in increased bioavailability and bioactivity of glycopeptides in living systems with negligible toxicity of degradation products. Glycopeptide synthesis can be accomplished through incorporation of a glycosylated amino acid in solid phase peptide synthesis (SPPS) to form the desired peptide, or via incorporation of sugar-amino acid moieties. Additionally, research indicates that glycosylation increases penetration of the blood-brain barrier (BBB) by peptides, which may lead to novel therapeutics for neurological disorders. Recent applications of glycopeptides have focused on the in vivo central nervous system (CNS) effects after peripheral administration of centrally active peptides modified with various carbohydrates.
Collapse
Affiliation(s)
- Evan M Jones
- Robin Polt Lab, Department of Chemistry and Biochemistry, The University of Arizona Tucson, AZ, USA
| | - Robin Polt
- Robin Polt Lab, Department of Chemistry and Biochemistry, The University of Arizona Tucson, AZ, USA
| |
Collapse
|
20
|
Brusa C, Muzard M, Rémond C, Plantier-Royon R. β-Xylopyranosides: synthesis and applications. RSC Adv 2015. [DOI: 10.1039/c5ra14023d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In recent years, β-xylopyranosides have attracted interest due to the development of biomass-derived molecules. This review focuses on general routes for the preparation of β-xylopyranosides by chemical and enzymatic pathways and their main uses.
Collapse
Affiliation(s)
- Charlotte Brusa
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims (ICMR)
- CNRS UMR 7312
- UFR Sciences Exactes et Naturelles
- F-51687 Reims Cedex 2
| | - Murielle Muzard
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims (ICMR)
- CNRS UMR 7312
- UFR Sciences Exactes et Naturelles
- F-51687 Reims Cedex 2
| | - Caroline Rémond
- Université de Reims Champagne-Ardenne
- UMR 614
- Fractionnement des AgroRessources et Environnement
- France
- INRA
| | - Richard Plantier-Royon
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims (ICMR)
- CNRS UMR 7312
- UFR Sciences Exactes et Naturelles
- F-51687 Reims Cedex 2
| |
Collapse
|
21
|
Salmasan RM, Manabe Y, Kitawaki Y, Chang TC, Fukase K. Efficient Glycosylation Using In(OTf)3 as a Lewis Acid: Activation of N-Phenyltrifluoroacetimidate or Thioglycosides with Halogenated Reagents or PhIO. CHEM LETT 2014. [DOI: 10.1246/cl.140167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Yuriko Kitawaki
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
22
|
Mosberg HI, Yeomans L, Anand JP, Porter V, Sobczyk-Kojiro K, Traynor JR, Jutkiewicz EM. Development of a bioavailable μ opioid receptor (MOPr) agonist, δ opioid receptor (DOPr) antagonist peptide that evokes antinociception without development of acute tolerance. J Med Chem 2014; 57:3148-53. [PMID: 24641190 PMCID: PMC3993928 DOI: 10.1021/jm5002088] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously described a cyclic tetrapeptide, 1, that displays μ opioid receptor (MOPr) agonist and δ opioid receptor (DOPr) antagonist activity, a profile associated with a reduced incidence of opioid tolerance and dependence. Like many peptides, 1 has poor bioavailability. We describe here an analogue of 1 with an added C-terminal β-glucosylserine residue, Ser(β-Glc)NH2, a modification that has previously been shown to improve bioavailability of opioid peptides. The resulting peptide, 4, exhibits full antinociceptive efficacy in the mouse warm water tail withdrawal assay after intraperitoneal administration with potency similar to that of morphine. Further, 4 does not give rise to acute tolerance and thus represents a promising lead for the development of opioid analgesics with reduced side effects.
Collapse
Affiliation(s)
- Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
Li Y, St Louis L, Knapp BI, Muthu D, Anglin B, Giuvelis D, Bidlack JM, Bilsky EJ, Polt R. Can amphipathic helices influence the CNS antinociceptive activity of glycopeptides related to β-endorphin? J Med Chem 2014; 57:2237-46. [PMID: 24576160 PMCID: PMC3983389 DOI: 10.1021/jm400879w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glycosylated β-endorphin analogues of various amphipathicity were studied in vitro and in vivo in mice. Opioid binding affinities of the O-linked glycopeptides (mono- or disaccharides) and unglycosylated peptide controls were measured in human receptors expressed in CHO cells. All were pan-agonists, binding to μ-, δ-, or κ-opioid receptors in the low nanomolar range (2.2-35 nM K(i)'s). The glycoside moiety was required for intravenous (i.v.) but not for intracerebroventricular (i.c.v.) activity. Circular dichroism and NMR indicated the degree of helicity in H2O, aqueous trifluoroethanol, or micelles. Glycosylation was essential for activity after i.v. administration. It was possible to manipulate the degree of helicity by the alteration of only two amino acid residues in the helical address region of the β-endorphin analogues without destroying μ-, δ-, or κ-agonism, but the antinociceptive activity after i.v. administration could not be directly correlated to the degree of helicity in micelles.
Collapse
Affiliation(s)
- Yingxue Li
- Department of Chemistry & Biochemistry and BIO5, The University of Arizona , Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Anand JP, Porter-Barrus VR, Waldschmidt HV, Yeomans L, Pogozheva ID, Traynor JR, Mosberg HI. Translation of structure-activity relationships from cyclic mixed efficacy opioid peptides to linear analogues. Biopolymers 2014; 102:107-14. [PMID: 24436042 PMCID: PMC4132888 DOI: 10.1002/bip.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/17/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
Most opioid analgesics used in the treatment of pain are mu opioid receptor (MOR) agonists. While effective, there are significant drawbacks to opioid use, including the development of tolerance and dependence. However, the coadministration of a MOR agonist with a delta opioid receptor (DOR) antagonist slows the development of MOR-related side effects, while maintaining analgesia. We have previously reported a series of cyclic mixed efficacy MOR agonist/DOR antagonist ligands. Here we describe the transfer of key features from these cyclic analogs to linear sequences. Using the linear MOR/DOR agonist, Tyr-DThr-Gly-Phe-Leu-Ser-NH2 (DTLES), as a lead scaffold, we replaced Phe(4) with bulkier and/or constrained aromatic residues shown to confer DOR antagonism in our cyclic ligands. These replacements failed to confer DOR antagonism in the DTLES analogs, presumably because the more flexible linear ligands can adopt binding poses that will fit in the narrow binding pocket of the active conformations of both MOR and DOR. Nonetheless, the pharmacological profile observed in this series, high affinity and efficacy for MOR and DOR with selectivity relative to KOR, has also been shown to reduce the development of unwanted side effects. We further modified our lead MOR/DOR agonist with a C-terminal glucoserine to improve bioavailability. The resulting ligand displayed high efficacy and potency at both MOR and DOR and no efficacy at KOR.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109
| | | | | | | | | | | | | |
Collapse
|
25
|
Coss C, Carrocci T, Maier RM, Pemberton JE, Polt R. Minimally CompetentLewisAcid Catalysts: Indium(III) and Bismuth(III) Salts Produce Rhamnosides (=6-Deoxymannosides) in High Yield and Purity. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201200528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins. Future Med Chem 2012; 4:205-26. [PMID: 22300099 DOI: 10.4155/fmc.11.195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood-brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates.
Collapse
|