1
|
Guo Q, Liu Y, Zhang X, Xu Y, Liu P, Zhang C. Enhanced NO x-assisted soot combustion by cobalt doping to weaken mullite Mn-O bonds for lattice oxygen activation. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136474. [PMID: 39571370 DOI: 10.1016/j.jhazmat.2024.136474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 01/26/2025]
Abstract
Catalytic combustion is widely regarded as the most efficient technique for removing soot particulates from diesel engine exhaust, with its efficiency largely dependent on the performance of catalysts. In this study, a series of YMn1-xCoxO5-ζ catalysts were synthesized using a hydrothermal method to investigate their catalytic properties in soot oxidation. Among these catalysts, YMCo-0.2 exhibited the highest catalytic activity, achieving 90 % soot conversion at 392 °C and demonstrating robust tolerance in the presence of water vapor and SO2. Structural characterization revealed that Co doping did not alter the fundamental crystal structure of YMn2O5 mullite. Through some characterization comprehensive analysis, and DFT calculations further supported the experimental findings, indicate that Co substitution significantly increased the lattice oxygen mobility and surface active oxygen content. Compared to the surface lattice oxygens at other positions, the weakening of the Mn-O bond results in the lattice oxygens in the Co-O-Mn4+ sites in the catalysts exhibiting higher reactivity. Additionally, the catalyst displayed strong NO and O2 adsorption and activation capabilities, indicating its potential for efficient NOx-assisted soot combustion. This study provides insights for designing and optimizing mullite catalysts for soot combustion.
Collapse
Affiliation(s)
- Qilong Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yaodi Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Xinran Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yupu Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Changsen Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
2
|
Tabakova T. State of the Art and Challenges in Complete Benzene Oxidation: A Review. Molecules 2024; 29:5484. [PMID: 39598873 PMCID: PMC11597454 DOI: 10.3390/molecules29225484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Increased levels and detrimental effects of volatile organic compounds (VOCs) on air quality and human health have become an important issue in the environmental field. Benzene is classified as one of the most hazardous air pollutants among non-halogenated aromatic hydrocarbons with toxic, carcinogenic, and mutagenic effects. Various technologies have been applied to decrease harmful emissions from various sources such as petrochemistry, steel manufacturing, organic chemical, paint, adhesive, and pharmaceutical production, vehicle exhausts, etc. Catalytic oxidation to CO2 and water is an attractive approach to VOC removal due to high efficiency, low energy consumption, and the absence of secondary pollution. However, catalytic oxidation of the benzene molecule is a great challenge because of the extraordinary stability of its six-membered ring structure. Developing highly efficient catalysts is of primary importance for effective elimination of benzene at low temperatures. This review aims to summarize and discuss some recent advances in catalyst composition and preparation strategies. Advantages and disadvantages of using noble metal-based catalysts and transition metal oxide-based catalysts are addressed. Effects of some crucial factors such as catalyst support nature, metal particle size, electronic state of active metal, redox properties, reactivity of lattice oxygen and surface adsorbed oxygen on benzene removal are explored. Thorough elucidation of reaction mechanisms in benzene oxidation is a prerequisite to develop efficient catalysts. Benzene oxidation mechanisms are analyzed based on in situ catalyst characterization, reaction kinetics, and theoretical simulation calculations. Considering the role of oxygen vacancies in improving catalytic performance, attention is given to oxygen defect engineering. Catalyst deactivation due to coexistence of water vapor and other pollutants, e.g., sulfur compounds, is discussed. Future research directions for rational design of catalysts for complete benzene oxidation are provided.
Collapse
Affiliation(s)
- Tatyana Tabakova
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Guo H, Guo T, Zhao M, Zhang Y, Shangguan W, Liao Y. Improving benzene catalytic oxidation on Ag/Co 3O 4 by regulating the chemical states of Co and Ag. J Environ Sci (China) 2024; 143:201-212. [PMID: 38644017 DOI: 10.1016/j.jes.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 04/23/2024]
Abstract
Silver (9 wt.%) was loaded on Co3O4-nanofiber using reduction and impregnation methods, respectively. Due to the stronger electronegativity of silver, the ratios of surface Co3+/Co2+ on Ag/Co3O4 were higher than on Co3O4, which further led to more adsorbed oxygen species as a result of the charge compensation. Moreover, the introducing of silver also obviously improved the reducibility of Co3O4. Hence the Ag/Co3O4 showed better catalytic performance than Co3O4 in benzene oxidation. Compared with the Ag/Co3O4 synthesized via impregnation method, the one prepared using reduction method (named as AgCo-R) exhibited higher contents of surface Co3+ and adsorbed oxygen species, stronger reducibility, as well as more active surface lattice oxygen species. Consequently, AgCo-R showed lowest T90 value of 183°C, admirable catalytic stability, largest normalized reaction rate of 1.36 × 10-4 mol/(h·m2) (150°C), and lowest apparent activation energy (Ea) of 63.2 kJ/mol. The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol, o-benzoquinone, small molecular intermediates, and finally to CO2 and water on the surface of AgCo-R. At last, potential reaction pathways including five detailed steps were proposed.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Xinjiang 830017, China; Xinjiang Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, Xinjiang University, Xinjiang 830017, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China
| | - Tao Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Xinjiang 830017, China; Xinjiang Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, Xinjiang University, Xinjiang 830017, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China
| | - Mengqi Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Xinjiang 830017, China; Xinjiang Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, Xinjiang University, Xinjiang 830017, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China
| | - Yaxin Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Xinjiang 830017, China; Xinjiang Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, Xinjiang University, Xinjiang 830017, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China.
| | - Wenfeng Shangguan
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinnian Liao
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Guangdong 519041, China.
| |
Collapse
|
4
|
Zhang H, Song L, Nie Z, Tian J, Yang J, Liu P, Chen L, Fu M, Huang H, Ye D. Investigation of catalytic methane oxidation over Ag/Co 2MO x (M = Co, Ni, Cu) catalysts with varying interfacial electron transfer. J Colloid Interface Sci 2024; 668:412-425. [PMID: 38688180 DOI: 10.1016/j.jcis.2024.04.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Atom-doped Co3O4 catalysts loaded with Ag were examined as cost-effective catalysts for methane oxidation. The synthesized Ag/Co2NiOx catalysts exhibited distinctive surface characteristics in contrast with Ag/Co3O4 and Ag/Co2CuOx catalysts prepared using a similar method. Characterization results unveiled that Ag/Co2NiOx featured a higher presence of active surface oxygen species, lattice defects, a larger surface area, and enhanced reducibility. A methane oxidation catalytic performance followed the sequence: Ag/Co2NiOx > Ag/Co3O4 > Ag/Co2CuOx. The investigation delved into methane degradation pathways on the surfaces of three catalysts, examining their behavior under both aerobic and anaerobic atmospheres through in-situ DRIFTS analysis. Furthermore, introducing Ag showed a marked positive effect on Co-Ni mixed oxide, inducing electron transfer and a more active electron system, whereas it exhibited an inverse impact within the surface of Co-Cu mixed oxide. This work provides innovative perspectives on the development of forthcoming environmental catalysts.
Collapse
Affiliation(s)
- Hang Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Linghe Song
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zimeng Nie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Juntai Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jie Yang
- Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Ltd., Foshan 528300, China; Midea Group Co.,Ltd., Foshan 528300, China
| | - Peng Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Limin Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
5
|
Chen X, Wang X, Jia Z, Yang C, Liu Z, Wei Y, Wang M, Liang M. Weakened Mn-O bond in Mn-Ce catalysts through K doping induced oxygen activation for boosting benzene oxidation at low temperatures. J Colloid Interface Sci 2024; 666:88-100. [PMID: 38583213 DOI: 10.1016/j.jcis.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
K-doped Mn-Ce solid solution catalysts were synthesized using a combination of coprecipitation and hydrothermal methods, demonstrating excellent performance in benzene oxidation. The catalyst K1Ce5Mn5 exhibited comparable activity to noble metal catalysts, achieving a 90 % benzene conversion at approximately 194 ℃. Durable tests under dry and moist conditions revealed that the catalyst could maintain its activity for 50 h at 218 ℃ and 236 ℃, respectively. Characterization results indicated that the catalyst's enhanced activity resulted from the weakened Mn-O bonding caused by the introduction of K+, facilitating the activation of oxygen and its involvement in the reaction. CeOx, the main crystalline phase of Mn-Ce solid solutions, provided abundant oxygen vacancies for capturing and activating oxygen molecules for the weakened Mn-O structures. This conclusion was further supported by partial density of state analysis from density functional theory computations, revealing that the introduction of K+ weakened the orbital hybridization of Mn3d and O2p. Finally, in situ diffuse reflectance infrared Fourier-transform spectroscopy (in situ DRIFTS) studies on Ce5Mn5 and K1Ce5Mn5 catalysts suggested that the introduction of K+ promoted the conversion of adsorbed benzene. Furthermore, intermediate products were transformed more rapidly for K1Ce5Mn5 compared to Ce5Mn5.
Collapse
Affiliation(s)
- Xi Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Jinzhong 030600, China; Shanxi Institute of Eco-Environmental Planning and Technology, Taiyuan 030009, China
| | - Xiaoyan Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Ziliang Jia
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Chao Yang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Jinzhong 030600, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Yuexing Wei
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Mengxue Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Meisheng Liang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, Jinzhong 030600, China.
| |
Collapse
|
6
|
Zuo X, Zhang L, Gao G, Xin C, Fu B, Liu S, Ding H. Catalytic Oxidation of Benzene over Atomic Active Site AgNi/BCN Catalysts at Room Temperature. Molecules 2024; 29:1463. [PMID: 38611743 PMCID: PMC11013234 DOI: 10.3390/molecules29071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.
Collapse
Affiliation(s)
- Xin Zuo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
- North China Municipal Engineering Design & Research Institute Co., Ltd., Tianjin 300074, China
| | - Lisheng Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Ge Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Changchun Xin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Bingfeng Fu
- Shenzhen Yuanqi Environmental Energy Technology Co., Ltd., Futian District, Shenzhen 518045, China;
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| |
Collapse
|
7
|
Malmir M, Heravi MM, Shafiei Toran Poshti E. Facile Cu-MOF-derived Co 3O 4 mesoporous-structure as a cooperative catalyst for the reduction nitroarenes and dyes. Sci Rep 2024; 14:6846. [PMID: 38514684 PMCID: PMC10958026 DOI: 10.1038/s41598-024-52708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024] Open
Abstract
The present study describes the environmentally friendly and cost-effective synthesis of magnetic, mesoporous structure-Co3O4 nanoparticles (m-Co3O4) utilizing almond peel as a biotemplate. This straightforward method yields a material with high surface area, as confirmed by various characterization techniques. Subsequently, the utilization of m-Co3O4, graphene oxide (GO), Cu(II)acetate (Cu), and asparagine enabled the successful synthesis of a novel magnetic MOF, namely GO-Cu-ASP-m-Co3O4 MOF. This catalyst revealed remarkable stability that could be easily recovered using a magnet for consecutive use without any significant decline in activity for eight cycles in nitro compound reduction and organic dye degradation reactions. Consequently, GO-Cu-ASP-m-Co3O4 MOF holds immense potential as a catalyst for reduction reactions, particularly in the production of valuable amines with high industrial value, as well as for the elimination of toxic-water pollutants such as organic dyes.
Collapse
Affiliation(s)
- Masoume Malmir
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran.
| | - Majid M Heravi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran.
| | - Elham Shafiei Toran Poshti
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, PO Box: 1993891176, Tehran, Iran
| |
Collapse
|
8
|
Hu W, Guo T, Ma K, Li X, Luo W, Wu M, Guo H, Zhang Y, Shangguan W. Promoted catalytic performance of Ag-Mn bimetal catalysts synthesized through reduction route. J Environ Sci (China) 2024; 137:358-369. [PMID: 37980022 DOI: 10.1016/j.jes.2022.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2023]
Abstract
VOCs can exert great harm to both human and environment, and catalytic oxidation is believed to be an effective technique to eliminate these pollutants. In this paper, Ag-Mn bimetal catalysts with 10 wt.% of silver were synthesized using doping, impregnation, and reduction methods respectively, and then they were applied to the catalytic oxidation of benzene. Through series of characterizations it showed that the loading of silver using reduction method significantly resulted in improved physico-chemical properties of manganese oxides, such as larger surface area and pore volume, higher proportion of surface Mn3+ and Mn4+, stronger reducibility and more active of surface oxygen species, which were all beneficial to its catalytic activity. As a result, the Ag-Mn catalysts synthesized by reduction method showed a lower T90 value (equals to the temperature at which 90% of initial benzene was removed) of 203°C. Besides, both the used and fresh Ag-Mn catalysts synthesized by reduction method showed preferable stability in this research.
Collapse
Affiliation(s)
- Wenkai Hu
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Tao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Kaiyao Ma
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Xu Li
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Wangting Luo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Mingzhi Wu
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Hao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China; Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaxin Zhang
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China.
| | - Wenfeng Shangguan
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Shi H, Yang P, Huang L, Wu Y, Yu D, Wu H, Zhang Y, Xiao P. Single-atom Pt-CeO2/Co3O4 catalyst with ultra-low Pt loading and high performance for toluene removal. J Colloid Interface Sci 2023; 641:972-980. [PMID: 36989823 DOI: 10.1016/j.jcis.2023.03.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
The design and manufacture of high activity and thermal stability catalysts with minimal precious metal loading is essential for deep degradation of volatile organic compounds (VOCs). In this paper, a novel single-atom Pt-CeO2/Co3O4 catalyst with ultra-low Pt loading capacity (0.06 wt%, denoted as 0.06Pt-SA) was fabricated via one-step co-precipitation method. The 0.06Pt-SA exhibited excellent toluene degradation activity of T90 = 169 °C, matched with the nanoparticle Pt-supported CeO2/Co3O4 catalyst with more than six times higher Pt loading (0.41 wt%, denoted as 0.41Pt-NP). Moreover, the ultra-long durability (toluene conversion remains 99% after 120 h stability test) and excellent toluene degradation ability in a wide space speed range of 0.06Pt-SA were superior to that of 0.41Pt-NP catalyst. The excellent performance was derived from the strong metal-support interaction (SMSI) between the single atomic Pt and the carrier, which induced more Pt0 and Ce3+ for oxygen activation and more Co3+ for toluene removal. The in situdiffuse reflectance infrared spectroscopy (DRIFTS) experiments confirmed that the conversion of intermediates was accelerated in the reaction process, thereby promoting the toluene degradation. Our results should inspire the exploitation of noble single-atomic modification strategy for developing the low cost and high performance VOCs catalyst.
Collapse
|
10
|
Tang X, Zhang Y, Lei Y, Liu Y, Yi H, Gao F. Promotional catalytic activity and reaction mechanism of Ag-modified Ce 0.6Zr 0.4O 2 catalyst for catalytic oxidation of ammonia. J Environ Sci (China) 2023; 124:491-504. [PMID: 36182157 DOI: 10.1016/j.jes.2021.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/16/2023]
Abstract
Ce1-xZrxO2 composite oxides (molar, x = 0-1.0, interval of 0.2) were prepared by a cetyltrimethylammonium bromide-assisted precipitation method. The enhancement of silver-species modification and catalytic mechanism of adsorption-transformation-desorption process were investigated over the Ag-impregnated catalysts for low-temperature selective catalytic oxidation of ammonia (NH3-SCO). The optimal 5 wt.% Ag/Ce0.6Zr0.4O2 catalyst presented good NH3-SCO performance with >90% NH3 conversion at temperature (T) ≥ 250°C and 89% N2 selectivity. Despite the irregular block shape and underdeveloped specific surface area (∼60 m2/g), the naked and Ag-modified Ce0.6Zr0.4O2 solid solution still obtained highly dispersed distribution of surface elements analyzed by scanning electron microscope-energy dispersive spectrometer (SEM-EDS) (mapping), N2 adsorption-desorption test and X-ray diffraction (XRD). H2 temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) results indicated that Ag-modification enhanced the mobility and activation of oxygen-species leading to a promotion on CeO2 reducibility and synergistic Ag0/Ag+ and Ce4+/Ce3+ redox cycles. Besides, Ag+/Ag2O clusters could facilitate the formation of surface oxygen vacancies that was beneficial to the adsorption and activation of ammonia. NH3-temperature programmed desorption (NH3-TPD) showed more adsorption-desorption capacity to ammonia were provided by physical, weak- and medium-strong acid sites. Diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments revealed the activation of ammonia might be the control step of NH3-SCO procedure, during which NH3 dehydrogenation derived from NHx-species and also internal selective catalytic reduction (i-SCR) reactions were proposed.
Collapse
Affiliation(s)
- Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yuanyuan Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yaru Lei
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuanyuan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
11
|
Zhang D, Li M, Xu R, Xie J, Zhang Y, Qian S, Qiao Y, Peng F, Liu X. Complementary and Synergistic Design of Bi-Layered Double Hydroxides Modified Magnesium Alloy toward Multifunctional Orthopedic Implants. Adv Healthc Mater 2023; 12:e2201367. [PMID: 36325652 DOI: 10.1002/adhm.202201367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Magnesium (Mg)-based alloys have been regarded as promising implants for future clinic orthopedics, however, how to endow them with good anti-corrosion and biofunctions still remains a great challenge, especially for complicated bone diseases. Herein, three transition metals (M = Mn, Fe, and Co)-containing layered double hydroxides (LDH) (LDH-Mn, LDH-Fe, and LDH-Co) with similar M content are prepared on Mg alloy via a novel two-step method, then systematic characterizations and comparisons are conducted in detail. Results showed that LDH-Mn exhibited the best corrosion resistance, LDH-Mn and LDH-Co possessed excellent photothermal and enzymatic activities, LDH-Fe revealed better cytocompatibility and antibacterial properties, while LDH-Co demonstrated high cytotoxicity. Based on these results, an optimized bilayer LDH coating enriched with Fe and Mn (LDH-MnFe) from top to bottom have been designed for further in vitro and in vivo analysis. The top Fe-riched layer provided biocompatibility and antibacterial properties, while the bottom Mn-riced layer provided excellent anti-corrosion, photothermal and enzymatic effects. In addition, the released Mg, Fe, and Mn ions have a positive influence on angiogenesis and osteogenesis. Thus, the LDH-MnFe showed complementary and synergistic effects on anti-corrosion and multibiofunctions (antibacteria, antitumor, and osteogenesis). The present work offers a novel multifunctional Mg-based implant for treating bone diseases.
Collapse
Affiliation(s)
- Dongdong Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Ru Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Juning Xie
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Yu Zhang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,Cixi Center of Biomaterials Surface Engineering, Ningbo, 315300, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,Cixi Center of Biomaterials Surface Engineering, Ningbo, 315300, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
12
|
A Review of Noble Metal Catalysts for Catalytic Removal of VOCs. Catalysts 2022. [DOI: 10.3390/catal12121543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Volatile organic compounds (VOCs) are important precursors for the formation of secondary pollutants, such as fine particulate matter (PM) and ozone (O3), which will lead to severe atmospheric environmental problems to restrict the sustainable development of the social economy. Catalytic oxidation is a safe, eco-friendly, and simple method for eliminating VOCs, which can be converted into CO2 and H2O without the generation of other harmful substances. The fabrication and development of catalysts are very crucial to enhance the catalytic oxidation efficiency of the removal of VOCs. The noble metal catalyst is one of the commonly used catalysts for the catalytic oxidation of VOCs because of the high reaction activity, good stability, poisoning-resistant ability, and easy regeneration. In this review, the research progress of noble metal (Pt, Pd, Au, Ag, and Ir) catalysts for the removal of VOCs in recent years was summarized with the discussion of the influence factors in the preparation process on the catalytic performance. The reaction mechanisms of the removal of VOCs over the corresponding noble metal catalysts were also briefly discussed.
Collapse
|
13
|
Shi Y, Wan J, Kong F, Wang Y, Zhou R. Influence of Pt dispersibility and chemical states on catalytic performance of Pt/CeO2-TiO2 catalysts for VOCs low-temperature removal. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wang Y, Li X, Xiao J, Chen D, Li N, Xu Q, Li H, He J, Lu J. Metal-organic frameworks-derived manganese trioxide with uniformly loaded ultrasmall platinum nanoparticles boosting benzene combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156345. [PMID: 35654198 DOI: 10.1016/j.scitotenv.2022.156345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Four morphologies of metal-organic frameworks derived Mn2O3 were prepared by calcination of metal-organic frameworks self-assembled from metal ions and organic ligands and loaded with platinum. The catalyst showed excellent catalytic performance for benzene (T90% = 131 °C). ESR (electron spin resonance) test showed that due to the strong electron metal support interaction between Pt and Mn2O3, there were a large number of oxygen vacancies on the surface of the catalyst as active sites to promote the oxidation of benzene. The presence of a large number of Lewis acid sites on the catalyst surface was confirmed by Py-IP (Pyridine adsorption infrared spectroscopy) test. The intermediates of benzene catalytic oxidation are ethyl acetate, carboxylic acids and aldehydes, which can be verified by in-situ DRIFTS. In summary, the catalysts synthesized in this work provide a novel perspective for combining metal-organic frameworks-derived oxides and precious metals for the catalytic oxidation of volatile organic compounds.
Collapse
Affiliation(s)
- Yaru Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xunxun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Xiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
15
|
Li S, Zhang J, Cao Y, Yang Y, Xie T, Lin Y. Visible light assisted heterogeneous photo-Fenton-like degradation of Rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer and degradation mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Co-assembly of microfibrous-structured Ag@SiO2-Co3O4/Al-fiber catalysts assisted with water-soluble silane coupling agent for catalytic combustion of trace ethylene. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
|
18
|
Gulati A, Malik J, Mandeep, Kakkar R. Peanut shell biotemplate to fabricate porous magnetic Co3O4 coral reef and its catalytic properties for p-nitrophenol reduction and oxidative dye degradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|