1
|
Jiang L, Song C, Ai C, Wen C, Song S. Modulation effect of sulfated polysaccharide from Sargassum fusiforme on gut microbiota and their metabolites in vitro fermentation. Front Nutr 2024; 11:1400063. [PMID: 38751743 PMCID: PMC11094809 DOI: 10.3389/fnut.2024.1400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The present study demonstrated the digestion behavior and fermentation characteristics of a sulfated polysaccharide from Sargassum fusiforme (SFSP) in the simulated digestion tract environment. The results showed that the molecular weight of two components in SFSP could not be changed by simulated digestion, and no free monosaccharide was produced. This indicates that most of SFSP can reach the colon as prototypes. During the fermentation with human intestinal flora in vitro, the higher-molecular-weight component of SFSP was utilized, the total sugar content decreased by 16%, the reducing sugar content increased, and the galactose content in monosaccharide composition decreased relatively. This indicates that SFSP can be selectively utilized by human intestinal flora. At the same time, SFSP also changed the structure of intestinal flora. Compared with the blank group, SFSP significantly increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes. At the genus level, the abundances of Bacteroides and Megamonas increased, while the abundances of Shigella, Klebsiella, and Collinsella decreased. Moreover, the concentrations of total short-chain fatty acids (SCFAs), acetic, propionic and n-butyric acids significantly increased compared to the blank group. SFSP could down-regulate the contents of trimethylamine, piperidone and secondary bile acid in fermentation broth. The contents of nicotinic acid, pantothenic acid and other organic acids were increased. Therefore, SFSP shows significant potential to regulate gut microbiota and promote human health.
Collapse
Affiliation(s)
| | | | | | | | - Shuang Song
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Pandey G, Chatterjee NS, Panda SK, Mohan CO, Kishore P, Kumar A, Uchoi D, Balasundari S, Anandan R, Mathew S, Ravishankar CN. Scope and challenges of seaweed utilization in food and nutraceutical industry in India: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:230-241. [PMID: 38196708 PMCID: PMC10772044 DOI: 10.1007/s13197-023-05676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Seaweeds are an excellent source of unique antioxidant phytochemicals, dietary fibres, essential amino acids, vitamins, polyunsaturated fatty acids and minerals. The presence of such structurally diverse and high value bioactive compounds has led to popularization of seaweed as functional food ingredient in global health supplement market. India, with a long coastline of 8100 km and exclusive economic zone of 2.17 million km2, is rich in diverse seaweed resources belonging to almost 700 species. However, food and nutraceutical application of Indian seaweed is highly constrained. Apart from Kappaphycus alvarezii, there is no systematic commercial cultivation of seaweed in India. The regulatory framework for use of seaweed as food is still developing and consumer acceptance is still low. However, there is a timely and renewed interest from different government agencies and research organisations to develop a thriving food and nutraceutical industry using India's vast seaweed resources. The review briefly describes the nutritional and functional food potential of the seaweed and goes on to discuss the scope of seaweed utilization in food and nutraceutical industry in India. Further, the review has identified the regulatory challenges and quality control requirements for use of seaweeds in food and nutraceuticals.
Collapse
Affiliation(s)
- Gayatri Pandey
- Department of Fish Processing Technology, Fisheries College and Research Institute, Thoothukudi, India
| | - Niladri Sekhar Chatterjee
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - Satyen Kumar Panda
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - C. O. Mohan
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - Pankaj Kishore
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - Anuj Kumar
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - Devananda Uchoi
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - S. Balasundari
- Dr. M.G.R Fisheries College & Research Institute, Thalainayeru, Nagapattinam India
| | - Rangasamy Anandan
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | - Suseela Mathew
- ICAR-Central Institute of Fisheries Technology, CIFT Junction, Matsyapuri, Cochin, Kerala P.O 682029 India
| | | |
Collapse
|
3
|
Fu Y, Jiao H, Sun J, Okoye CO, Zhang H, Li Y, Lu X, Wang Q, Liu J. Structure-activity relationships of bioactive polysaccharides extracted from macroalgae towards biomedical application: A review. Carbohydr Polym 2024; 324:121533. [PMID: 37985107 DOI: 10.1016/j.carbpol.2023.121533] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Macroalgae are valuable and structurally diverse sources of bioactive compounds among marine resources. The cell walls of macroalgae are rich in polysaccharides which exhibit a wide range of biological activities, such as anticoagulant, antioxidant, antiviral, anti-inflammatory, immunomodulatory, and antitumor activities. Macroalgae polysaccharides (MPs) have been recognized as one of the most promising candidates in the biomedical field. However, the structure-activity relationships of bioactive polysaccharides extracted from macroalgae are complex and influenced by various factors. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with MPs. In line with these challenges and knowledge gaps, this paper summarized the structural characteristics of marine MPs from different sources and relevant functional and bioactive properties and particularly highlighted those essential effects of the structure-bioactivity relationships presented in biomedical applications. This review not only focused on elucidating a particular action mechanism of MPs, but also intended to identify a novel or potential application of these valued compounds in the biomedical field in terms of their structural characteristics. In the last, the challenges and prospects of MPs in structure-bioactivity elucidation were further discussed and predicted, where they were emphasized on exploring modern biotechnology approaches potentially applied to expand their promising biomedical applications.
Collapse
Affiliation(s)
- Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Water, Energy, Environment and Agrifood, Cranfield University, Cranfield MK43 0AL, UK
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechu Lu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Structural Characteristics and Anticancer Activity of Water-Soluble Polysaccharides from Vietnamese Brown Algae Sargassum microcystum and S. serratum. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zvyagintseva TN, Usoltseva RV, Shevchenko NM, Surits VV, Imbs TI, Malyarenko OS, Besednova NN, Ivanushko LA, Ermakova SP. Structural diversity of fucoidans and their radioprotective effect. Carbohydr Polym 2021; 273:118551. [PMID: 34560963 DOI: 10.1016/j.carbpol.2021.118551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022]
Abstract
Fucoidans are biologically active sulfated polysaccharides of brown algae. They have a great structural diversity and a wide spectrum of biological activity. This review is intended to outline what is currently known about the structures of fucoidans and their radioprotective effect. We classified fucoidans according to their composition and structure, examined the structure of fucoidans of individual representatives of algae, summarized the available data on changes in the yields and compositions of fucoidans during algae development, and focused on information about underexplored radioprotective effect of these polysaccharides. Based on the presented in the review data, it is possible to select algae, which are the sources of fucoidans of desired structures and to determine the best time to harvest them. The use of high purified polysaccharides with established structures increase the value of studies of their biological effects and the determination of the dependence "structure - biological effect".
Collapse
Affiliation(s)
- Tatiana N Zvyagintseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation.
| | - Natalia M Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Valerii V Surits
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Tatiana I Imbs
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Natalia N Besednova
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, 1, Selskaya str., 690087 Vladivostok, Russian Federation
| | - Lyudmila A Ivanushko
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, 1, Selskaya str., 690087 Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| |
Collapse
|
7
|
Jiao X, He C, Zhou P, Chen F, Wang C. Pre-column derivatization and HPLC-ESI-MS/MS determination of fatty acids in Sargassum fusiforme algae. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Malyarenko OS, Malyarenko TV, Usoltseva RV, Surits VV, Kicha AA, Ivanchina NV, Ermakova SP. Combined Anticancer Effect of Sulfated Laminaran from the Brown Alga Alaria angusta and Polyhydroxysteroid Glycosides from the Starfish Protoreaster lincki on 3D Colorectal Carcinoma HCT 116 Cell Line. Mar Drugs 2021; 19:540. [PMID: 34677439 PMCID: PMC8538801 DOI: 10.3390/md19100540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer is one of the most frequent types of malignancy in the world. The search for new approaches of increasing the efficacy of cancer therapy is relevant. This work was aimed to study individual, combined anticancer effects, and molecular mechanism of action of sulfated laminaran AaLs of the brown alga Alaria angusta and protolinckiosides A (PL1), B (PL2), and linckoside L1 (L1) of the starfish Protoreaster lincki using a 3D cell culture model. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), soft agar, 3D spheroids invasion, and Western blotting assays were performed to determine the effect and mechanism of the action of investigated compounds or their combinations on proliferation, colony formation, and the invasion of 3D HCT 116 spheroids. AaLs, PL1, PL2, and L1 individually inhibited viability, colony growth, and the invasion of 3D HCT 116 spheroids in a variable degree with greater activity of linckoside L1. AaLs in combination with L1 exerted synergism of a combined anticancer effect through the inactivation of protein kinase B (AKT) kinase and, consequently, the induction of apoptosis via the regulation of proapoptotic/antiapoptotic proteins balance. The obtained data about the efficacy of the combined anticancer effect of a laminaran derivative of brown algae and polyhydroxysteroid glycosides of starfish open up prospects for the development of new therapeutic approaches for colorectal cancer treatment.
Collapse
Affiliation(s)
- Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia; (T.V.M.); (R.V.U.); (V.V.S.); (A.A.K.); (N.V.I.); (S.P.E.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Otero P, Carpena M, Garcia-Oliveira P, Echave J, Soria-Lopez A, Garcia-Perez P, Fraga-Corral M, Cao H, Nie S, Xiao J, Simal-Gandara J, Prieto MA. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit Rev Food Sci Nutr 2021; 63:1901-1929. [PMID: 34463176 DOI: 10.1080/10408398.2021.1969534] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, consumers are increasingly aware of the relationship between diet and health, showing a greater preference of products from natural origin. In the last decade, seaweeds have outlined as one of the natural sources with more potential to obtain bioactive carbohydrates. Numerous seaweed polysaccharides have aroused the interest of the scientific community, due to their biological activities and their high potential on biomedical, functional food and technological applications. To obtain polysaccharides from seaweeds, it is necessary to find methodologies that improve both yield and quality and that they are profitable. Nowadays, environmentally friendly extraction technologies are a viable alternative to conventional methods for obtaining these products, providing several advantages like reduced number of solvents, energy and time. On the other hand, chemical modification of their structure is a useful approach to improve their solubility and biological properties, and thus enhance the extent of their potential applications since some uses of polysaccharides are still limited. The present review aimed to compile current information about the most relevant seaweed polysaccharides, available extraction and modification methods, as well as a summary of their biological activities, to evaluate knowledge gaps and future trends for the industrial applications of these compounds.Key teaching pointsStructure and biological functions of main seaweed polysaccharides.Emerging extraction methods for sulfate polysaccharides.Chemical modification of seaweeds polysaccharides.Potential industrial applications of seaweed polysaccharides.Biological activities, knowledge gaps and future trends of seaweed polysaccharides.
Collapse
Affiliation(s)
- Paz Otero
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - J Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - A Soria-Lopez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Perez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Fraga-Corral
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Hui Cao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
10
|
Chen X, Ni L, Fu X, Wang L, Duan D, Huang L, Xu J, Gao X. Molecular Mechanism of Anti-Inflammatory Activities of a Novel Sulfated Galactofucan from Saccharina japonica. Mar Drugs 2021; 19:md19080430. [PMID: 34436269 PMCID: PMC8398701 DOI: 10.3390/md19080430] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Seaweed of Saccharina japonica is the most abundantly cultured brown seaweed in the world, and has been consumed in the food industry due to its nutrition and the unique properties of its polysaccharides. In this study, fucoidan (LJNF3), purified from S. japonica, was found to be a novel sulfated galactofucan, with the monosaccharide of only fucose and galactose in a ratio of 79.22:20.78, and with an 11.36% content of sulfate groups. NMR spectroscopy showed that LJNF3 consists of (1→3)-α-l-fucopyranosyl-4-SO3 residues and (1→6)-β-d-galactopyranose units. The molecular mechanism of the anti-inflammatory effect in RAW264.7 demonstrated that LJNF3 reduced the production of nitric oxide (NO), and down-regulated the expression of MAPK (including p38, ENK and JNK) and NF-κB (including p65 and IKKα/IKKβ) signaling pathways. In a zebrafish experiment assay, LJNF3 showed a significantly protective effect, by reducing the cell death rate, inhibiting NO to 59.43%, and decreasing about 40% of reactive oxygen species. This study indicated that LJNF3, which only consisted of fucose and galactose, had the potential to be developed in the biomedical, food and cosmetic industries.
Collapse
Affiliation(s)
- Xiaodan Chen
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Liying Ni
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
- Correspondence: ; Tel.: +86-532-8203-2182; Fax: +86-532-8203-2389
| | - Lei Wang
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Delin Duan
- State Key Lab of Seaweed Bioactive Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., 1th Daxueyuan Road, Qingdao 266400, China;
- CAS and Shandong Province Key Lab of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071, China
| | - Luqiang Huang
- Key Laboratory of Special Marine Bio-Resources Sustainable Utilization of Fujian Province, College of Life Science, Fujian Normal University, Fuzhou 350108, China;
| | - Jiachao Xu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| | - Xin Gao
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao 266003, China; (X.C.); (L.N.); (L.W.); (J.X.); (X.G.)
| |
Collapse
|
11
|
Şahin OI. Seaweed Polysaccharides: Structure, Extraction and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
12
|
Kong Q, Zhang R, You L, Ma Y, Liao L, Pedisić S. In vitro fermentation characteristics of polysaccharide from Sargassum fusiforme and its modulation effects on gut microbiota. Food Chem Toxicol 2021; 151:112145. [PMID: 33766612 DOI: 10.1016/j.fct.2021.112145] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
In this study, polysaccharides from Sargassum fusiforme (SFP) were obtained by cellulase assisted hot water extraction. The chemical composition, structural characteristics, and in vitro fermentation properties of SFP were investigated. Results showed that the contents of total carbohydrate, protein, uronic acid and sulfate in SFP were 83.25%, 1.42%, 12.80% and 7.81%, respectively. It mainly consisted of fucose glucose and galactose, with molecular weight of 255.83 kDa. UV spectrum, FTIR, SEM and AFM results showed that SFP was a typical sulfate polysaccharide with relative smooth surface and regular shape. After in vitro fermentation for 24 h, the pH value of fermentation medium declined significantly (p < 0.05), utilization of carbohydrate was 53.17%. The contents of total SCFAs increased by 10.77 times. Moreover, SFP fermentation could change obviously the microbiota composition. It significantly increased the abundance of Faecalibacterium (increased by 49.07% compared with the Blank24 group), Phascolarctobacterium (increased by 88.06%), Bifidobacterium (increased by 139.13%), Ruminococcaceae_UCG-014 (increased by 177.78%), and Lactobacillus (increased by 400.00%), decreased the abundance of Prevotella_9 (decreased by 34.54%) and Blautia (decreased by 40.79%) at genus level. These results showed that SFP could be utilized by microbiota in human feces, and may have the potential to improve intestinal health.
Collapse
Affiliation(s)
- Qiuhong Kong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong, 510610, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, Guangdong, China.
| | - Yongxuan Ma
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong, 510610, China; Guangzhou Liheng Clinical Nutrition Co. Ltd., Guangzhou, 510610, Guangdong, China
| | - Lan Liao
- Department of Food Science, College of Food Science and Technology, Foshan University, Foshan, Guangdong 528000, China
| | - Sandra Pedisić
- Faculty of Food Technology & Biotechnology, University of Zagreb, Prolaz Kasandrića 6, 23000 Zadar, Croatia
| |
Collapse
|
13
|
Cui Y, Zhu L, Li Y, Jiang S, Sun Q, Xie E, Chen H, Zhao Z, Qiao W, Xu J, Dong C. Structure of a laminarin-type β-(1→3)-glucan from brown algae Sargassum henslowianum and its potential on regulating gut microbiota. Carbohydr Polym 2021; 255:117389. [PMID: 33436218 DOI: 10.1016/j.carbpol.2020.117389] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
A homogeneous polysaccharide named SHNP with apparent molecular weight of 8.4 kDa was purified from brown algae Sargassum henslowianum using ethanol precipitation, ion-exchange chromatography, and gel-filtration column chromatography. Structural analyses reveal that SHNP is completely composed of glucose, and its backbone consists of β-D-(1→3)-Glcp with side chains comprising t-β-D-Glcp attached at the O-6 position. Thus, SHNP is a laminarin-type polysaccharide. In vitro fermentation test results showed that SHNP was digested by gut microbiota; the pH value in the fecal culture of SHNP was significantly decreased; and total short-chain fatty acids, acetic, propionic and n-butyric acids were significantly increased. Furthermore, SHNP regulated the intestinal microbiota composition by stimulating the growth of species belonging to Enterobacteriaceae while depleting Haemophilus parainfluenzae and Gemmiger formicilis. Taken together, these results indicate that SHNP has the potential for regulating gut microbiota, but its specific role in the regulation requires to be further investigated.
Collapse
Affiliation(s)
- Yongsheng Cui
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lixia Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518000, China
| | - Yixuan Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Siliang Jiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Qili Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Enyi Xie
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wei Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing 210028, China.
| | - Caixia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
14
|
Usoltseva RV, Belik AA, Kusaykin MI, Malyarenko OS, Zvyagintsevа TN, Ermakova SP. Laminarans and 1,3-β-D-glucanases. Int J Biol Macromol 2020; 163:1010-1025. [PMID: 32663561 DOI: 10.1016/j.ijbiomac.2020.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/12/2023]
Abstract
The laminarans are biologically active water-soluble polysaccharide (1,3;1,6-β-D-glucans) of brown algae. These polysaccharides are an attractive object for research due to its relatively simple structure, low toxicity, and various biological effects. 1,3-β-D-glucanases are an effective tool for studying the structure of laminarans, and can also be used to obtain new biologically active derivatives. This review is to outline what is currently known about laminarans and enzymes that catalyze of their transformation. We focused on information about sources, structure and properties of laminarans and 1,3-β-D-glucanases, methods of obtaining and structural elucidation of laminarans, and biological activity of laminarans and products of their enzymatic transformation. It has an increased focus on the immunomodulating and anticancer activity of laminarans and their derivatives.
Collapse
Affiliation(s)
- Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Aleksei A Belik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| | - Mikhail I Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Tatiana N Zvyagintsevа
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| |
Collapse
|
15
|
Structural analysis of a glucoglucuronan derived from laminarin and the mechanisms of its anti-lung cancer activity. Int J Biol Macromol 2020; 163:776-787. [DOI: 10.1016/j.ijbiomac.2020.07.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
|
16
|
Jin W, Fang Q, Jiang D, Li T, Wei B, Sun J, Zhang W, Zhang Z, Zhang F, Linhardt RJ, Wang H, Zhong W. Structural characteristics and anti-complement activities of polysaccharides from Sargassum hemiphyllum. Glycoconj J 2020; 37:553-563. [PMID: 32617856 DOI: 10.1007/s10719-020-09928-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Abstract
Three polysaccharides (SH-1, SH-2 and SH-3) were purified from a brown macroalgea, Sargassum hemiphyllum. The autohydrolysis products from each polysaccharide were separated to three fractions (S fractions as oligomers, L fractions as low molecular weight polysaccharides and H fractions as high molecular weight polysaccharides). Mass spectroscopy of S fractions (SH-1-S, SH-2-S and SH-3-S) showed that these three polymers all contained short stretches of sulfated fucose. The structures of L fractions (SH-1-L, SH-2-L and SH-3-L) were determined by nuclear magnetic resonance (NMR). SH-1-L was composed of two units, unit A (sulfated galactofucan) and unit B (sulfated xylo-glucuronomannan). Unit A contained a backbone of (1, 6-linked β-D-Gal) n1, (1, 3-linked 4-sulfated α-L-Fuc) n2, (1, 3-linked 2, 4-di-sulfated α-L-Fuc) n3, (1, 4-linked α-L-Fuc) n4 and (1, 3-linked β-D-Gal) n5, accompanied by some branches, such as sulfated fuco-oligomers, sulfated galacto-oligomers or sulfated galacto-fuco-oligomers. And unit B consisted of alternating 1, 4-linked β-D-glucuronic acid (GlcA) and 1, 2-linked α-D-mannose (Man) with the Man residues randomly sulfated at C6 or branched with xylose (Xyl) at C3. Both SH-2-L and SH-3-L were composed of unit A and their difference was attributed to the ratio of n1: n2: n3: n4: n5. Based on monosaccharide analysis, we hypothesize that both SH-1-H and SH-2-H contained unit A and unit B while SH-3-H had a structure similar to SH-3-L. An assessment of anti-complement activities showed that the sulfated galactofucan had higher activities than sulfated galacto-fuco-xylo-glucuronomannan. These results suggest that the sulfated galactofucans might be a good candidate for anti-complement drugs.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Di Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Tongtong Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881, Kingston, RI, USA
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 20878, Bethesda, MD, USA
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, 313000, Huzhou, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China.
| |
Collapse
|
17
|
Wei B, Zhong QW, Ke SZ, Zhou TS, Xu QL, Wang SJ, Chen JW, Zhang HW, Jin WH, Wang H. Sargassum fusiforme Polysaccharides Prevent High-Fat Diet-Induced Early Fasting Hypoglycemia and Regulate the Gut Microbiota Composition. Mar Drugs 2020; 18:E444. [PMID: 32867177 PMCID: PMC7551101 DOI: 10.3390/md18090444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
A low fasting blood glucose level is a common symptom in diabetes patients and can be induced by high-fat diet (HFD) feeding at an early stage, which may play important roles in the development of diabetes, but has received little attention. In this study, five polysaccharides were prepared from Sargassumfusiforme and their effects on HFD-induced fasting hypoglycemia and gut microbiota dysbiosis were investigated. The results indicated that C57BL/6J male mice fed an HFD for 4 weeks developed severe hypoglycemia and four Sargassumfusiforme polysaccharides (SFPs), consisting of Sf-2, Sf-3, Sf-3-1, and Sf-A, significantly prevented early fasting hypoglycemia without inducing hyperglycemia. Sf-1 and Sf-A could also significantly prevent HFD-induced weight gain. Sf-2, Sf-3, Sf-3-1, and Sf-A mainly attenuated the HFD-induced decrease in Bacteroidetes, and all five SFPs had a considerable influence on the relative abundance of Oscillospira, Mucispirillum, and Clostridiales. Correlation analysis revealed that the fasting blood glucose level was associated with the relative abundance of Mucispinllum and Oscillospira. Receiver operating characteristic analysis indicated that Mucispinllum and Oscillospira exhibited good discriminatory power (AUC = 0.745-0.833) in the prediction of fasting hypoglycemia. Our findings highlight the novel application of SFPs (especially Sf-A) in glucose homeostasis and the potential roles of Mucispinllum and Oscillospira in the biological activity of SFPs.
Collapse
Affiliation(s)
- Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (Q.-W.Z.); (S.-Z.K.); (T.-S.Z.); (Q.-L.X.); (S.-J.W.); (J.-W.C.); (H.-W.Z.)
| | - Qi-Wu Zhong
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (Q.-W.Z.); (S.-Z.K.); (T.-S.Z.); (Q.-L.X.); (S.-J.W.); (J.-W.C.); (H.-W.Z.)
| | - Song-Ze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (Q.-W.Z.); (S.-Z.K.); (T.-S.Z.); (Q.-L.X.); (S.-J.W.); (J.-W.C.); (H.-W.Z.)
| | - Tao-Shun Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (Q.-W.Z.); (S.-Z.K.); (T.-S.Z.); (Q.-L.X.); (S.-J.W.); (J.-W.C.); (H.-W.Z.)
| | - Qiao-Li Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (Q.-W.Z.); (S.-Z.K.); (T.-S.Z.); (Q.-L.X.); (S.-J.W.); (J.-W.C.); (H.-W.Z.)
| | - Si-Jia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (Q.-W.Z.); (S.-Z.K.); (T.-S.Z.); (Q.-L.X.); (S.-J.W.); (J.-W.C.); (H.-W.Z.)
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Jian-Wei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (Q.-W.Z.); (S.-Z.K.); (T.-S.Z.); (Q.-L.X.); (S.-J.W.); (J.-W.C.); (H.-W.Z.)
| | - Hua-Wei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (Q.-W.Z.); (S.-Z.K.); (T.-S.Z.); (Q.-L.X.); (S.-J.W.); (J.-W.C.); (H.-W.Z.)
| | - Wei-Hua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (Q.-W.Z.); (S.-Z.K.); (T.-S.Z.); (Q.-L.X.); (S.-J.W.); (J.-W.C.); (H.-W.Z.)
| |
Collapse
|
18
|
Ke S, Wei B, Qiu W, Zhou T, Wang S, Chen J, Chen J, Zhang H, Jin W, Wang H. Structural Characterization and α-Glucosidase Inhibitory and Antioxidant Activities of Fucoidans Extracted from Saccharina japonica. Chem Biodivers 2020; 17:e2000233. [PMID: 32386247 DOI: 10.1002/cbdv.202000233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/08/2020] [Indexed: 01/29/2023]
Abstract
Two sulfated fucoidan fractions (Lj3 and Lj5) were extracted from Saccharina japonica and then subjected to acid hydrolysis to obtain Lj3h and Lj5h. Lj3h and Lj5h were characterized using IR, methylation analysis, and mass spectrometry. It was found that Lj3h and Lj5h were homogeneous low molecular weight fucoidans. Specifically, Lj3h was composed of the main chain of 1,3-linked α-L-fucopyranose residues with sulfate at C-2 and/or C-4 and three different monosaccharides (galactose, glucose, mannose) branched at C-2 and/or C-4 of fucose residue. Lj5h contained backbones of alternating galactopyranose residues and fucopyranose residues attached via a 1→3 linkage (galactofucan) and 1→6 linked galactan. The sulfation pattern was mainly located at C2/C4 fucose or galactose residues and more branches occupied at C-4 of fucose residue and C-2, C-3 or/and C-6 of galactose residue. In vitro assay indicated that, among the four fucoidans tested, only Lj5 showed potent α-glucosidase inhibitory activity with IC50 of 153.27±22.89 μg/mL, and the two parent fucoidans, Lj3 and Lj5, showed better antioxidant activity than their derivatives. These findings highlight the structure and bioactivity diversity of Saccharina japonica-derived fucoidans.
Collapse
Affiliation(s)
- Songze Ke
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenhui Qiu
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Taoshun Zhou
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Sijia Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA, 90024, USA
| | - Jun Chen
- Industry Academia Research Center for Rainbowfish-Zhejiang University of Technology, Shanghai Hadal Biomedical Engineering Co., Ltd., Building 7, No. 218 Haiji 6 Rd., Shanghai, 201306, P. R. China
| | - Jianwei Chen
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huawei Zhang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
19
|
Alavi M, Tabarsa M, You S, Gavlighi HA. Structural characteristics, molecular properties and immunostimulatory effects of sulfated polysaccharide from freshwater Myriophyllum spicatum L. Int J Biol Macromol 2020; 153:951-961. [DOI: 10.1016/j.ijbiomac.2019.11.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
20
|
Jin W, Tang H, Zhang J, Wei B, Sun J, Zhang W, Zhang F, Wang H, Linhardt RJ, Zhong W. Structural analysis of a novel sulfated galacto-fuco-xylo-glucurono-mannan from Sargassum fusiforme and its anti-lung cancer activity. Int J Biol Macromol 2020; 149:450-458. [PMID: 32004605 DOI: 10.1016/j.ijbiomac.2020.01.275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Polysaccharide (HFSGF) was purified from Sargassum fusiforme. Autohydrolysis and gel column chromatography were performed to fractionate HFSGF into three components (HFSGF-S, HFSGF-L and HFSGF-H). Compositional analysis, mass spectrometry and nuclear magnetic resonance spectroscopy were used to elucidate the structural features of HFSGF. HFSGF-S was a mixture of sulfated galacto-fuco-oligomers, from the branches terminal ends; in HFSGF-L, the branches of HFSGF, was a sulfated galactofucan, containing a backbone of 1,3-linked α-L-fucan sulfated at C2/4 and/or C4 and interspersed with galactose (Gal); and in HFSGF-H, the backbone of HFSGF, was composed of alternating 1,2-linked α-D-mannose (Man) and 1,4-linked β-D-glucuronic acid (GlcA), branched with sulfated galactofucan or sulfated fucan, 1,3-linked α-L-fucan sulfated at C2/4 and/or C4 and partly interspersed with Gal. Some fucose (Fuc) residues were also partially branched with xylose (Xyl). The anti-lung cancer activities of HFSGF-L and HFSGF-H against human lung cancer A549 cells in vitro and A549 xenograft tumor growth in vivo were determined. HFSGF-H had higher activity in vitro (IC50 ~12 mg/mL for 24 h) and in vivo (tumor inhibition ~51%.) than HFSGF-L, indicating that HFSGF-H might be a leading compound for a potential new therapeutics for the treatment of lung cancer.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinmei Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20878, USA
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
21
|
Zhang R, Zhang X, Tang Y, Mao J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydr Polym 2020; 228:115381. [PMID: 31635744 DOI: 10.1016/j.carbpol.2019.115381] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 01/10/2023]
Abstract
Sargassum fusiforme polysaccharides, acidic water-soluble polysaccharides extract from Sargassum fusiforme, are mainly composed of alginic acid, fucoidan and laminaran. Alginic acid is carboxyl-containing polysaccharide formed by joining β-D-mannuronic acid and α-L-guluronic acid through β-(1→4)/α-(1→4) glycosidic bond. Fucoidan, a natural water-soluble sulfated heteropolysaccharide with fucose and sulfuric acid groups as the core structure, is mainly linked by L-fucose through α-(1→3) glycosidic bond and has the strongest biological activity. Laminaran is mainly composed of β-D-glucose through β-(1→3) glycosidic bond linkage. Sargassum fusiforme polysaccharides have a variety of pharmacological activities, including antioxidant, anti-tumor, promoting immunity, anti-aging, prompting bone growth, lowering blood glucose, anti-coagulation, anti-virus, anti-bacteria, anti-fatigue, promoting growth and development, and skin protection. These activities are closely related to the functions of fucoidan in Sargassum fusiforme polysaccharides, which fucoidan is able to strengthen immune system and antioxidation in human body. In this review, the composition, the isolation and purification, and the biological activities of Sargassum fusiforme polysaccharides are discussed and can bereference for further study.
Collapse
Affiliation(s)
- Rui Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xinxin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yingxue Tang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinlong Mao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
22
|
Mohan K, Ravichandran S, Muralisankar T, Uthayakumar V, Chandirasekar R, Seedevi P, Abirami RG, Rajan DK. Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1177-1193. [PMID: 30599257 DOI: 10.1016/j.fsi.2018.12.072] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 05/15/2023]
Abstract
The use of antibiotics in the feeds of cultivable aquatic animals has been generally practised to reduce infectious diseases as well as to improve the survival and growth. In recent years, many countries ban to aquatic animals due to the use of large amount of antibiotics and chemotherapies, thus alternative novel strategies are need to promote the growth of aquatic animals and control the pathogens. Dietary supplementation of marine-derived polysaccharides (MDPs) is one of the potential substitutes for antibiotics in aquatic animal feeds. Recently, the use of dietary MDPs in the aquaculture animals has been focused with much interest. In aquaculture, MDPs are used as prebiotic substance which is mostly accepted as a nutritional component for improving the growth performance and health conditions. Hence, present review is a comprehensive and an updated collection of available research reports on different MDPs (alginate, fucoidan, carrageenan, laminarin, ulvan, galactan, agar, chitin and chitosan), route of administration, dosage and applications for improving aqua feeds with emphasis on its effects on growth, biochemical indices, immune response, gut microbiota and disease resistance of aquaculture animals. This review describes the sustainability of global aquaculture production by providing a best alternative to harmful antibiotics, thereby meeting the emerging consumer demand for antibiotic-free aquatic food products.
Collapse
Affiliation(s)
- Kannan Mohan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India.
| | - Samuthirapandian Ravichandran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India
| | - Thirunavukkarasu Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | | | | | - Palaniappan Seedevi
- Department of Environmental Science, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Ramu Ganesan Abirami
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, 5529, Fiji
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India
| |
Collapse
|
23
|
Jin W, Wu W, Tang H, Wei B, Wang H, Sun J, Zhang W, Zhong W. Structure Analysis and Anti-Tumor and Anti-Angiogenic Activities of Sulfated Galactofucan Extracted from Sargassum thunbergii. Mar Drugs 2019; 17:E52. [PMID: 30641954 PMCID: PMC6356460 DOI: 10.3390/md17010052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/26/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022] Open
Abstract
Sulfated galactofucan (ST-2) was obtained from Sargassum thunbergii. It was then desulfated to obtain ST-2-DS, and autohydrolyzed and precipitated by ethanol to obtain the supernatant (ST-2-S) and precipitate (ST-2-C). ST-2-C was further fractionated by gel chromatography into two fractions, ST-2-H (high molecular weight) and ST-2-L (low molecular weight). Mass spectrometry (MS) of ST-2-DS was performed to elucidate the backbone of ST-2. It was shown that ST-2-DS contained a backbone of alternating galactopyranose residues (Gal)n (n ≤ 3) and fucopyranose residues (Fuc)n. In addition, ST-2-S was also determined by MS to elucidate the branches of ST-2. It was suggested that sulfated fuco-oligomers might be the branches of ST-2. Compared to the NMR spectra of ST-2-H, the spectra of ST-2-L was more recognizable. It was shown that ST-2-L contain a backbone of (Gal)n and (Fuc)n, sulfated mainly at C4 of Fuc, and interspersed with galactose (the linkages were likely to be 1→2 and 1→6). Therefore, ST-2 might contain a backbone of (Gal)n (n ≤ 3) and (Fuc)n. The sulfation pattern was mainly at C4 of fucopyranose and partially at C4 of galactopyranose, and the branches were mainly sulfated fuco-oligomers. Finally, the anti-tumor and anti-angiogenic activities of ST-2 and its derivates were determined. It was shown that the low molecular-weight sulfated galactofucan, with higher fucose content, had better anti-angiogenic and anti-tumor activities.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wanli Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20878, USA.
| | - Wenjing Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
24
|
Isolation and chemical characterization of a novel immunostimulating galactofucan from freshwater Azolla filiculoides. Int J Biol Macromol 2018; 118:2082-2091. [DOI: 10.1016/j.ijbiomac.2018.07.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
|
25
|
Borazjani NJ, Tabarsa M, You S, Rezaei M. Purification, molecular properties, structural characterization, and immunomodulatory activities of water soluble polysaccharides from Sargassum angustifolium. Int J Biol Macromol 2018; 109:793-802. [PMID: 29133093 DOI: 10.1016/j.ijbiomac.2017.11.059] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/25/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023]
Abstract
Sulfated polysaccharides isolated from Sargassum angustifolium and purified to determine their structural characteristics and biological activities. Crude polysaccharides and fractions (F1 and F2) were chiefly composed of neutral sugars (49.4-68.5%) and sulfates (12.5-23.0%) along with small amounts of uronic acids (1.3-13.6%) and proteins (4.1-4.7%). Polysaccharides were mainly constructed of different levels of fucose (23.9-69.9%) and galactose (22.5-29.8%) sugars. Subfractions with molecular weights ranging from 157.2 to 790.8×103g/mol were identified for isolated polysaccharides. Polysaccharides induced RAW264.7 macrophage cells to release noticeable amounts of nitric oxide and cytokines including IL-1β, TNF-α, IL-6, IL-10 and IL-12 through NF-κB and MAPKs signaling pathways. Sulfate esters of fraction F2 were necessary to its bioactivity and they were located on carbons 2, 4 and 6 of the major sugars. Fraction F2 was formed of (1→4)- and (1→3)-linked fucose residues branched at C-2 and C-4 as well as (1→6)-linked galactose residues branched at C-3.
Collapse
Affiliation(s)
- Niloofar Jokar Borazjani
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| |
Collapse
|
26
|
Jin W, Liu B, Li S, Chen J, Tang H, Jiang D, Zhang Q, Zhong W. The structural features of the sulfated heteropolysaccharide (ST-1) from Sargassum thunbergii and its neuroprotective activities. Int J Biol Macromol 2018; 108:307-313. [PMID: 29217183 DOI: 10.1016/j.ijbiomac.2017.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/22/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Polysaccharide (ST) was prepared from Sargassum thunbergii using hot water. Two fractions (ST-1 and ST-2) were prepared using anion exchange chromatography. One desulfated polysaccharide (ST-1-DS) was also prepared. Electrospray ionization mass spectrometry (ESI-MS) performed on ST-1-DS showed that the desulfated polysaccharides contained methyl glycosides of mono-sulfated and di-sulfated galacto-fucooligosaccharides. This result suggested that ST-1 might contain sulfated galactofucan, which consists of a backbone of alternating (Gal)n and (Fuc)n and sulfated randomly on Gal and mainly on C-2 in Fuc. In addition, ST-1 was degraded in 1M sulfuric acid. The solution was centrifuged, and the supernatant was concentrated and precipitated in ethanol to obtain the precipitate (ST-1-P). ST-1-P was then separated using gel chromatography and anion exchange chromatography to obtain the oligomers. ESI-MS spectra of oligomers indicated that ST-1 mostly contained sulfated glucuronomannan and fucoglucuronan. ESI-MS with collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) suggested that glucuronomannan contained alternating 2-linked Man and 4-linked GlcA, while fucoglucuronan contained 4-linked glucuronan with branched Fuc at C-3. Finally, the neuroprotective activities of ST, ST-1, ST-2 and MIX (a mixture of ST-1 and ST-2) were determined. ST showed the most neuroprotective activity, which indicated that ST might be a good candidate for curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Bing Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shuai Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jing Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Hong Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Di Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Quanbin Zhang
- Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
27
|
Xu SY, Huang X, Cheong KL. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Mar Drugs 2017; 15:md15120388. [PMID: 29236064 PMCID: PMC5742848 DOI: 10.3390/md15120388] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023] Open
Abstract
Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.
Collapse
Affiliation(s)
- Shu-Ying Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| | - Xuesong Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| |
Collapse
|
28
|
Jin W, Liu G, Zhong W, Sun C, Zhang Q. Polysaccharides from Sargassum thunbergii: Monthly variations and anti-complement and anti-tumour activities. Int J Biol Macromol 2017; 105:1526-1531. [PMID: 28528951 DOI: 10.1016/j.ijbiomac.2017.05.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 11/23/2022]
Abstract
Monthly variations of polysaccharides from Sargassum thunbergii and their anti-complement and anti-tumour activities were investigated. It was observed that an increase in fucose and total sugar contents occurred during the growth period (from early April to mid-June), accompanied by a decrease in molar ratios of other monosaccharides to fucose. The highest yields were obtained from early July to early September, which was in accordance with the significant increase in molar ratio of glucose to fucose and decrease in molar ratio of other monosaccharides to fucose. And the above results suggested that S. Thunbergii synthesized large amount of laminaran, the storage substance of brown algae, during the senescence period. However, sulfate contents were relatively stable in the life cycle of S. thunbergii. These results suggested that S. thunbergii synthesized complex sulfated heteropolysacchairdes during inactive period, while during other periods, it synthesized more sulfated galactofucan. All polysaccharides showed anti-complement activity, suggesting that the harvesting time did not influence the anti-complement activities. In the anti-tumour assay in vitro, the polysaccharides taken during the senescence period had much lower anti-tumour activity, suggesting that fucoidan, but not laminaran, determined the anti-tumour activities. Therefore, polysaccharides from S. thunbergii might have great potential in anti-complement and anti-tumour application.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Ge Liu
- Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chaomin Sun
- Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| | - Quanbin Zhang
- Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
29
|
Jin W, Zhang W, Liu G, Yao J, Shan T, Sun C, Zhang Q. The structure-activity relationship between polysaccharides from Sargassum thunbergii and anti-tumor activity. Int J Biol Macromol 2017; 105:686-692. [PMID: 28716753 DOI: 10.1016/j.ijbiomac.2017.07.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/31/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Polysaccharides derived from Sargassum thunbergii were prepared to investigate the structure-activity relationship between polysaccharides and anti-tumor activity in vitro. Many factors were examined. Overall, STW (polysaccharide extracted by hot water) had the best activity, followed by STJ (polysaccharide extracted by dilute alkali), and then STA (polysaccharide extracted by dilute acid). Location of algae had no effect at 500μg/mL and 1000μg/mL, while STW-QD (algae collected from Qingdao, China) had the best activity, followed by STW-WZ (algae collected from Wenzhou, China) and STW-LJ (algae collected from Lianjiang, China) and then STW-DL (algae collected from Dalian, China) and STW-RC (algae collected from Rongcheng, China) at 250μg/mL. Moreover, molecular weight had no effect at 1000μg/mL, while higher molecular weights were associated with better activities at 250μg/mL and 500μg/mL. Sulfate content had no effect at 1000μg/mL, while anti-tumor activities decreased accompanying with the changes of sulfate content. Uronic acid content was an important factor influencing activity. The fractions of STW showed little anti-tumor activity; however, the mixture of the fractions of STW showed approximately 60% inhibition. Overall, these findings suggested that the anti-tumor activity of polysaccharides required multilateral cooperation and that some of the effective components were lost.
Collapse
Affiliation(s)
- Weihua Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenjing Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; School of Basic Medical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Jianting Yao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Tifeng Shan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
30
|
Jin W, Zhang W, Liang H, Zhang Q. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity. Mar Drugs 2015; 14:3. [PMID: 26712768 PMCID: PMC4728500 DOI: 10.3390/md14010003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 11/17/2022] Open
Abstract
In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation.
Collapse
Affiliation(s)
- Weihua Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Wenjing Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongze Liang
- The School of Materials Sciences and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
31
|
Wu J, Lv Y, Liu X, Zhao X, Jiao G, Tai W, Wang P, Zhao X, Cai C, Yu G. Structural Study of Sulfated Fuco-Oligosaccharide Branched Glucuronomannan fromKjellmaniella crassifoliaby ESI-CID-MS/MS. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1050593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Kadam SU, O'Donnell CP, Rai DK, Hossain MB, Burgess CM, Walsh D, Tiwari BK. Laminarin from Irish Brown Seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound Assisted Extraction, Characterization and Bioactivity. Mar Drugs 2015; 13:4270-80. [PMID: 26184235 PMCID: PMC4515616 DOI: 10.3390/md13074270] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022] Open
Abstract
Ultrasound assisted extraction (UAE), purification, characterization and antioxidant activity of laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminarina hyperborea were investigated. UAE was carried out using 60% ultrasonic power amplitude and 0.1 M hydrochloric acid for 15 min. Separately, solid-liquid extraction was carried in an orbital shaker using 0.1 M hydrochloric acid at 70 °C for 2.5 h. UAE with hydrochloric acid resulted in the highest concentration of laminarin, 5.82% and 6.24% on dry weight basis from A. nodosum and L. hyperborea, respectively. Purification of all extracts was carried out using molecular weight cut off dialysis at 10 kDa. Characterization of the laminarin fraction was carried out using matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Antioxidant activity of A. nodosum and L. hyperborea extracts had 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition levels of 93.23% and 87.57%, respectively. Moreover, these extracts have shown inihibition of bacterial growth of Staphylcoccus aureus, Listeria monocytogenes, Escherichia coli and Salmonella typhimurium.
Collapse
Affiliation(s)
- Shekhar U Kadam
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Colm P O'Donnell
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dilip K Rai
- Food Biosciences, Teagasc Food Research Centre, Dublin 15, Ireland.
| | | | | | - Des Walsh
- Food Safety, Teagasc Food Research Centre, Dublin 15, Ireland.
| | - Brijesh K Tiwari
- Food Biosciences, Teagasc Food Research Centre, Dublin 15, Ireland.
| |
Collapse
|
33
|
Zhang W, Jin W, Sun D, Zhao L, Wang J, Duan D, Zhang Q. Structural analysis and anti-complement activity of polysaccharides from Kjellmaniella crsaaifolia. Mar Drugs 2015; 13:1360-74. [PMID: 25786064 PMCID: PMC4377988 DOI: 10.3390/md13031360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 12/04/2022] Open
Abstract
Two polysaccharides, named KCA and KCW, were extracted from Kjellmaniella crassifolia using dilute hydrochloric acid and water, respectively. Composition analysis showed that these polysaccharides predominantly consisted of fucose, with galactose, mannose and glucuronic acid as minor components. After degradation and partial desulfation, electrospray ionization mass spectrometry (ESI-MS) was performed, which showed that the polysaccharides consisted of sulfated fucooligosaccharides, sulfated galactofucooligosaccharides and methyl glycosides of mono-sulfated/multi-sulfated fucooligosaccharides. The structures of the oligomeric fragments were further characterized by electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS2 and ESI-CID-MS3). Moreover, the activity of KCA and KCW against the hemolytic activity of both the classical and alternative complement pathways was determined. The activity of KCA was found to be similar to KCW, suggesting that the method of extraction did not influence the activity. In addition, the degraded polysaccharides (DKCA and DKCW) displayed lower activity levels than the crude polysaccharides (KCA and KCW), indicating that molecular weight had an effect on activity. Moreover, the desulfated fractions (ds-DKCA and ds-DKCW) showed less or no activity, which confirmed that sulfate was important for activity. In conclusion, polysaccharides from K. crassifolia may be good candidates for the treatment of diseases involving the complement pathway.
Collapse
Affiliation(s)
- Wenjing Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weihua Jin
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Delin Sun
- Heze Juxinyuan Food Co. Ltd., Heze 274400, China.
| | - Luyu Zhao
- Heze Juxinyuan Food Co. Ltd., Heze 274400, China.
| | - Jing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226006, China.
| | - Delin Duan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Quanbin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
34
|
Kadam SU, Tiwari BK, O'Donnell CP. Extraction, structure and biofunctional activities of laminarin from brown algae. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12692] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shekhar U. Kadam
- School of Biosystems Engineering; University College Dublin; Belfield Dublin 4 Ireland
| | - Brijesh K. Tiwari
- Department of Food Biosciences; Teagasc Food Research Centre; Ashtown Dublin 15 Ireland
| | - Colm P. O'Donnell
- School of Biosystems Engineering; University College Dublin; Belfield Dublin 4 Ireland
| |
Collapse
|