1
|
Tahghighi A, Azerang P. Click chemistry beyond metal-catalyzed cycloaddition as a remarkable tool for green chemical synthesis of antifungal medications. Chem Biol Drug Des 2024; 103:e14555. [PMID: 38862260 DOI: 10.1111/cbdd.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Click chemistry is widely used for the efficient synthesis of 1,4-disubstituted-1,2,3-triazole, a well-known scaffold with widespread biological activity in the pharmaceutical sciences. In recent years, this magic ring has attracted the attention of scientists for its potential in designing and synthesizing new antifungal agents. Despite scientific and medical advances, fungal infections still account for more than 1.5 million deaths globally per year, especially in people with compromised immune function. This increasing trend is definitely related to a raise in the incidence of fungal infections and prevalence of antifungal drug resistance. In this condition, an urgent need for new alternative antifungals is undeniable. By focusing on the main aspects of reaction conditions in click chemistry, this review was conducted to classify antifungal 1,4-disubstituted-1,2,3-triazole hybrids based on their chemical structures and introduce the most effective triazole antifungal derivatives. It was notable that in all reactions studied, Cu(I) catalysts generated in situ by the reduction in Cu(II) salts or used copper(I) salts directly, as well as mixed solvents of t-BuOH/H2O and DMF/H2O had most application in the synthesis of triazole ring. The most effective antifungal activity was also observed in fluconazole analogs containing 1,2,3-triazole moiety and benzo-fused five/six-membered heterocyclic conjugates with a 1,2,3-triazole ring, even with better activity than fluconazole. The findings of structure-activity relationship and molecular docking of antifungal derivatives synthesized with copper-catalyzed azide-alkyne cycloaddition (CuAAC) could offer medicinal chemistry scientists valuable data on designing and synthesizing novel triazole antifungals with more potent biological activities in their future research.
Collapse
Affiliation(s)
- Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Azerang
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Yuan Y, Tan W, Zhang J, Li Q, Guo Z. Water-soluble amino functionalized chitosan: Preparation, characterization, antioxidant and antibacterial activities. Int J Biol Macromol 2022; 217:969-978. [PMID: 35907462 DOI: 10.1016/j.ijbiomac.2022.07.187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/23/2022] [Indexed: 01/09/2023]
Abstract
Amino functionalized chitosan has attracted much attention because of the fascinated bioactivities. In our study, a novel water-soluble amino functionalized chitosan bearing free amino group at C-2 and quaternary ammonium moiety contained free amino group at C-6 (5c) was prepared by a four-step method. The structural characterization was identified by FTIR and 1H NMR spectroscopy. The water-solubility and antioxidant activities against hydroxyl, DPPH radicals and reducing power were estimated. The results displayed that amino functionalized chitosan 5c exhibited improved water-solubility and antioxidant ability, especially its DPPH scavenging rate reached about 90 % at the minimum test concentration of 0.10 mg/mL. Besides, antibacterial tests showed that amino functional chitosan 5c had best antibacterial activities, which indicated that amino group made main contribution to the enhanced bioactivities. In short, the novel chitosan 5c possessed enhanced water-solubility and excellent antioxidant and antibacterial activities, which could provide novel strategy for the development of antioxidant and antibacterial agents in biomedicine and food fields.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
A Recent Overview of 1,2,3-Triazole-Containing Hybrids as Novel Antifungal Agents: Focusing on Synthesis, Mechanism of Action, and Structure-Activity Relationship (SAR). J CHEM-NY 2022. [DOI: 10.1155/2022/7884316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A pharmacophore system has been found as 1,2,3-triazole, a five-membered heterocycle ring with nitrogen heteroatoms. These heterocyclic compounds can be produced using azide-alkyne cycloaddition processes catalyzed by ruthenium or copper. The bioactive compounds demonstrated antitubercular, antibacterial, anti-inflammatory, anticancer, antioxidant, antiviral, and antidiabetic properties. This heterocycle molecule, in particular, with one or more 1,2,3-triazole cores has been found to have the most powerful antifungal effects. The goal of this review is to highlight recent developments in the synthesis and structure-activity relationship (SAR) investigation of this prospective fungicidal chemical. Also there have been explained drugs and mechanism of action of a triazole compound with antifungal activity. This review will be useful in a variety of fields, including medicinal chemistry, organic chemistry, mycology, and pharmacology.
Collapse
|
4
|
Gamal A, Ibrahim AG, Eliwa EM, El-Zomrawy AH, El-Bahy SM. Synthesis and characterization of a novel benzothiazole functionalized chitosan and its use for effective adsorption of Cu(II). Int J Biol Macromol 2021; 183:1283-1292. [PMID: 34000306 DOI: 10.1016/j.ijbiomac.2021.05.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
Contamination of water with the copper(II) ions leads to serious diseases such as liver damage and cancer. This deadly effect prompted us to target the synthesis of a novel functionalized chitosan (Cs-BT) to be used as an adsorbent for removing the copper(II) ions from the aqueous solution. The functionalization was done by introducing benzothiazole moiety into the chitosan (Cs) chain and confirmed by the full disappearance of the NH2 band in the FT-IR spectrum of the adsorbent. The TGA-DTG analysis revealed that the functionalization reduced the thermal stability of the adsorbent (Cs-BT) as compared with pure chitosan. The adsorption was evidenced by SEM and EDX analysis. The adsorption study demonstrated that the optimal adsorption conditions were 120 min contact time, pH = 6, and initial Cu(II) concentration 200 mg/L. At these conditions, the Cs-BT achieved a maximum copper adsorption capacity of 1439.7 mg/g. Consequently, Cs-BT could be a promising and efficient Cu adsorbent in water treatment. Study the adsorption kinetics and isotherms manifested that the pseudo-first-order was better than pseudo-second-order and Temkin isotherm was better than Langmuir, Freundlich, and Dubinin-Radushkevich for explaining the adsorption process. The calculated thermodynamic parameters implied the spontaneity and the endothermic nature of the adsorption process.
Collapse
Affiliation(s)
- Ahmed Gamal
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Galal Ibrahim
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Essam M Eliwa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
5
|
Rathinam S, Hjálmarsdóttir MÁ, Thygesen MB, Másson M. Chitotriazolan (poly(β(1-4)-2-(1H-1,2,3-triazol-1-yl)-2-deoxy-d-glucose)) derivatives: Synthesis, characterization, and evaluation of antibacterial activity. Carbohydr Polym 2021; 267:118162. [PMID: 34119136 DOI: 10.1016/j.carbpol.2021.118162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 02/05/2023]
Abstract
Here we describe the first synthesis of a new type of polysaccharides derived from chitosan. In these structures, the 2-amino group on the pyranose ring was quantitively replaced by an aromatic 1,2,3-triazole moiety. The 2-amino group of chitosan and di-TBDMS chitosan was converted into an azide by diazo transfer reaction. The chitosan azide and TBDMS-chitosan azide were poorly soluble but could be fully converted to triazoles by "copper-catalysed Huisgen cycloaddition" in DMF or DMSO. The reaction could be done with different alkynes but derivatives lacking cationic or anionic groups were poorly soluble or insoluble in tested aqueous and organic solvents. Derivatives with N,N-dimethylaminomethyl, N,N,N-trimethylammoniummethyl, sulfonmethyl, and phosphomethyl groups linked to the 4-position of the triazole moiety were soluble in water at neutral or basic conditions and could be analyzed by 1H, 13C APT, COSY, and HSQC NMR. The quaternized cationic chitotriazolan's had high activity against S. aureus and E. coli, whereas the anionic chitotriazolan's lacked activity.
Collapse
Affiliation(s)
- Sankar Rathinam
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
| | - Martha Á Hjálmarsdóttir
- Department of Biomedical Science, Faculty of Medicine, School of Health Sciences, University of Iceland, Hringbraut 31, IS-101 Reykjavík, Iceland
| | - Mikkel B Thygesen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland.
| |
Collapse
|
6
|
Bhattacharjee B, Ghosh S, Mukherjee R, Haldar J. Quaternary Lipophilic Chitosan and Gelatin Cross-Linked Antibacterial Hydrogel Effectively Kills Multidrug-Resistant Bacteria with Minimal Toxicity toward Mammalian Cells. Biomacromolecules 2020; 22:557-571. [PMID: 33325682 DOI: 10.1021/acs.biomac.0c01420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Wounds or tissue openings in the skin are susceptible to bacterial attack, which can deteriorate and slow down the healing process. In this regard, antimicrobial gels are valuable as they mitigate the infection spread and assist in the healing. Despite the success, commercially available release-active antimicrobial gels suffer from narrow-spectrum activity, resistance induction, reservoir exhaustion, and in some cases may be associated with toxicity. To circumvent these limitations, herein, we have developed new quaternary lipophilic chitosan derivatives (QuaChi) synthesized by modifying the primary alcohol of the sugar moieties without altering the free amino groups of glucosamines. Compared to protonated chitosan, the synthesized derivatives exhibited improved water solubility and enhanced antibacterial activity against multidrug-resistant Gram-positive and Gram-negative bacteria including clinical isolates. The enhanced antibacterial activity was evident from the bacterial membrane depolarization leading to rapid inactivation of ∼105-106 bacterial cells within 2 h. The applicability of the chitosan derivatives was further demonstrated by developing antibacterial hydrogels by cross-linking the free amino groups of QuaChi with biocompatible gelatin through amide linkages. The hydrogel showed ∼5-7 log reduction of various multidrug-resistant bacteria including the stationary-phase cells within 6 h. Scanning electron microscopy revealed the loss of integrity of the bacterial structure when treated with the hydrogel, whereas mammalian cells (human embryonic kidney-293 (HEK-293)), when exposed to the hydrogel, appeared to be healthy with retained morphology. Collectively, these findings suggest that the developed hydrogel formulation can find potential applications to combat notorious drug-resistant bacterial infections in the healthcare settings.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Sreyan Ghosh
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, Karnataka, India
| |
Collapse
|
7
|
Manimohan M, Paulpandiyan R, Pugalmani S, Sithique MA. Biologically active Co (II), Cu (II), Zn (II) centered water soluble novel isoniazid grafted O-carboxymethyl chitosan Schiff base ligand metal complexes: Synthesis, spectral characterisation and DNA nuclease activity. Int J Biol Macromol 2020; 163:801-816. [PMID: 32652152 DOI: 10.1016/j.ijbiomac.2020.06.278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
In this study, the new N, N, O tridentate donor water soluble isoniazid based biopolymer Schiff base ligand and their Co (II), Cu (II), Zn (II) metal complexes were prepared. The compounds were designed for potential biological application such as antibacterial, antifungal, anti-inflammatory, total antioxidant, antidiabetic and DNA binding studies. The synthesized compounds were illuminated in different light sources of various spectra were used to explore the functional groups of Biopolymer derivatives. Thermal degradation, thermal stability and percentage of mass loss for the prepared compounds were investigated through thermo gravimetric and differential thermal (TGA-DTA) analyses. Crystalline structure of synthesized biopolymer derivatives were explored by X-ray diffraction (XRD) studies, the crystallinity of chitosan is gradually decreased after the Schiff base and complex formation. Surface morphology and structures of the prepared compounds were examined using SEM analysis. The magnetic moment and magnetism of the metal complexes were studied using Vibrating-sample magnetometer (VSM). Antidiabetic studies of Biopolymer Schiff base and metal complexes were carried out by α-amylose inhibitory method. DNA nuclease activities of synthesized metal complexes were investigated by Ultra-Violet (UV) and viscometry methods. The Cu (II) complexes showed better DNA binding results than Co (II) and Zn (II) complexes.
Collapse
Affiliation(s)
- Murugaiyan Manimohan
- PG & Research Department of Chemistry, Islamiah College (Autonomous), Vaniyambadi, Tirupattur District, Tamil Nadu 635 752, India
| | | | | | - Mohamed Aboobucker Sithique
- PG & Research Department of Chemistry, Islamiah College (Autonomous), Vaniyambadi, Tirupattur District, Tamil Nadu 635 752, India.
| |
Collapse
|
8
|
Malekshah RE, Shakeri F, Aallaei M, Hemati M, Khaleghian A. Biological evaluation, proposed molecular mechanism through docking and molecular dynamic simulation of derivatives of chitosan. Int J Biol Macromol 2020; 166:948-966. [PMID: 33152362 DOI: 10.1016/j.ijbiomac.2020.10.252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
We synthesized Schiff base and its complexes derivatives of chitosan (CS) in order to develop antibiotic compounds based on functionalized-chitosan against gram-positive and gram-negative bacteria. IR, UV-Vis, AFM, SEM, Melting point, X-ray diffraction (XRD), elemental analysis, and 1H NMR techniques were employed to characterize the chemical structures and properties of these compounds. XRD, UV-Vis, and 1H NMR techniques confirmed the formation of Schiff base and its functionalized-chitosan to metals. Subsequently, our antibacterial studies revealed that antibacterial activities of [Zn(Schiff base)(CS)] against S. aureus bacteria increased compared to those of their compounds. In addition, hemolysis test of CS-Schiff base-Cu(II) demonstrated better hemolytic activity than vitamin C, CS-Schiff base, CS-Schiff base-Zn(II), and CS-Schiff base-Ni(II). In a computational strategy, we carried out the optimization of compounds with molecular mechanics (MM+), Semi-emprical (AM1), Abinitio (STO-3G), AMBER, BIO+(CHARMM), and OPLS. Frontier orbital density distributions (HOMO and LUMO), and the optimized computational UV of the compounds were assessed. The optimized computational UV-Vis was similar to the experimental UV-Vis. We applied the docking methods to predict the DNA binding affinity, Staphylococcus aureus enoyl-acyl carrier protein reductase (ENRs), and Staphylococcus aureus enoyl-acyl carrier protein reductase (saFabI). Ultimately, the obtained data herein suggested that Schiff base is more selective toward ENRs and saFabI compared to chitosan, its complexes, and metronidazole.
Collapse
Affiliation(s)
- Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran.
| | - Farideh Shakeri
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammadreza Aallaei
- Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Maral Hemati
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Khaleghian
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
9
|
Qin Y, Li P, Guo Z. Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydr Polym 2020; 236:116002. [PMID: 32172836 DOI: 10.1016/j.carbpol.2020.116002] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
Abstract
The increasing resistance of pathogen fungi poses a global public concern. There are several limitations in current antifungals, including few available fungicides, severe toxicity of some fungicides, and drug resistance. Therefore, there is an urgent need to develop new antifungals with novel targets. Chitosan has been recognized as a potential antifungal substance due to its good biocompatibility, biodegradability, non-toxicity, and availability in abundance, but its applications are hampered by the low charge density results in low solubility at physiological pH. It is believed that enhancing the positive charge density of chitosan may be the most effective approach to improve both its solubility and antifungal activity. Hence, this review mainly focuses on the structural optimization strategy of cationic chitosan and the potential antifungal applications. This review also assesses and comments on the challenges, shortcomings, and prospect of cationic chitosan derivatives as antifungal therapy.
Collapse
Affiliation(s)
- Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
10
|
Evaluation of quaternary ammonium chitosan derivatives differing in the length of alkyl side-chain: Synthesis and antifungal activity. Int J Biol Macromol 2019; 129:1127-1132. [DOI: 10.1016/j.ijbiomac.2018.09.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 01/31/2023]
|
11
|
Khaldi Z, Besse C, Nzambe Ta Keki JK, Ouk TS, Gloaguen V, Zerrouki R. Synthesis, characterization, and antibacterial activities of a new lignocellulosic material carrying aryl triazole moiety. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zineb Khaldi
- Laboratoire de Chimie des Substances Naturelles; Université de Limoges; Limoges France
| | - Claire Besse
- Laboratoire de Chimie des Substances Naturelles; Université de Limoges; Limoges France
| | | | - Tan-Sothéa Ouk
- Laboratoire de Chimie des Substances Naturelles; Université de Limoges; Limoges France
| | - Vincent Gloaguen
- Laboratoire de Chimie des Substances Naturelles; Université de Limoges; Limoges France
| | - Rachida Zerrouki
- Laboratoire de Chimie des Substances Naturelles; Université de Limoges; Limoges France
- Centre de Recherche sur les Matériaux Lignocellulosiques; Université du Québec À Trois-Rivières; Trois-Rivières Canada
| |
Collapse
|
12
|
Wei L, Li Q, Chen Y, Zhang J, Mi Y, Dong F, Lei C, Guo Z. Enhanced antioxidant and antifungal activity of chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts. Carbohydr Polym 2018; 206:493-503. [PMID: 30553350 DOI: 10.1016/j.carbpol.2018.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
In this paper, a series of 6-O-imidazole-based quaternary ammonium chitosan derivatives via 6-O-chloroacetyl chitosan (CAClC) were successfully designed and synthesized. Detailed structural characterization was carried out by means of FT-IR and 1H NMR spectroscopy, and elemental analysis. Furthermore, the antioxidant property against hydroxyl radicals, superoxide radicals, and DPPH radicals was evaluated in vitro. 2-(N,N,N-trimethyl)-6-O-(2-aminobenzimidazole)acetyl chitosan chloride (2NPhMC) and 2-(N,N,N-trimethyl)-6-O-(1-butylimidazole)acetyl chitosan chloride (NBMC) showed more than 90% scavenging indices at 1.6 mg/mL. Besides, the antifungal activity against Botrytis cinerea and Gibberella zeae was estimated using in vitro MIC and hypha measurements. Most of the quaternized chitosan derivatives especially with the long length alkyl chain and primary amino group showed an inhibitory index of > 85% at 1.0 mg/mL against Botrytis cinerea. Besides, the cytotoxicity of chitosan and all the quaternized chitosan derivatives was evaluated in vitro on HaCaT cells and all the quaternized chitosan derivatives bearing 6-O-imidazole exhibited low cytotoxicity. These results suggested that chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts may be used as good biomaterials.
Collapse
Affiliation(s)
- Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yuan Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Chunqing Lei
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Wei L, Chen Y, Tan W, Li Q, Gu G, Dong F, Guo Z. Synthesis, Characterization, and Antifungal Activity of Pyridine-Based Triple Quaternized Chitosan Derivatives. Molecules 2018; 23:molecules23102604. [PMID: 30314307 PMCID: PMC6222670 DOI: 10.3390/molecules23102604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, a series of triple quaternized chitosan derivatives, including 6-O-[(2-hydroxy-3-trimethylammonium)propyl]-2-N-(1-pyridylmethyl-2-ylmethyl)-N,N-dimethyl chitosan chloride (7), 6-O-[(2-hydroxy-3-trimethylammonium)propyl]-2-N-(1-pyridylmethyl-3-yl- methyl)-N,N-dimethyl chitosan chloride (8), and 6-O-[(2-hydroxy-3-trimethylammonium)propyl]- 2-N-(1-pyridylmethyl-4-ylmethyl)-N,N-dimethyl chitosan chloride (9) were successfully designed and synthesized via reacting epoxypropyl trimethylammonium chloride with the N-pyridinium double quaternized chitosan derivatives. Detailed structural characterization was carried out using FT-IR and 1H-NMR spectroscopy, and elemental analysis. Besides, the activity of the triple quaternized chitosan derivatives against three common plant pathogenic fungi, Watermelon fusarium, Fusarium oxysporum, and Phomopsis asparagi, was investigated in vitro. The results indicated that the triple quaternized chitosan derivatives had enhanced antifungal activity when compared to double quaternized chitosan derivatives and chitosan, especially at 1.0 mg/mL, which confirmed the theory that the higher density of positive charge contributed to the antifungal activity. Moreover, 8 with an almost 99% inhibitory index showed the better antifungal activity against Watermelon fusarium. Moreover, the cytotoxicity of the products was also evaluated in vitro on 3T3-L1 cells and all the triple quaternized chitosan derivatives exhibited low cytotoxicity. These results suggested that triple quaternized chitosan derivatives may be used as good antifungal biomaterials.
Collapse
Affiliation(s)
- Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard, Malvern, PA 19355, USA.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Synthesis, Characterization, and Anti-Phytopathogen Evaluation of 6-Oxychitosan Derivatives Containing N-Quaternized Moieties in Its Backbone. INT J POLYM SCI 2018. [DOI: 10.1155/2018/3970142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure modification of chitosan has great application potential. 6-Oxychitosan was prepared by specially oxidizing the C6-OH of chitosan, then 6-oxychitosan was reacted with three kinds of aldehydes to prepare N-quaternized 6-oxychitosan derivatives in this paper. The derivatives were characterized by FT-IR, NMR, and elemental analysis. The antimicrobial activity of these derivatives was tested against two common plant-threatening fungi and three plant disease bacteria. The results showed that N-quaternized 6-oxychitosan derivatives had good water-solubility and excellent antimicrobial activity. Moreover, derivative 3 which connected 8-hydroxyquinolines had the highest antimicrobial activity than the other derivatives. The inhibitory indices of derivative 3 against V. albo-atrum and P. hibernalis are 89.1% and 72.8% at 0.4 mg/ml. The MICs of 3 against X. oryzae, P. syringae, and E. rhapontici were 625, 625, and 156 mg/l, respectively. All the results indicate that derivative 3 has the potential of becoming an alternative to harmful agricultural chemicals.
Collapse
|
15
|
Synthesis, characterization, and the antifungal activity of chitosan derivatives containing urea groups. Int J Biol Macromol 2018; 109:1061-1067. [DOI: 10.1016/j.ijbiomac.2017.11.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 11/14/2017] [Indexed: 01/28/2023]
|
16
|
Li Q, Sun X, Gu G, Guo Z. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity. Mar Drugs 2018; 16:md16040107. [PMID: 29597269 PMCID: PMC5923394 DOI: 10.3390/md16040107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 12/12/2022] Open
Abstract
Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| | - Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- Graduate School of Chinese Academy of Sciences, Beijing 100039, China.
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard Malvern, PA 19355, USA.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| |
Collapse
|
17
|
Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers (Basel) 2018; 10:E342. [PMID: 30966377 PMCID: PMC6414943 DOI: 10.3390/polym10030342] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.
Collapse
Affiliation(s)
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico.
| | - Daniel Fernández-Quiroz
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | | | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
18
|
Abdelwahab N, Morsy E. Synthesis and characterization of methyl pyrazolone functionalized magnetic chitosan composite for visible light photocatalytic degradation of methylene blue. Int J Biol Macromol 2018; 108:1035-1044. [DOI: 10.1016/j.ijbiomac.2017.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/25/2017] [Accepted: 11/05/2017] [Indexed: 11/28/2022]
|
19
|
Fan Z, Qin Y, Liu S, Xing R, Yu H, Chen X, Li K, Li P. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydr Polym 2018; 190:1-11. [PMID: 29628225 DOI: 10.1016/j.carbpol.2018.02.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
Abstract
Botrytis cinerea, Phytophthora capsici Leonian, and Fusarium solani are important plant pathogenic fungi which can cause great crop losses worldwide, but their control methods are limited. It is necessary to develop efficient and green fungicides from abundant marine resources. Chitosan is a non-toxic, biodegradable, biocompatible marine polysaccharide which has prospective applications in agriculture. In this paper, to increase the antifungal activity of chitosan for application, novel water-soluble functional chitosan derivatives were synthesized by grafting polyaminoethyl and diethoxyphosphoryl groups in accordance with a strategy of improving protonation potential. The derivatives were characterized by FTIR, NMR, XRD, SEM, Gaussian 09 and elemental analysis. The antifungal activities against the three fungi and the cytotoxicity were estimated in vitro. The results showed that the derivatives had better antifungal activities and water solubility than chitosan, and had good biocompatibility. They confirmed that these chitosan derivatives can be developed as antifungal agents for plant protection purposes.
Collapse
Affiliation(s)
- Zhaoqian Fan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
20
|
Duchiron SW, Pollet E, Givry S, Avérous L. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters. Molecules 2018; 23:E290. [PMID: 29385763 PMCID: PMC6017777 DOI: 10.3390/molecules23020290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 01/27/2023] Open
Abstract
ε-caprolactone (CL) has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine) as (co-)initiators and immobilized lipase B of Candida antarctica (CALB) as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL) homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-)initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.
Collapse
Affiliation(s)
- Stéphane W Duchiron
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France.
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France.
| | - Sébastien Givry
- J. SOUFFLET S. A., Centre de Recherche et d'Innovation Soufflet-Division Biotechnologies, Quai du Général Sarail, 10402 Nogent sur Seine CEDEX 2, France.
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg CEDEX 2, France.
| |
Collapse
|
21
|
|
22
|
Design, synthesis of novel chitosan derivatives bearing quaternary phosphonium salts and evaluation of antifungal activity. Int J Biol Macromol 2017; 102:704-711. [DOI: 10.1016/j.ijbiomac.2017.04.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 01/01/2023]
|
23
|
Wei L, Li Q, Tan W, Dong F, Luan F, Guo Z. Synthesis, Characterization, and the Antioxidant Activity of Double Quaternized Chitosan Derivatives. Molecules 2017; 22:molecules22030501. [PMID: 28327537 PMCID: PMC6155333 DOI: 10.3390/molecules22030501] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 12/01/2022] Open
Abstract
With the specialty of improving the water solubility of chitosan, quaternary ammonium salts have broadened the application of this polysaccharide in food, medicine and pesticides. To identify the effect of quaternary ammonium salts’ quantity, single quaternized chitosan N-phenmethyl-N,N-dimethyl chitosan (PDCS), double quaternized chitosan N-(1-pyridylmethyl-2-ylmethyl)-N,N-dimethyl chitosan (MP2MDCS), N-(1-pyridylmethyl-3-ylmethyl)-N,N-dimethyl chitosan (MP3MDCS), and N-(1-pyridylmethyl-4-ylmethyl)-N,N-dimethyl chitosan (MP4MDCS) were designed and synthesized successfully through chemical modification of chitosan. Besides, three kinds of antioxidant activities, including hydroxyl radicals, superoxide radicals, and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals were tested in vitro. As shown in this paper, the scavenging ability was ranking in order of MP3MDC > MP4MDCS > MP2MDCS > PDCS > chitosan at 1.6 mg/mL in all assays. All double quaternary ammonium salts were better than chitosan or the single quaternary ammonium salt. In addition, MP3MDCS could scavenge hydroxyl radicals totally at 1.6 mg/mL. MP2MDCS and MP4MDCS with more than 90% scavenging indices both had great scavenging ability on hydroxyl radicals or DPPH radicals. Furthermore, these data demonstrated that the increasing number of the positive charge would improve the antioxidant property of chitosan derivatives, and the N-pyridinium position would influence the scavenging radical ability.
Collapse
Affiliation(s)
- Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Fang Luan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Synthesis, characterization, and antifungal property of starch derivatives modified with quaternary phosphonium salts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1048-1056. [PMID: 28482468 DOI: 10.1016/j.msec.2017.03.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/05/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Four novel starch derivatives modified with quaternary phosphonium salts were designed and successfully synthesized, including trimethylphosphonium acetyl starch chloride, tributylphosphonium acetyl starch chloride, tricyclohexylphosphonium acetyl starch chloride, triphenylphosphonium acetyl starch chloride, and characterized by FTIR, UV, 1H NMR, 13C NMR, and 31P NMR spectra. Their antifungal activities against four kinds of phytopathogens were evaluated using the radial growth assay and minimum inhibitory concentration procedure. The fungicidal assessment revealed that the synthesized starch derivatives had superior antifungal activity compared with starch. Especially, the inhibitory indices of triphenylphosphonium acetyl starch chloride against these four kinds of plant pathogens were higher than 70% at 1.0mg/mL. The results indicated that quaternary phosphonium groups should be high-efficiency antifungal function groups, and meanwhile longer alkyl chain lengths or the stronger electron-withdrawing groups were responsible for enhanced antifungal versatility and efficacy. The cytotoxicity of starch and starch derivatives bearing quaternary phosphonium salts was evaluated in vitro on HEK-293T cells. As novel quaternary phosphonium functionalized starch derivatives could be prepared efficiently and exhibited superduper antifungal activity, this synthetic strategy might provide an effective way and notion to prepare novel antifungal biomaterials.
Collapse
|
25
|
Novel Amino-Pyridine Functionalized Chitosan Quaternary Ammonium Derivatives: Design, Synthesis, and Antioxidant Activity. Molecules 2017; 22:molecules22010156. [PMID: 28106807 PMCID: PMC6155944 DOI: 10.3390/molecules22010156] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/17/2022] Open
Abstract
Chemical modification of chitosan is increasingly studied for its potential of providing new applications of chitosan. Here, a group of novel chitosan quaternary ammonium derivatives containing pyridine or amino-pyridine were designed and successfully synthesized through chemical modification of chitosan. Pyridine and amino-pyridine were used as functional groups to improve the antifungal activity of chitosan derivatives. The chitosan derivatives' antioxidant activity against hydroxyl-radical and 1,1-Diphenyl-2-picrylhydrazyl (DPPH)-radical was tested in vitro. The results showed that chitosan derivatives had better water solubility and stronger antioxidant activity compared with chitosan in all assays. Especially, compounds 3C and 3E (with 3-amino pyridine and 2,3-diamino pyridine as substitute respectively) exhibited stronger hydroxyl-radical and DPPH-radical scavenging ability than other synthesized compounds. These data demonstrated that the synergistic effect of the amino group and pyridine would improve the antioxidant activity of chitosan derivatives, and the position of the amino group on pyridine could influence the antioxidant property of chitosan derivatives.
Collapse
|
26
|
Tan W, Li Q, Dong F, Wei L, Guo Z. Synthesis, characterization, and antifungal property of chitosan ammonium salts with halogens. Int J Biol Macromol 2016; 92:293-298. [DOI: 10.1016/j.ijbiomac.2016.07.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 01/22/2023]
|
27
|
Li Q, Tan W, Zhang C, Gu G, Guo Z. Synthesis of water soluble chitosan derivatives with halogeno-1,2,3-triazole and their antifungal activity. Int J Biol Macromol 2016; 91:623-9. [DOI: 10.1016/j.ijbiomac.2016.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
|
28
|
Tan W, Li Q, Gao Z, Qiu S, Dong F, Guo Z. Design, synthesis of novel starch derivative bearing 1,2,3-triazolium and pyridinium and evaluation of its antifungal activity. Carbohydr Polym 2016; 157:236-243. [PMID: 27987923 DOI: 10.1016/j.carbpol.2016.09.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 02/04/2023]
Abstract
Based on cuprous-catalyzed azide-alkyne cycloaddition (CuAAC), starch derivative bearing 1,2,3-triazole and pyridine (II) was prepared and subsequently followed by alkylation with iodomethane to synthesize starch derivative bearing 1,2,3-triazolium and pyridinium (III). The antifungal activities of starch derivatives against Colletotrichum lagenarium, Watermelon fusarium, and Phomopsis asparagi, were then assayed by hypha measurement in vitro. Apparently, starch derivatives showed enhanced antifungal activity against three fungi at the tested concentrations compared with starch. Especially, the best inhibitory index of starch derivative (III) against Colletotrichum lagenarium attained 97% above at 1.0mg/mL. Meanwhile, starch derivative (III) had stronger antifungal activity than starch derivative (II), which was reasonable to propose that the alkylation of 1,2,3-triazole and pyridine was significant for enhanced antifungal activity. As this novel starch derivative bearing 1,2,3-triazolium and pyridinium could be prepared efficiently and exhibited superduper antifungal activity, this material might provide an effective way and notion to prepare novel antifungal agents.
Collapse
Affiliation(s)
- Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhenpeng Gao
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shuai Qiu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|