1
|
Nevarez-Lopez CA, Muhlia-Almazan A, Gamero-Mora E, Sanchez-Paz A, Sastre-Velasquez CD, Lopez-Martinez J. The branched mitochondrial respiratory chain from the jellyfish Stomolophus sp2 as a probable adaptive response to environmental changes. J Bioenerg Biomembr 2024; 56:101-115. [PMID: 38231368 DOI: 10.1007/s10863-023-09999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
During their long evolutionary history, jellyfish have faced changes in multiple environmental factors, to which they may selectively fix adaptations, allowing some species to survive and inhabit diverse environments. Previous findings have confirmed the jellyfish's ability to synthesize large ATP amounts, mainly produced by mitochondria, in response to environmental challenges. This study characterized the respiratory chain from the mitochondria of the jellyfish Stomolophus sp2 (previously misidentified as Stomolophus meleagris). The in-gel activity from isolated jellyfish mitochondria confirmed that the mitochondrial respiratory chain contains the four canonical complexes I to IV and F0F1-ATP synthase. Specific additional activity bands, immunodetection, and mass spectrometry identification confirmed the occurrence of four alternative enzymes integrated into a branched mitochondrial respiratory chain of Stomolophus sp2: an alternative oxidase and three dehydrogenases (two NADH type II enzymes and a mitochondrial glycerol-3-phosphate dehydrogenase). The analysis of each transcript sequence, their phylogenetic relationships, and each protein's predicted models confirmed the mitochondrial alternative enzymes' identity and specific characteristics. Although no statistical differences were found among the mean values of transcript abundance of each enzyme in the transcriptomes of jellyfish exposed to three different temperatures, it was confirmed that each gene was expressed at all tested conditions. These first-time reported enzymes in cnidarians suggest the adaptative ability of jellyfish's mitochondria to display rapid metabolic responses, as previously described, to maintain energetic homeostasis and face temperature variations due to climate change.
Collapse
Affiliation(s)
- C A Nevarez-Lopez
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - A Muhlia-Almazan
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico.
| | - E Gamero-Mora
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - A Sanchez-Paz
- Laboratorio de Virologia, Centro de Investigaciones Biologicas del Noroeste S.C. (CIBNOR), Calle Hermosa 101, Col. Los Angeles, Hermosillo, Sonora, 83106, Mexico
| | - C D Sastre-Velasquez
- Centro de Investigacion en Alimentacion y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, 83304, Mexico
| | - J Lopez-Martinez
- Centro de Investigaciones Biologicas del Noroeste S.C. (CIBNOR), PO BOX 349, Guaymas, Sonora, 85465, Mexico
| |
Collapse
|
2
|
Li J, Yang S, Wu Y, Wang R, Liu Y, Liu J, Ye Z, Tang R, Whiteway M, Lv Q, Yan L. Alternative Oxidase: From Molecule and Function to Future Inhibitors. ACS OMEGA 2024; 9:12478-12499. [PMID: 38524433 PMCID: PMC10955580 DOI: 10.1021/acsomega.3c09339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
In the respiratory chain of the majority of aerobic organisms, the enzyme alternative oxidase (AOX) functions as the terminal oxidase and has important roles in maintaining metabolic and signaling homeostasis in mitochondria. AOX endows the respiratory system with flexibility in the coupling among the carbon metabolism pathway, electron transport chain (ETC) activity, and ATP turnover. AOX allows electrons to bypass the main cytochrome pathway to restrict the generation of reactive oxygen species (ROS). The inhibition of AOX leads to oxidative damage and contributes to the loss of adaptability and viability in some pathogenic organisms. Although AOXs have recently been identified in several organisms, crystal structures and major functions still need to be explored. Recent work on the trypanosome alternative oxidase has provided a crystal structure of an AOX protein, which contributes to the structure-activity relationship of the inhibitors of AOX. Here, we review the current knowledge on the development, structure, and properties of AOXs, as well as their roles and mechanisms in plants, animals, algae, protists, fungi, and bacteria, with a special emphasis on the development of AOX inhibitors, which will improve the understanding of respiratory regulation in many organisms and provide references for subsequent studies of AOX-targeted inhibitors.
Collapse
Affiliation(s)
- Jiye Li
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shiyun Yang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yujie Wu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ruina Wang
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yu Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiacun Liu
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zi Ye
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Renjie Tang
- Beijing
South Medical District of Chinese PLA General Hospital, Beijing 100072, China
| | - Malcolm Whiteway
- Department
of Biology, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | - Quanzhen Lv
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| | - Lan Yan
- School
of Pharmacy, Naval Medical University, Shanghai 200433, China
- Basic
Medicine Innovation Center for Fungal Infectious Diseases, (Naval Medical University), Ministry of Education, Shanghai 200433, China
- Key
Laboratory of Biosafety Defense (Naval Medical University), Ministry
of Education, Shanghai 200433, China
- Shanghai
Key Laboratory of Medical Biodefense, Shanghai 200433, China
| |
Collapse
|
3
|
Weaver RJ, McDonald AE. Mitochondrial alternative oxidase across the tree of life: Presence, absence, and putative cases of lateral gene transfer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149003. [PMID: 37557975 DOI: 10.1016/j.bbabio.2023.149003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
The alternative oxidase (AOX) is a terminal oxidase in the electron transport system that plays a role in mitochondrial bioenergetics. The past 20 years of research shows AOX has a wide yet patchy distribution across the tree of life. AOX has been suggested to have a role in stress tolerance, growth, and development in plants, but less is known about its function in other groups, including animals. In this study, we analyzed the taxonomic distribution of AOX across >2800 species representatives from prokaryotes and eukaryotes and developed a standardized workflow for finding and verifying the authenticity of AOX sequences. We found that AOX is limited to proteobacteria among prokaryotes, but is widely distributed in eukaryotes, with the highest prevalence in plants, fungi, and protists. AOX is present in many invertebrates, but is absent in others including most arthropods, and is absent from vertebrates. We found aberrant AOX sequences associated with some animal groups. Some of these aberrant AOXs were contaminants, but we also found putative cases of lateral gene transfer of AOX from fungi and protists to nematodes, springtails, fungus gnats, and rotifers. Our findings provide a robust and detailed analysis of the distribution of AOX and a method for identifying and verifying putative AOX sequences, which will be useful as more sequence data becomes available on public repositories.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| |
Collapse
|
4
|
Xenotopic expression of alternative oxidase (AOX) to study mechanisms of mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148947. [PMID: 36481273 DOI: 10.1016/j.bbabio.2022.148947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The mitochondrial respiratory chain or electron transport chain (ETC) facilitates redox reactions which ultimately lead to the reduction of oxygen to water (respiration). Energy released by this process is used to establish a proton electrochemical gradient which drives ATP formation (oxidative phosphorylation, OXPHOS). It also plays an important role in vital processes beyond ATP formation and cellular metabolism, such as heat production, redox and ion homeostasis. Dysfunction of the ETC can thus impair cellular and organismal viability and is thought to be the underlying cause of a heterogeneous group of so-called mitochondrial diseases. Plants, yeasts, and many lower organisms, but not insects and vertebrates, possess an enzymatic mechanism that confers resistance to respiratory stress conditions, i.e., the alternative oxidase (AOX). Even in cells that naturally lack AOX, it is autonomously imported into the mitochondrial compartment upon xenotopic expression, where it refolds and becomes catalytically engaged when the cytochrome segment of the ETC is blocked. AOX was therefore proposed as a tool to study disease etiologies. To this end, AOX has been xenotopically expressed in mammalian cells and disease models of the fruit fly and mouse. Surprisingly, AOX showed remarkable rescue effects in some cases, whilst in others it had no effect or even exacerbated a condition. Here we summarize what has been learnt from the use of AOX in various disease models and discuss issues which still need to be addressed in order to understand the role of the ETC in health and disease.
Collapse
|
5
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
6
|
Del-Saz NF, Douthe C, Carriquí M, Ortíz J, Sanhueza C, Rivas-Medina A, McDonald A, Fernie AR, Ribas-Carbo M, Gago J, Florez-Sarasa I, Flexas J. Different Metabolic Roles for Alternative Oxidase in Leaves of Palustrine and Terrestrial Species. FRONTIERS IN PLANT SCIENCE 2021; 12:752795. [PMID: 34804092 PMCID: PMC8600120 DOI: 10.3389/fpls.2021.752795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The alternative oxidase pathway (AOP) is associated with excess energy dissipation in leaves of terrestrial plants. To address whether this association is less important in palustrine plants, we compared the role of AOP in balancing energy and carbon metabolism in palustrine and terrestrial environments by identifying metabolic relationships between primary carbon metabolites and AOP in each habitat. We measured oxygen isotope discrimination during respiration, gas exchange, and metabolite profiles in aerial leaves of ten fern and angiosperm species belonging to five families organized as pairs of palustrine and terrestrial species. We performed a partial least square model combined with variable importance for projection to reveal relationships between the electron partitioning to the AOP (τa) and metabolite levels. Terrestrial plants showed higher values of net photosynthesis (AN) and τa, together with stronger metabolic relationships between τa and sugars, important for water conservation. Palustrine plants showed relationships between τa and metabolites related to the shikimate pathway and the GABA shunt, to be important for heterophylly. Excess energy dissipation via AOX is less crucial in palustrine environments than on land. The basis of this difference resides in the contrasting photosynthetic performance observed in each environment, thus reinforcing the importance of AOP for photosynthesis.
Collapse
Affiliation(s)
- Nestor Fernandez Del-Saz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Cyril Douthe
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Jose Ortíz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Alicia Rivas-Medina
- Departamento de Ingeniería Topográfica y Cartografía, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Madrid, Spain
| | - Allison McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Miquel Ribas-Carbo
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Jorge Gago
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Edifici CRAG, Barcelona, Spain
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Institute of Agro-Environmental Research and Water Economy, Universitat de les Illes Balears, Illes Balears, Spain
| |
Collapse
|
7
|
Wang D, Wang C, Li C, Song H, Qin J, Chang H, Fu W, Wang Y, Wang F, Li B, Hao Y, Xu M, Fu A. Functional Relationship of Arabidopsis AOXs and PTOX Revealed via Transgenic Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:692847. [PMID: 34367216 PMCID: PMC8336870 DOI: 10.3389/fpls.2021.692847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 06/01/2023]
Abstract
Alternative oxidase (AOX) and plastid terminal oxidase (PTOX) are terminal oxidases of electron transfer in mitochondria and chloroplasts, respectively. Here, taking advantage of the variegation phenotype of the Arabidopsis PTOX deficient mutant (im), we examined the functional relationship between PTOX and its five distantly related homologs (AOX1a, 1b, 1c, 1d, and AOX2). When engineered into chloroplasts, AOX1b, 1c, 1d, and AOX2 rescued the im defect, while AOX1a partially suppressed the mutant phenotype, indicating that AOXs could function as PQH2 oxidases. When the full length AOXs were overexpressed in im, only AOX1b and AOX2 rescued its variegation phenotype. In vivo fluorescence analysis of GFP-tagged AOXs and subcellular fractionation assays showed that AOX1b and AOX2 could partially enter chloroplasts while AOX1c and AOX1d were exclusively present in mitochondria. Surprisingly, the subcellular fractionation, but not the fluorescence analysis of GFP-tagged AOX1a, revealed that a small portion of AOX1a could sort into chloroplasts. We further fused and expressed the targeting peptides of AOXs with the mature form of PTOX in im individually; and found that targeting peptides of AOX1a, AOX1b, and AOX2, but not that of AOX1c or AOX1d, could direct PTOX into chloroplasts. It demonstrated that chloroplast-localized AOXs, but not mitochondria-localized AOXs, can functionally compensate for the PTOX deficiency in chloroplasts, providing a direct evidence for the functional relevance of AOX and PTOX, shedding light on the interaction between mitochondria and chloroplasts and the complex mechanisms of protein dual targeting in plant cells.
Collapse
Affiliation(s)
- Danfeng Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Chunyu Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Cai Li
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Haifeng Song
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jing Qin
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Han Chang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Weihan Fu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yuhua Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Fei Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Beibei Li
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yaqi Hao
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Min Xu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Aigen Fu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
8
|
Ding C, Chen C, Su N, Lyu W, Yang J, Hu Z, Zhang M. Identification and characterization of a natural SNP variant in ALTERNATIVE OXIDASE gene associated with cold stress tolerance in watermelon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110735. [PMID: 33568287 DOI: 10.1016/j.plantsci.2020.110735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Alternative oxidase (AOX) is a mitochondrial enzyme encoded by a small nuclear gene family, which contains the two subfamilies, AOX1 and AOX2. In the present study on watermelon (Citrullus lanatus), only one ClAOX gene, belonging to AOX2 subfamily but having a similar gene structure to AtAOX1a, was found in the watermelon genome. The expression analysis suggested that ClAOX had the constitutive expression feature of AOX2 subfamily, but was cold inducible, which is normally considered an AOX1 subfamily feature. Moreover, one single nucleotide polymorphism (SNP) in ClAOX sequence, which led to the change from Lys (N) to Asn (K) in the 96th amino acids, was found among watermelon subspecies. Ectopic expression of two ClAOX alleles in the Arabidopsis aox1a knock-out mutant indicated that ClAOXK-expressing plants had stronger cold tolerance than aox1a mutant and ClAOXN-expressing plants. Our findings suggested watermelon genome contained a single ClAOX that possessed the expression features of both AOX1 and AOX2 subfamilies. A naturally existing SNP in ClAOX differentiated the cold tolerance of transgenic Arabidopsis plants, impling a possibility this gene might be a functional marker for stress-tolerance breeding.
Collapse
Affiliation(s)
- Changqing Ding
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, PR China
| | - Cuiting Chen
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, PR China
| | - Nan Su
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, PR China
| | - Wenhui Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, PR China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, PR China
| |
Collapse
|
9
|
Rosell-Hidalgo A, Young L, Moore AL, Ghafourian T. QSAR and molecular docking for the search of AOX inhibitors: a rational drug discovery approach. J Comput Aided Mol Des 2020; 35:245-260. [PMID: 33289903 PMCID: PMC7904559 DOI: 10.1007/s10822-020-00360-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
The alternative oxidase (AOX) is a monotopic diiron carboxylate protein that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. Although a number of AOX inhibitors have been discovered, little is still known about the ligand–protein interaction and essential chemical characteristics of compounds required for a potent inhibition. Furthermore, owing to the rapidly growing resistance to existing inhibitors, new compounds with improved potency and pharmacokinetic properties are urgently required. In this study we used two computational approaches, ligand–protein docking and Quantitative Structure–Activity Relationships (QSAR) to investigate binding of AOX inhibitors to the enzyme and the molecular characteristics required for inhibition. Docking studies followed by protein–ligand interaction fingerprint (PLIF) analysis using the AOX enzyme and the mutated analogues revealed the importance of the residues Leu 122, Arg 118 and Thr 219 within the hydrophobic cavity. QSAR analysis, using stepwise regression analysis with experimentally obtained IC50 values as the response variable, resulted in a multiple regression model with a good prediction accuracy. The model highlighted the importance of the presence of hydrogen bonding acceptor groups on specific positions of the aromatic ring of ascofuranone derivatives, acidity of the compounds, and a large linker group on the compounds on the inhibitory effect of AOX.
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Luke Young
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Anthony L Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Taravat Ghafourian
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK. .,School of Life Sciences, Faculty of Creative Arts, Technologies and Science, University of Bedfordshire, Luton, Bedfordshire, LU1 3JU, UK.
| |
Collapse
|
10
|
Characterization of Single Gene Deletion Mutants Affecting Alternative Oxidase Production in Neurospora crassa: Role of the yvh1 Gene. Microorganisms 2020; 8:microorganisms8081186. [PMID: 32759834 PMCID: PMC7463738 DOI: 10.3390/microorganisms8081186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023] Open
Abstract
The Neurospora crassa AOD1 protein is a mitochondrial alternative oxidase that passes electrons directly from ubiquinol to oxygen. The enzyme is encoded by the nuclear aod-1 gene and is produced when the standard electron transport chain is inhibited. We previously identified eleven strains in the N. crassa single gene deletion library that were severely deficient in their ability to produce AOD1 when grown in the presence of chloramphenicol, an inhibitor of mitochondrial translation that is known to induce the enzyme. Three mutants affected previously characterized genes. In this report we examined the remaining mutants and found that the deficiency of AOD1 was due to secondary mutations in all but two of the strains. One of the authentic mutants contained a deletion of the yvh1 gene and was found to have a deficiency of aod-1 transcripts. The YVH1 protein localized to the nucleus and a post mitochondrial pellet from the cytoplasm. A zinc binding domain in the protein was required for rescue of the AOD1 deficiency. In other organisms YVH1 is required for ribosome assembly and mutants have multiple phenotypes. Lack of YVH1 in N. crassa likely also affects ribosome assembly leading to phenotypes that include altered regulation of AOD1 production.
Collapse
|
11
|
Szibor M, Schreckenberg R, Gizatullina Z, Dufour E, Wiesnet M, Dhandapani PK, Debska‐Vielhaber G, Heidler J, Wittig I, Nyman TA, Gärtner U, Hall AR, Pell V, Viscomi C, Krieg T, Murphy MP, Braun T, Gellerich FN, Schlüter K, Jacobs HT. Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia. J Cell Mol Med 2020; 24:3534-3548. [PMID: 32040259 PMCID: PMC7131948 DOI: 10.1111/jcmm.15043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cardiac ischaemia-reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a respiratory enzyme, absent in mammals, that accepts electrons from a reduced quinone pool to reduce oxygen to water, thereby restoring electron flux when impaired and, in the process, blunting ROS production. Hence, AOX represents a natural rescue mechanism from respiratory stress. This study aimed to determine how respiratory restoration through xenotopically expressed AOX affects the re-perfused post-ischaemic mouse heart. As expected, AOX supports ETC function and attenuates the ROS load in post-anoxic heart mitochondria. However, post-ischaemic cardiac remodelling over 3 and 9 weeks was not improved. AOX blunted transcript levels of factors known to be up-regulated upon I/R such as the atrial natriuretic peptide (Anp) whilst expression of pro-fibrotic and pro-apoptotic transcripts were increased. Ex vivo analysis revealed contractile failure at nine but not 3 weeks after ischaemia whilst label-free quantitative proteomics identified an increase in proteins promoting adverse extracellular matrix remodelling. Together, this indicates an essential role for ETC-derived signals during cardiac adaptive remodelling and identified ROS as a possible effector.
Collapse
Affiliation(s)
- Marten Szibor
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Department of Cardiothoracic SurgeryJena University HospitalJenaGermany
| | | | | | - Eric Dufour
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Marion Wiesnet
- Department Cardiac Development and RemodellingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Praveen K. Dhandapani
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | | | - Juliana Heidler
- Functional ProteomicsFaculty of MedicineGoethe UniversityFrankfurt am MainGermany
| | - Ilka Wittig
- Functional ProteomicsFaculty of MedicineGoethe UniversityFrankfurt am MainGermany
| | - Tuula A. Nyman
- Department of ImmunologyInstitute of Clinical MedicineOslo University HospitalUniversity of OsloOsloNorway
| | - Ulrich Gärtner
- Institute of Anatomy and Cell BiologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Andrew R. Hall
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Victoria Pell
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Carlo Viscomi
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Thomas Braun
- Department Cardiac Development and RemodellingMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | | | | | - Howard T. Jacobs
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
12
|
Weaver RJ. Hypothesized Evolutionary Consequences of the Alternative Oxidase (AOX) in Animal Mitochondria. Integr Comp Biol 2020; 59:994-1004. [PMID: 30912813 DOI: 10.1093/icb/icz015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The environment in which eukaryotes first evolved was drastically different from what they experience today, and one of the key limiting factors was the availability of oxygen for mitochondrial respiration. During the transition to a fully oxygenated Earth, other compounds such as sulfide posed a considerable constraint on using mitochondrial aerobic respiration for energy production. The ancestors of animals, and those that first evolved from the simpler eukaryotes have mitochondrial respiratory components that are absent from later-evolving animals. Specifically, mitochondria of most basal metazoans have a sulfide-resistant alternative oxidase (AOX), which provides a secondary oxidative pathway to the classical cytochrome pathway. In this essay, I argue that because of its resistance to sulfide, AOX respiration was critical to the evolution of animals by enabling oxidative metabolism under otherwise inhibitory conditions. I hypothesize that AOX allowed for metabolic flexibility during the stochastic oxygen environment of early Earth which shaped the evolution of basal metazoans. I briefly describe the known functions of AOX, with a particular focus on the decreased production of reactive oxygen species (ROS) during stress conditions. Then, I propose three evolutionary consequences of AOX-mediated protection from ROS observed in basal metazoans: 1) adaptation to stressful environments, 2) the persistence of facultative sexual reproduction, and 3) decreased mitochondrial DNA mutation rates. Recognizing the diversity of mitochondrial respiratory systems present in animals may help resolve the mechanisms involved in major evolutionary processes such as adaptation and speciation.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Hao Z, Zong Y, Liu H, Tu Z, Li H. Cloning, Characterization and Functional Analysis of the LtuPTOX Gene, a Homologue of Arabidopsis thaliana IMMUTANS Derived from Liriodendron tulipifera. Genes (Basel) 2019; 10:genes10110878. [PMID: 31683912 PMCID: PMC6896000 DOI: 10.3390/genes10110878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 01/20/2023] Open
Abstract
Flower colour and colour patterns are crucial traits for ornamental species; thus, a comprehensive understanding of their genetic basis is extremely significant for plant breeders. The tulip tree (Liriodendron tulipifera Linn.) is well known for its flowers, odd leave shape and tree form. However, the genetic basis of its colour inheritance remains unknown. In this study, a putative plastid terminal oxidase gene (LtuPTOX) was identified from L. tulipifera based on multiple databases of differentially expressed genes at various developmental stages. Then, the full-length cDNA of LtuPTOX was derived from tepals and leaves using RACE (rapid amplification of cDNA ends) approaches. Furthermore, gene structure and phylogenetic analyses of PTOX as well as AOXs (alternative oxidases), another highly similar homologue in the AOX family, were used to distinguish between the two subfamilies of genes. In addition, transient transformation and qPCR methods were used to determine the subcellular localization and tissue expression pattern of the LtuPTOX gene. Moreover, the expression of LtuPTOX as well as pigment contents was investigated to illustrate the function of this gene during the formation of orange bands on petals. The results showed that the LtuPTOX gene encodes a 358-aa protein that contains a complete AOX domain (PF01786). Accordingly, the LiriodendronPTOX and AOX genes were identified as only paralogs since they were rather similar in sequence. LtuPTOX showed chloroplast localization and was expressed in coloured organs such as petals and leaves. Additionally, an increasing pattern of LtuPTOX transcripts leads to carotenoid accumulation on the orange-band during flower bud development. Taken together, our results suggest that LtuPTOX is involved in petal carotenoid metabolism and orange band formation in L. tulipifera. The identification of this potentially involved gene will lay a foundation for further uncovering the genetic basis of flower colour in L. tulipifera.
Collapse
Affiliation(s)
- Ziyuan Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Huanhuan Liu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Boeckx J, Pols S, Hertog MLATM, Nicolaï BM. Regulation of the Central Carbon Metabolism in Apple Fruit Exposed to Postharvest Low-Oxygen Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1384. [PMID: 31737012 PMCID: PMC6831743 DOI: 10.3389/fpls.2019.01384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 05/07/2023]
Abstract
After harvest, fruit remain metabolically active and continue to ripen. The main goal of postharvest storage is to slow down the metabolic activity of the detached fruit. In many cases, this is accomplished by storing fruit at low temperature in combination with low oxygen (O2) and high carbon dioxide (CO2) partial pressures. However, altering the normal atmospheric conditions is not without any risk and can induce low-O2 stress. This review focuses on the central carbon metabolism of apple fruit during postharvest storage, both under normal O2 conditions and under low-O2 stress conditions. While the current review is focused on apple fruit, most research on the central carbon metabolism, low-O2 stress, and O2 sensing has been done on a range of different model plants (e.g., Arabidopsis, potato, rice, and maize) using various plant organs (e.g., seedlings, tubers, roots, and leaves). This review pulls together this information from the various sources into a coherent overview to facilitate the research on the central carbon metabolism in apple fruit exposed to postharvest low-O2 stress.
Collapse
Affiliation(s)
| | | | | | - Bart M. Nicolaï
- KU Leuven, BIOSYST-MeBioS, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| |
Collapse
|
15
|
Bosnjak N, Smith KM, Asaria I, Lahola-Chomiak A, Kishore N, Todd AT, Freitag M, Nargang FE. Involvement of a G Protein Regulatory Circuit in Alternative Oxidase Production in Neurospora crassa. G3 (BETHESDA, MD.) 2019; 9:3453-3465. [PMID: 31444295 PMCID: PMC6778808 DOI: 10.1534/g3.119.400522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
The Neurospora crassa nuclear aod-1 gene encodes an alternative oxidase that functions in mitochondria. The enzyme provides a branch from the standard electron transport chain by transferring electrons directly from ubiquinol to oxygen. In standard laboratory strains, aod-1 is transcribed at very low levels under normal growth conditions. However, if the standard electron transport chain is disrupted, aod-1 mRNA expression is induced and the AOD1 protein is produced. We previously identified a strain of N. crassa, that produces high levels of aod-1 transcript under non-inducing conditions. Here we have crossed this strain to a standard lab strain and determined the genomic sequences of the parents and several progeny. Analysis of the sequence data and the levels of aod-1 mRNA in uninduced cultures revealed that a frameshift mutation in the flbA gene results in the high uninduced expression of aod-1 The flbA gene encodes a regulator of G protein signaling that decreases the activity of the Gα subunit of heterotrimeric G proteins. Our data suggest that strains with a functional flbA gene prevent uninduced expression of aod-1 by inactivating a G protein signaling pathway, and that this pathway is activated in cells grown under conditions that induce aod-1 Induced cells with a deletion of the gene encoding the Gα protein still have a partial increase in aod-1 mRNA levels, suggesting a second pathway for inducing transcription of the gene in N. crassa We also present evidence that a translational control mechanism prevents production of AOD1 protein in uninduced cultures.
Collapse
Affiliation(s)
- Natasa Bosnjak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Iman Asaria
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Adrian Lahola-Chomiak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Nishka Kishore
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Andrea T Todd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Frank E Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 and
| |
Collapse
|
16
|
Maia RA, da Cruz Saraiva KD, Roque ALM, Thiers KLL, Dos Santos CP, da Silva JHM, Feijó DF, Arnholdt-Schmitt B, Costa JH. Differential expression of recently duplicated PTOX genes in Glycine max during plant development and stress conditions. J Bioenerg Biomembr 2019; 51:355-370. [PMID: 31506801 DOI: 10.1007/s10863-019-09810-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
Plastid terminal oxidase (PTOX) is a chloroplast enzyme that catalyzes oxidation of plastoquinol (PQH2) and reduction of molecular oxygen to water. Its function has been associated with carotenoid biosynthesis, chlororespiration and environmental stress responses in plants. In the majority of plant species, a single gene encodes the protein and little is known about events of PTOX gene duplication and their implication to plant metabolism. Previously, two putative PTOX (PTOX1 and 2) genes were identified in Glycine max, but the evolutionary origin and the specific function of each gene was not explored. Phylogenetic analyses revealed that this gene duplication occurred apparently during speciation involving the Glycine genus ancestor, an event absent in all other available plant leguminous genomes. Gene expression evaluated by RT-qPCR and RNA-seq data revealed that both PTOX genes are ubiquitously expressed in G. max tissues, but their mRNA levels varied during development and stress conditions. In development, PTOX1 was predominant in young tissues, while PTOX2 was more expressed in aged tissues. Under stress conditions, the PTOX transcripts varied according to stress severity, i.e., PTOX1 mRNA was prevalent under mild or moderate stresses while PTOX2 was predominant in drastic stresses. Despite the high identity between proteins (97%), molecular docking revealed that PTOX1 has higher affinity to substrate plastoquinol than PTOX2. Overall, our results indicate a functional relevance of this gene duplication in G. max metabolism, whereas PTOX1 could be associated with chloroplast effectiveness and PTOX2 to senescence and/or apoptosis.
Collapse
Affiliation(s)
- Rachel Alves Maia
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
- Federal Institute of Education, Science and Technology of Paraíba - IFPB, Campus Princesa Isabel, 58755-000, BR-426, S/N - Rural Zone, Princesa Isabel, Paraíba, Brazil
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | | | - Daniel Ferreira Feijó
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
- Functional Cell Reprogramming and Organism Plasticity (FunCrop - virtual network), EU Marie Curie Chair, ICAAM, University of Évora, Apartado 94, 7002-554, Évora, Portugal
- Science and Technology Park Alentejo (PACT), 7005-841, Évora, Portugal
| | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil.
- Functional Cell Reprogramming and Organism Plasticity (FunCrop - virtual network), EU Marie Curie Chair, ICAAM, University of Évora, Apartado 94, 7002-554, Évora, Portugal.
| |
Collapse
|
17
|
Barsottini MR, Pires BA, Vieira ML, Pereira JG, Costa PC, Sanitá J, Coradini A, Mello F, Marschalk C, Silva EM, Paschoal D, Figueira A, Rodrigues FH, Cordeiro AT, Miranda PC, Oliveira PS, Sforça ML, Carazzolle MF, Rocco SA, Pereira GA. Synthesis and testing of novel alternative oxidase (AOX) inhibitors with antifungal activity against Moniliophthora perniciosa (Stahel), the causal agent of witches' broom disease of cocoa, and other phytopathogens. PEST MANAGEMENT SCIENCE 2019; 75:1295-1303. [PMID: 30350447 DOI: 10.1002/ps.5243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora is the causal agent of witches' broom disease (WBD) of cocoa (Theobroma cacao L.) and a threat to the chocolate industry. The membrane-bound enzyme alternative oxidase (AOX) is critical for M. perniciosa virulence and resistance to fungicides, which has also been observed in other phytopathogens. Notably AOX is an escape mechanism from strobilurins and other respiration inhibitors, making AOX a promising target for controlling WBD and other fungal diseases. RESULTS We present the first study aimed at developing novel fungal AOX inhibitors. N-Phenylbenzamide (NPD) derivatives were screened in the model yeast Pichia pastoris through oxygen consumption and growth measurements. The most promising AOX inhibitor (NPD 7j-41) was further characterized and displayed better activity than the classical AOX inhibitor SHAM in vitro against filamentous fugal phytopathogens, such as M. perniciosa, Sclerotinia sclerotiorum and Venturia pirina. We demonstrate that 7j-41 inhibits M. perniciosa spore germination and prevents WBD symptom appearance in infected plants. Finally, a structural model of P. pastoris AOX was created and used in ligand structure-activity relationships analyses. CONCLUSION We present novel fungal AOX inhibitors with antifungal activity against relevant phytopathogens. We envisage the development of novel antifungal agents to secure food production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mario Ro Barsottini
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara A Pires
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Maria L Vieira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - José Gc Pereira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Paulo Cs Costa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Jaqueline Sanitá
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Alessandro Coradini
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fellipe Mello
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Cidnei Marschalk
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Eder M Silva
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Daniele Paschoal
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Antonio Figueira
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Fábio Hs Rodrigues
- School of Life Sciences, University of Warwick - Gibbet Hill Campus, Coventry, United Kingdom
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Paulo Cml Miranda
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Paulo Sl Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Maurício L Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marcelo F Carazzolle
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Silvana A Rocco
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Gonçalo Ag Pereira
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
18
|
Alternative NAD(P)H dehydrogenase and alternative oxidase: Proposed physiological roles in animals. Mitochondrion 2019; 45:7-17. [DOI: 10.1016/j.mito.2018.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/01/2017] [Accepted: 01/26/2018] [Indexed: 12/12/2022]
|
19
|
Ebiloma GU, Balogun EO, Cueto-Díaz EJ, de Koning HP, Dardonville C. Alternative oxidase inhibitors: Mitochondrion-targeting as a strategy for new drugs against pathogenic parasites and fungi. Med Res Rev 2019; 39:1553-1602. [PMID: 30693533 DOI: 10.1002/med.21560] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
The alternative oxidase (AOX) is a ubiquitous terminal oxidase of plants and many fungi, catalyzing the four-electron reduction of oxygen to water alongside the cytochrome-based electron transfer chain. Unlike the classical electron transfer chain, however, the activity of AOX does not generate adenosine triphosphate but has functions such as thermogenesis and stress response. As it lacks a mammalian counterpart, it has been investigated intensely in pathogenic fungi. However, it is in African trypanosomes, which lack cytochrome-based respiration in their infective stages, that trypanosome alternative oxidase (TAO) plays the central and essential role in their energy metabolism. TAO was validated as a drug target decades ago and among the first inhibitors to be identified was salicylhydroxamic acid (SHAM), which produced the expected trypanocidal effects, especially when potentiated by coadministration with glycerol to inhibit anaerobic energy metabolism as well. However, the efficacy of this combination was too low to be of practical clinical use. The antibiotic ascofuranone (AF) proved a much stronger TAO inhibitor and was able to cure Trypanosoma vivax infections in mice without glycerol and at much lower doses, providing an important proof of concept milestone. Systematic efforts to improve the SHAM and AF scaffolds, aided with the elucidation of the TAO crystal structure, provided detailed structure-activity relationship information and reinvigorated the drug discovery effort. Recently, the coupling of mitochondrion-targeting lipophilic cations to TAO inhibitors has dramatically improved drug targeting and trypanocidal activity while retaining target protein potency. These developments appear to have finally signposted the way to preclinical development of TAO inhibitors.
Collapse
Affiliation(s)
- Godwin U Ebiloma
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
20
|
cis-carotene biosynthesis, evolution and regulation in plants: The emergence of novel signaling metabolites. Arch Biochem Biophys 2018; 654:172-184. [PMID: 30030998 DOI: 10.1016/j.abb.2018.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 01/23/2023]
Abstract
Carotenoids are isoprenoid pigments synthesised by plants, algae, photosynthetic bacteria as well as some non-photosynthetic bacteria, fungi and insects. Abundant carotenoids found in nature are synthesised via a linear route from phytoene to lycopene after which the pathway bifurcates into cyclised α- and β-carotenes. Plants evolved additional steps to generate a diversity of cis-carotene intermediates, which can accumulate in fruits or tissues exposed to an extended period of darkness. Enzymatic or oxidative cleavage, light-mediated photoisomerization and histone modifications can affect cis-carotene accumulation. cis-carotene accumulation has been linked to the production of signaling metabolites that feedback and forward to regulate nuclear gene expression. When cis-carotenes accumulate, plastid biogenesis and operational control can become impaired. Carotenoid derived metabolites and phytohormones such as abscisic acid and strigolactones can fine-tune cellular homeostasis. There is a hunt to identify a novel cis-carotene derived apocarotenoid signal and to elucidate the molecular mechanism by which it facilitates communication between the plastid and nucleus. In this review, we describe the biosynthesis and evolution of cis-carotenes and their links to regulatory switches, as well as highlight how cis-carotene derived apocarotenoid signals might control organelle communication, physiological and developmental processes in response to environmental change.
Collapse
|
21
|
Alternative Oxidase Activity Reduces Stress in Vibrio fischeri Cells Exposed to Nitric Oxide. J Bacteriol 2018; 200:JB.00797-17. [PMID: 29760206 DOI: 10.1128/jb.00797-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/07/2018] [Indexed: 11/20/2022] Open
Abstract
Alternative oxidase (Aox) is a non-energy-conserving respiratory oxidase found in certain eukaryotes and bacteria, whose role in physiology is not entirely clear. Using the genetically tractable bacterium Vibrio fischeri as a model organism, I have identified a role for Aox to reduce levels of stress in cells exposed to oxygen and nitric oxide (NO). In V. fischeri lacking the NO-detoxifying enzyme flavohemoglobin (Hmp), deletion of aox in cells grown in the presence of oxygen and NO results in alterations to the transcriptome that include increases in transcripts mapping to stress-related genes. Using fluorescence-based reporters, I identified corresponding increases in intracellular reactive oxygen species and decreases in membrane integrity in cells lacking aox Under these growth conditions, activity of Aox is linked to a decrease in NADH levels, indicating coupling of Aox activity with NADH dehydrogenase activity. Taken together, these results suggest that Aox functions to indirectly limit production of ferrous iron and damaging hydroxyl radicals, effectively reducing cellular stress during NO exposure.IMPORTANCE Unlike typical respiratory oxidases, alternative oxidase (Aox) does not directly contribute to energy conservation, and its activity would presumably reduce the efficiency of respiration and associated ATP production. Aox has been identified in certain bacteria, a majority of which are marine associated. The presence of Aox in these bacteria poses the interesting question of how Aox function benefits bacterial growth and survival in the ocean. Using the genetically tractable marine bacterium Vibrio fischeri, I have identified a role for Aox in reduction of stress under conditions where electron flux through the aerobic respiratory pathway is inhibited. These results suggest that Aox activity could positively impact longer-term bacterial fitness and survival under stressful environmental conditions.
Collapse
|
22
|
Selinski J, Scheibe R, Day DA, Whelan J. Alternative Oxidase Is Positive for Plant Performance. TRENDS IN PLANT SCIENCE 2018; 23:588-597. [PMID: 29665989 DOI: 10.1016/j.tplants.2018.03.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 05/02/2023]
Abstract
The alternative pathway of mitochondrial electron transport, which terminates in the alternative oxidase (AOX), uncouples oxidation of substrate from mitochondrial ATP production, yet plant performance is improved under adverse growth conditions. AOX is regulated at different levels. Identification of regulatory transcription factors shows that Arabidopsis thaliana AOX1a is under strong transcriptional suppression. At the protein level, the primary structure is not optimised for activity. Maximal activity requires the presence of various metabolites, such as tricarboxylic acid-cycle intermediates that act in an isoform-specific manner. In this opinion article we propose that the regulatory mechanisms that keep AOX activity suppressed, at both the gene and protein level, are positive for plant performance due to the flexible short- and long-term fine-tuning.
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, VIC 3083, Australia.
| | - Renate Scheibe
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069 Osnabrueck, Germany
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, VIC 3083, Australia
| |
Collapse
|
23
|
Ho QT, Hertog MLATM, Verboven P, Ambaw A, Rogge S, Verlinden BE, Nicolaï BM. Down-regulation of respiration in pear fruit depends on temperature. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2049-2060. [PMID: 29394374 PMCID: PMC6018969 DOI: 10.1093/jxb/ery031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/24/2018] [Indexed: 05/23/2023]
Abstract
The respiration rate of plant tissues decreases when the amount of available O2 is reduced. There is, however, a debate on whether the respiration rate is controlled either by diffusion limitation of oxygen or through regulatory processes at the level of the transcriptome. We used experimental and modelling approaches to demonstrate that both diffusion limitation and metabolic regulation affect the response of respiration of bulky plant organs such as fruit to reduced O2 levels in the surrounding atmosphere. Diffusion limitation greatly affects fruit respiration at high temperature, but at low temperature respiration is reduced through a regulatory process, presumably a response to a signal generated by a plant oxygen sensor. The response of respiration to O2 is time dependent and is highly sensitive, particularly at low O2 levels in the surrounding atmosphere. Down-regulation of the respiration at low temperatures may save internal O2 and relieve hypoxic conditions in the fruit.
Collapse
Affiliation(s)
- Quang Tri Ho
- KU Leuven, BIOSYST-MeBioS, Willem de Croylaan, Leuven, Belgium
| | | | - Pieter Verboven
- KU Leuven, BIOSYST-MeBioS, Willem de Croylaan, Leuven, Belgium
| | - Alemayehu Ambaw
- KU Leuven, BIOSYST-MeBioS, Willem de Croylaan, Leuven, Belgium
| | - Seppe Rogge
- KU Leuven, BIOSYST-MeBioS, Willem de Croylaan, Leuven, Belgium
| | - Bert E Verlinden
- Flanders Centre of Postharvest Technology, Willem de Croylaan, Leuven, Belgium
| | - Bart M Nicolaï
- KU Leuven, BIOSYST-MeBioS, Willem de Croylaan, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Willem de Croylaan, Leuven, Belgium
| |
Collapse
|
24
|
Del-Saz NF, Ribas-Carbo M, McDonald AE, Lambers H, Fernie AR, Florez-Sarasa I. An In Vivo Perspective of the Role(s) of the Alternative Oxidase Pathway. TRENDS IN PLANT SCIENCE 2018; 23:206-219. [PMID: 29269217 DOI: 10.1016/j.tplants.2017.11.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/18/2017] [Accepted: 11/15/2017] [Indexed: 05/02/2023]
Abstract
Despite intense research on the in vitro characterization of regulatory factors modulating the alternative oxidase (AOX) pathway, the regulation of its activity in vivo is still not fully understood. Advances concerning in vivo regulation of AOX based on the oxygen-isotope fractionation technique are reviewed, and regulatory factors that merit future research are highlighted. In addition, we review and discuss the main biological functions assigned to the plant AOX, and suggest future experiments involving in vivo activity measurements to test different hypothesized physiological roles.
Collapse
Affiliation(s)
- Néstor Fernández Del-Saz
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Science Building, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia 6009, Australia
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
25
|
Liu M, Guo X. A novel and stress adaptive alternative oxidase derived from alternative splicing of duplicated exon in oyster Crassostrea virginica. Sci Rep 2017; 7:10785. [PMID: 28883650 PMCID: PMC5589949 DOI: 10.1038/s41598-017-10976-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022] Open
Abstract
Alternative oxidase (AOX) is a mitochondrial inner-membrane oxidase that accepts electrons directly from ubiquinol and reduces oxygen to water without involving cytochrome-linked electron transport chain. It is highly conserved in many non-vertebrate taxa and may protect cells against hypoxia and oxidative stress. We identified two AOX mRNAs in eastern oyster Crassostrea virginica, CvAOXA and CvAOXB, which differ by 170 bp but encode AOXs of the same size. Sequence analyses indicate that CvAOX has 10 exons with a tandem duplication of exon 10, and 3' alternative splicing using either the first or second exon 10 produces the two variants CvAOXB or CvAOXA, respectively. The second exon 10 in CvAOXA is more conserved across taxa, while the first exon 10 in CvAOXB contains novel mutations surrounding key functional sites. Both variants are expressed in all organs with the expression of CvAOXA higher than that of CvAOXB under normal condition. Under stress by air exposure, CvAOXB showed significantly higher expression than CvAOXA and became the dominant variant. This is the first case of alternative splicing of duplicated exon in a mollusc that produces a novel variant adaptive to stress, highlighting genome's versatility in generating diversity and phenotypic plasticity.
Collapse
Affiliation(s)
- Ming Liu
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA.
| |
Collapse
|
26
|
Structural insights into the alternative oxidases: are all oxidases made equal? Biochem Soc Trans 2017; 45:731-740. [PMID: 28620034 DOI: 10.1042/bst20160178] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/15/2023]
Abstract
The alternative oxidases (AOXs) are ubiquinol-oxidoreductases that are members of the diiron carboxylate superfamily. They are not only ubiquitously distributed within the plant kingdom but also found in increasing numbers within the fungal, protist, animal and prokaryotic kingdoms. Although functions of AOXs are highly diverse in general, they tend to play key roles in thermogenesis, stress tolerance (through the management of radical oxygen species) and the maintenance of mitochondrial and cellular energy homeostasis. The best structurally characterised AOX is from Trypanosoma brucei In this review, we compare the structure of AOXs, created using homology modelling, from many important species in an attempt to explain differences in activity and sensitivity to AOX inhibitors. We discuss the implications of these findings not only for future structure-based drug design but also for the design of novel AOXs for gene therapy.
Collapse
|
27
|
Tang Y, Sun X, Wen T, Liu M, Yang M, Chen X. Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:19-28. [PMID: 28024235 DOI: 10.1016/j.plaphy.2016.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 05/27/2023]
Abstract
The aim of this study is to investigate whether exogenous application of salicylic acid (SA) could modulate the photosynthetic capacity of soybean seedlings in water stress tolerance, and to clarify the potential functions of terminal oxidase (plastid terminal oxidase (PTOX) and alternative oxidase (AOX)) in SA' s regulation on photosynthesis. The effects of SA and water stress on gas exchange, pigment contents, chlorophyll fluorescence, enzymes (guaiacol peroxidase (POD; EC 1.11.1.7), superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and NADP-malate dehydrogenase (NADP-MDH; EC1.1.1.82)) activity and transcript levels of PTOX, AOX1, AOX2a, AOX2b were examined in a hydroponic cultivation system. Results indicate that water stress significantly decreased the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), pigment contents (Chla + b, Chla/b, Car), maximum quantum yield of PSⅡphotochemistry (Fv/Fm), efficiency of excitation capture of open PSⅡcenter (Fv'/Fm'), quantum efficiency of PSⅡphotochemistry (ΦPSⅡ), photochemical quenching (qP), and increased malondialdehyde (MDA) content and the activity of all the enzymes. SA pretreatment led to significant decreases in Ci and MDA content, and increases in Pn, Gs, E, pigment contents, Fv/Fm, Fv'/Fm', ΦPSⅡ, qP, and the activity of all the enzymes. SA treatment and water stress alone significantly up-regulated the expression of PTOX, AOX1 and AOX2b. SA pretreatment further increased the transcript levels of PTOX and AOX2b of soybean seedling under water stress. These results indicate that SA application alleviates the water stress-induced decrease in photosynthesis may mainly through maintaining a lower reactive oxygen species (ROS) level, a greater PSⅡefficiency, and an enhanced alternative respiration and chlororespiration. PTOX and AOX may play important roles in SA-mediated resistance to water stress.
Collapse
Affiliation(s)
- Yanping Tang
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China; Agrotechnical Extension Station, Agricultural Bureau of Dazhou City, No.52, Heye Street, Tongchuan District, Dazhou, 635000, Sichuan, China.
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Tao Wen
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Mingjie Liu
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Mingyan Yang
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xuefei Chen
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China
| |
Collapse
|
28
|
Qi Z, Smith KM, Bredeweg EL, Bosnjak N, Freitag M, Nargang FE. Alternative Oxidase Transcription Factors AOD2 and AOD5 of Neurospora crassa Control the Expression of Genes Involved in Energy Production and Metabolism. G3 (BETHESDA, MD.) 2017; 7:449-466. [PMID: 27986792 PMCID: PMC5295593 DOI: 10.1534/g3.116.035402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023]
Abstract
In Neurospora crassa, blocking the function of the standard mitochondrial electron transport chain results in the induction of an alternative oxidase (AOX). AOX transfers electrons directly from ubiquinol to molecular oxygen. AOX serves as a model of retrograde regulation since it is encoded by a nuclear gene that is regulated in response to signals from mitochondria. The N. crassa transcription factors AOD2 and AOD5 are necessary for the expression of the AOX gene. To gain insight into the mechanism by which these factors function, and to determine if they have roles in the expression of additional genes in N. crassa, we constructed strains expressing only tagged versions of the proteins. Cell fractionation experiments showed that both proteins are localized to the nucleus under both AOX inducing and noninducing conditions. Furthermore, chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) analysis revealed that the proteins are bound to the promoter region of the AOX gene under both conditions. ChIP-seq also showed that the transcription factors bind to the upstream regions of a number of genes that are involved in energy production and metabolism. Dependence on AOD2 and AOD5 for the expression of several of these genes was verified by quantitative PCR. The majority of ChIP-seq peaks observed were enriched for both AOD2 and AOD5. However, we also observed occasional sites where one factor appeared to bind preferentially. The most striking of these was a conserved sequence that bound large amounts of AOD2 but little AOD5. This sequence was found within a 310 bp repeat unit that occurs at several locations in the genome.
Collapse
Affiliation(s)
- Zhigang Qi
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Erin L Bredeweg
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Natasa Bosnjak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-4003
| | - Frank E Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
29
|
Wang D, Fu A. The Plastid Terminal Oxidase is a Key Factor Balancing the Redox State of Thylakoid Membrane. Enzymes 2016; 40:143-171. [PMID: 27776780 DOI: 10.1016/bs.enz.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Mitochondria possess oxygen-consuming respiratory electron transfer chains (RETCs), and the oxygen-evolving photosynthetic electron transfer chain (PETC) resides in chloroplasts. Evolutionarily mitochondria and chloroplasts are derived from ancient α-proteobacteria and cyanobacteria, respectively. However, cyanobacteria harbor both RETC and PETC on their thylakoid membranes. It is proposed that chloroplasts could possess a RETC on the thylakoid membrane, in addition to PETC. Identification of a plastid terminal oxidase (PTOX) in the chloroplast from the Arabidopsis variegation mutant immutans (im) demonstrated the presence of a RETC in chloroplasts, and the PTOX is the committed oxidase. PTOX is distantly related to the mitochondrial alternative oxidase (AOX), which is responsible for the CN-insensitive alternative RETC. Similar to AOX, an ubiquinol (UQH2) oxidase, PTOX is a plastoquinol (PQH2) oxidase on the chloroplast thylakoid membrane. Lack of PTOX, Arabidopsis im showed a light-dependent variegation phenotype; and mutant plants will not survive the mediocre light intensity during its early development stage. PTOX is very important for carotenoid biosynthesis, since the phytoene desaturation, a key step in the carotenoid biosynthesis, is blocked in the white sectors of Arabidopsis im mutant. PTOX is found to be a stress-related protein in numerous research instances. It is generally believed that PTOX can protect plants from various environmental stresses, especially high light stress. PTOX also plays significant roles in chloroplast development and plant morphogenesis. Global physiological roles played by PTOX could be a direct or indirect consequence of its PQH2 oxidase activity to maintain the PQ pool redox state on the thylakoid membrane. The PTOX-dependent chloroplast RETC (so-called chlororespiration) does not contribute significantly when chloroplast PETC is normally developed and functions well. However, PTOX-mediated RETC could be the major force to regulate the PQ pool redox balance in the darkness, under conditions of stress, in nonphotosynthetic plastids, especially in the early development from proplastids to chloroplasts.
Collapse
Affiliation(s)
- D Wang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xian, China; Shaanxi Province Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - A Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xian, China; Shaanxi Province Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China.
| |
Collapse
|
30
|
Hao MS, Rasmusson AG. The evolution of substrate specificity-associated residues and Ca(2+) -binding motifs in EF-hand-containing type II NAD(P)H dehydrogenases. PHYSIOLOGIA PLANTARUM 2016; 157:338-351. [PMID: 27079180 DOI: 10.1111/ppl.12453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Most eukaryotic organisms, except some animal clades, have mitochondrial alternative electron transport enzymes that allow respiration to bypass the energy coupling in oxidative phosphorylation. The energy bypass enzymes in plants include the external type II NAD(P)H dehydrogenases (DHs) of the NDB family, which are characterized by an EF-hand domain for Ca(2+) binding. Here we investigate these plant enzymes by combining molecular modeling with evolutionary analysis. Molecular modeling of the Arabidopsis thaliana AtNDB1 with the yeast ScNDI1 as template revealed distinct similarities in the core catalytic parts, and highlighted the interaction between the pyridine nucleotide and residues correlating with NAD(P)H substrate specificity. The EF-hand domain of AtNDB1 has no counterpart in ScNDI1, and was instead modeled with Ca(2+) -binding signal transducer proteins. Combined models displayed a proximity of the AtNDB1 EF-hand domain to the substrate entrance side of the catalytic part. Evolutionary analysis of the eukaryotic NDB-type proteins revealed ancient and recent reversions between the motif observed in proteins specific for NADH (acidic type) and NADPH (non-acidic type), and that the clade of enzymes with acidic motifs in angiosperms derives from non-acidic-motif NDB-type proteins present in basal plants, fungi and protists. The results suggest that Ca(2+) -dependent external NADPH oxidation is an ancient process, indicating that it has a fundamental importance for eukaryotic cellular redox metabolism. In contrast, the external NADH DHs in plants are products of a recent expansion, mirroring the expansion of the alternative oxidase family.
Collapse
Affiliation(s)
- Meng-Shu Hao
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
31
|
Nobre T, Campos MD, Lucic-Mercy E, Arnholdt-Schmitt B. Misannotation Awareness: A Tale of Two Gene-Groups. FRONTIERS IN PLANT SCIENCE 2016; 7:868. [PMID: 27379147 PMCID: PMC4909761 DOI: 10.3389/fpls.2016.00868] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 06/01/2023]
Abstract
Incorrectly or simply not annotated data is largely increasing in most public databases, undoubtedly caused by the rise in sequence data and the more recent boom of genomic projects. Molecular biologists and bioinformaticists should join efforts to tackle this issue. Practical challenges have been experienced when studying the alternative oxidase (AOX) gene family, and hence the motivation for the present work. Commonly used databases were screened for their capacity to distinguish AOX from the plastid terminal oxidase (also called plastoquinol terminal oxidase; PTOX) and we put forward a simple approach, based on amino acids signatures, that unequivocally distinguishes these gene families. Further, available sequence data on the AOX family in plants was carefully revised to: (1) confirm the classification as AOX and (2) identify to which AOX family member they belong to. We bring forward the urgent need of misannotation awareness and re-annotation of public AOX sequences by highlighting different types of misclassifications and the large under-estimation of data availability.
Collapse
Affiliation(s)
- Tania Nobre
- EU Marie Curie Chair, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraÉvora, Portugal
| | - M. Doroteia Campos
- EU Marie Curie Chair, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraÉvora, Portugal
| | | | - Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de ÉvoraÉvora, Portugal
| |
Collapse
|
32
|
Pu XJ, Lv X, Lin HH. Unraveling the evolution and regulation of the alternative oxidase gene family in plants. Dev Genes Evol 2015; 225:331-9. [PMID: 26438244 DOI: 10.1007/s00427-015-0515-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/20/2015] [Indexed: 12/19/2022]
Abstract
Alternative oxidase (AOX) is a diiron carboxylate protein present in all plants examined to date that couples the oxidation of ubiquinol with the reduction of oxygen to water. The predominant structure of AOX genes is four exons interrupted by three introns. In this study, by analyzing the genomic sequences of genes from different plant species, we deduced that intron/exon loss/gain and deletion of fragments are the major mechanisms responsible for the generation and evolution of AOX paralogous genes. Integrating gene duplication and structural information with expression profiles for various AOXs revealed that tandem duplication/block duplication contributed greatly to the generation and maintenance of the AOX gene family. Notably, the expression profiles based on public microarray database showed highly diverse expression patterns among AOX members in different developmental stages and tissues and that both orthologous and paralogous genes did not have the same expression profiles due to their divergence in regulatory regions. Comparative analysis of genes in six plant species under various perturbations indicated a large number of protein kinases, transcription factors and antioxidant enzymes are co-expressed with AOX. Of these, four sets of transcription factors--WRKY, NAC, bZIP and MYB--are likely involved in the regulating the differential responses of AOX1 genes to specific stresses. Furthermore, divergence of AOX1 and AOX2 subfamilies in regulation might be the main reason for their differential stress responses.
Collapse
Affiliation(s)
- Xiao-jun Pu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hong-hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
33
|
Noguchi F, Shimamura S, Nakayama T, Yazaki E, Yabuki A, Hashimoto T, Inagaki Y, Fujikura K, Takishita K. Metabolic Capacity of Mitochondrion-related Organelles in the Free-living Anaerobic Stramenopile Cantina marsupialis. Protist 2015; 166:534-50. [PMID: 26436880 DOI: 10.1016/j.protis.2015.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 11/26/2022]
Abstract
Functionally and morphologically degenerate mitochondria, so-called mitochondrion-related organelles (MROs), are frequently found in eukaryotes inhabiting hypoxic or anoxic environments. In the last decade, MROs have been discovered from a phylogenetically broad range of eukaryotic lineages and these organelles have been revealed to possess diverse metabolic capacities. In this study, the biochemical characteristics of an MRO in the free-living anaerobic protist Cantina marsupialis, which represents an independent lineage in stramenopiles, were inferred based on RNA-seq data. We found transcripts for proteins known to function in one form of MROs, the hydrogenosome, such as pyruvate:ferredoxin oxidoreductase, iron-hydrogenase, acetate:succinate CoA-transferase, and succinyl-CoA synthase, along with transcripts for acetyl-CoA synthetase (ADP-forming). These proteins possess putative mitochondrial targeting signals at their N-termini, suggesting dual ATP generation systems through anaerobic pyruvate metabolism in Cantina MROs. In addition, MROs in Cantina were also shown to share several features with canonical mitochondria, including amino acid metabolism and an "incomplete" tricarboxylic acid cycle. Transcripts for all four subunits of complex II (CII) of the electron transport chain were detected, while there was no evidence for the presence of complexes I, III, IV, or F1Fo ATPase. Cantina MRO biochemistry challenges the categories of mitochondrial organelles recently proposed.
Collapse
Affiliation(s)
- Fumiya Noguchi
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Shigeru Shimamura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takuro Nakayama
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Euki Yazaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Tetsuo Hashimoto
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Katsunori Fujikura
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Kiyotaka Takishita
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan; Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| |
Collapse
|
34
|
May B, Elliott C, Iwata M, Young L, Shearman J, Albury MS, Moore AL. Expression and crystallization of the plant alternative oxidase. Methods Mol Biol 2015; 1305:281-299. [PMID: 25910742 DOI: 10.1007/978-1-4939-2639-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The alternative oxidase (AOX) is an integral monotopic membrane protein located on the inner surface of the inner mitochondrial membrane. Branching from the traditional respiratory chain at the quinone pool, AOX is responsible for cyanide-resistant respiration in plants and fungi, heat generation in thermogenic plants, and survival of parasites, such as Trypanosoma brucei, in the human host. A recently solved AOX structure provides insight into its active site, thereby facilitating rational phytopathogenic and antiparasitic drug design. Here, we describe expression of recombinant AOX using two different expression systems. Purification protocols for the production of highly pure and stable AOX protein in sufficient quantities to facilitate further kinetic, biophysical, and structural analyses are also described.
Collapse
Affiliation(s)
- Benjamin May
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Purification and characterisation of recombinant DNA encoding the alternative oxidase from Sauromatum guttatum. Mitochondrion 2014; 19 Pt B:261-8. [PMID: 24632469 DOI: 10.1016/j.mito.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 11/21/2022]
Abstract
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in mitochondria of all higher plants studied to date. Structural and functional characterisation of this important but enigmatic plant diiron protein has been hampered by an inability to obtain sufficient native protein from plant sources. In the present study recombinant SgAOX (rSgAOX), overexpressed in a ΔhemA-deficient Escherichia coli strain (FN102), was solubilized from E. coli membranes and purified to homogeneity in a stable and highly active form. The kinetics of ubiquinol-1 oxidation by purified rSgAOX showed typical Michaelis-Menten kinetics (K(m) of 332 μM and Vmax of 30 μmol(-1) min(-1) mg(-1)), a turnover number 20 μmol s(-1) and a remarkable stability. The enzyme was potently inhibited not only by conventional inhibitors such as SHAM and n-propyl gallate but also by the potent TAO inhibitors ascofuranone, an ascofuranone-derivative colletochlorin B and the cytochrome bc1 inhibitor ascochlorin. Circular dichroism studies revealed that AOX was approximately 50% α-helical and furthermore such studies revealed that rSgAOX and rTAO partially retained the helical absorbance signal even at 90 °C (58% and 64% respectively) indicating a high conformational stability. It is anticipated that highly purified and active AOX and its mutants will facilitate investigations into the structure and reaction mechanisms of AOXs through the provision of large amounts of purified protein for crystallography and contribute to further progress of the study on this important plant terminal oxidase.
Collapse
|
36
|
|
37
|
Neimanis K, Staples JF, Hüner NP, McDonald AE. Identification, expression, and taxonomic distribution of alternative oxidases in non-angiosperm plants. Gene 2013; 526:275-86. [DOI: 10.1016/j.gene.2013.04.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
|
38
|
Monteiro JP, Oliveira PJ, Jurado AS. Mitochondrial membrane lipid remodeling in pathophysiology: a new target for diet and therapeutic interventions. Prog Lipid Res 2013; 52:513-28. [PMID: 23827885 DOI: 10.1016/j.plipres.2013.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Mitochondria are arbiters in the fragile balance between cell life and death. These organelles present an intricate membrane system, with a peculiar lipid composition and displaying transverse as well as lateral asymmetry. Some lipids are synthesized inside mitochondria, while others have to be imported or acquired in the form of precursors. Here, we review different processes, including external interventions (e.g., diet) and a range of biological events (apoptosis, disease and aging), which may result in alterations of mitochondrial membrane lipid content. Cardiolipin, the mitochondria lipid trademark, whose biosynthetic pathway is highly regulated, will deserve special attention in this review. The modulation of mitochondrial membrane lipid composition, especially by diet, as a therapeutic strategy for the treatment of some pathologies will be also addressed.
Collapse
Affiliation(s)
- João P Monteiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | | | | |
Collapse
|
39
|
Vanlerberghe GC. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 2013; 14:6805-47. [PMID: 23531539 PMCID: PMC3645666 DOI: 10.3390/ijms14046805] [Citation(s) in RCA: 428] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 02/07/2023] Open
Abstract
Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as "signaling organelles", able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada.
| |
Collapse
|
40
|
Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C, Tatsumi R, Takahashi G, Balogun EO, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Saimoto H, Moore AL, Harada S, Kita K. Structure of the trypanosome cyanide-insensitive alternative oxidase. Proc Natl Acad Sci U S A 2013; 110:4580-5. [PMID: 23487766 PMCID: PMC3607012 DOI: 10.1073/pnas.1218386110] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes human African sleeping sickness, AOX plays a critical role in the survival of the parasite in its bloodstream form. Because AOX is absent from mammals, this protein represents a unique and promising therapeutic target. Despite its bioenergetic and medical importance, however, structural features of any AOX are yet to be elucidated. Here we report crystal structures of the trypanosomal alternative oxidase in the absence and presence of ascofuranone derivatives. All structures reveal that the oxidase is a homodimer with the nonhaem diiron carboxylate active site buried within a four-helix bundle. Unusually, the active site is ligated solely by four glutamate residues in its oxidized inhibitor-free state; however, inhibitor binding induces the ligation of a histidine residue. A highly conserved Tyr220 is within 4 Å of the active site and is critical for catalytic activity. All structures also reveal that there are two hydrophobic cavities per monomer. Both inhibitors bind to one cavity within 4 Å and 5 Å of the active site and Tyr220, respectively. A second cavity interacts with the inhibitor-binding cavity at the diiron center. We suggest that both cavities bind ubiquinol and along with Tyr220 are required for the catalytic cycle for O2 reduction.
Collapse
Affiliation(s)
- Tomoo Shiba
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | | | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Chiaki Tsuge
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Ryoko Tatsumi
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Gen Takahashi
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, and
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Aoki
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan;
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan;
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; and
| | - Anthony L. Moore
- Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| |
Collapse
|
41
|
Saimoto H, Kido Y, Haga Y, Sakamoto K, Kita K. Pharmacophore identification of ascofuranone, potent inhibitor of cyanide-insensitive alternative oxidase of Trypanosoma brucei. ACTA ACUST UNITED AC 2012. [DOI: 10.1093/jb/mvs135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Nargang FE, Adames K, Rüb C, Cheung S, Easton N, Nargang CE, Chae MS. Identification of genes required for alternative oxidase production in the Neurospora crassa gene knockout library. G3 (BETHESDA, MD.) 2012; 2:1345-56. [PMID: 23173086 PMCID: PMC3484665 DOI: 10.1534/g3.112.004218] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
Abstract
The alternative oxidase (AOX) of Neurospora crassa transfers electrons from ubiquinol to oxygen. The enzyme is not expressed under normal conditions. However, when the function of the standard electron transport chain is compromised, AOX is induced, providing cells with a means to continue respiration and growth. Induction of the enzyme represents a form of retrograde regulation because AOX is encoded by a nuclear gene that responds to signals produced from inefficiently functioning mitochondria. To identify genes required for AOX expression, we have screened the N. crassa gene knockout library for strains that are unable to grow in the presence of antimycin A, an inhibitor of complex III of the standard electron transport chain. From the 7800 strains containing knockouts of different genes, we identified 62 strains that have reduced levels of AOX when grown under conditions known to induce the enzyme. Some strains have virtually no AOX, whereas others have only a slight reduction of the protein. A broad range of seemingly unrelated functions are represented in the knockouts. For example, we identified transcription factors, kinases, the mitochondrial import receptor Tom70, three subunits of the COP9 signalosome, a monothiol glutaredoxin, and several hypothetical proteins as being required for wild-type levels of AOX production. Our results suggest that defects in many signaling or metabolic pathways have a negative effect on AOX expression and imply that complex systems control production of the enzyme.
Collapse
Affiliation(s)
- Frank E Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | | | | | |
Collapse
|
43
|
Genetic identification of a high-affinity Ni transporter and the transcriptional response to Ni deprivation in Synechococcus sp. strain WH8102. Appl Environ Microbiol 2012; 78:7822-32. [PMID: 22904052 DOI: 10.1128/aem.01739-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
One biological need for Ni in marine cyanobacteria stems from the utilization of the Ni metalloenzyme urease for the assimilation of urea as a nitrogen source. In many of the same cyanobacteria, including Synechococcus sp. strain WH8102, an additional and obligate nutrient requirement for Ni results from usage of a Ni superoxide dismutase (Ni-SOD), which is encoded by sodN. To better understand the effects of Ni deprivation on WH8102, parallel microarray-based analysis of gene expression and gene knockout experiments were conducted. The global transcriptional response to Ni deprivation depends upon the nitrogen source provided for growth; fewer than 1% of differentially expressed genes for Ni deprivation on ammonium or urea were concordantly expressed. Surprisingly, genes for putative Ni transporters, including one colocalized on the genome with sodN, sodT, were not induced despite an increase in Ni transport. Knockouts of the putative Ni transporter gene sodT appeared to be lethal in WH8102, so the genes for sodT and sodN in WH8102 were interrupted with the gene for Fe-SOD, sodB, and its promoter from Synechococcus sp. strain WH7803. The sodT::sodB exconjugants were unable to grow at low Ni concentrations, confirming that SodT is a Ni transporter. The sodN::sodB exconjugants displayed higher growth rates at low Ni concentrations than did the wild type, presumably due to a relaxed competition between urease and Ni-SOD for Ni. Both sodT::sodB and sodN::sodB lines exhibited an impaired ability to grow at low Fe concentrations. We propose a posttranslational allosteric SodT regulation involving the binding of Ni to a histidine-rich intracellular protein loop.
Collapse
|
44
|
In situ quantification of mitochondrial respiration in permeabilized fibers of a marine invertebrate with low aerobic capacity. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:429-35. [DOI: 10.1016/j.cbpa.2012.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/01/2012] [Accepted: 01/01/2012] [Indexed: 11/22/2022]
|
45
|
Papagianni M, Avramidis N. Cloning and functional expression of the mitochondrial alternative oxidase gene (aox1) of Aspergillus niger in Lactococcus lactis and its induction by oxidizing conditions. Enzyme Microb Technol 2012; 50:17-21. [DOI: 10.1016/j.enzmictec.2011.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 10/16/2022]
|
46
|
Matus-Ortega MG, Salmerón-Santiago KG, Flores-Herrera O, Guerra-Sánchez G, Martínez F, Rendón JL, Pardo JP. The alternative NADH dehydrogenase is present in mitochondria of some animal taxa. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 6:256-63. [DOI: 10.1016/j.cbd.2011.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/07/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
47
|
Pierron D, Wildman DE, Hüttemann M, Markondapatnaikuni GC, Aras S, Grossman LI. Cytochrome c oxidase: evolution of control via nuclear subunit addition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:590-7. [PMID: 21802404 DOI: 10.1016/j.bbabio.2011.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 02/01/2023]
Abstract
According to theory, present eukaryotic cells originated from a beneficial association between two free-living cells. Due to this endosymbiotic event the pre-eukaryotic cell gained access to oxidative phosphorylation (OXPHOS), which produces more than 15 times as much ATP as glycolysis. Because cellular ATP needs fluctuate and OXPHOS both requires and produces entities that can be toxic for eukaryotic cells such as ROS or NADH, we propose that the success of endosymbiosis has largely depended on the regulation of endosymbiont OXPHOS. Several studies have presented cytochrome c oxidase as a key regulator of OXPHOS; for example, COX is the only complex of mammalian OXPHOS with known tissue-specific isoforms of nuclear encoded subunits. We here discuss current knowledge about the origin of nuclear encoded subunits and the appearance of different isozymes promoted by tissue and cellular environments such as hypoxia. We also review evidence for recent selective pressure acting on COX among vertebrates, particularly in primate lineages, and discuss the unique pattern of co-evolution between the nuclear and mitochondrial genomes. Finally, even though the addition of nuclear encoded subunits was a major event in eukaryotic COX evolution, this does not lead to emergence of a more efficient COX, as might be expected from an anthropocentric point of view, for the "higher" organism possessing large brains and muscles. The main function of these subunits appears to be "only" to control the activity of the mitochondrial subunits. We propose that this control function is an as yet under appreciated key point of evolution. Moreover, the importance of regulating energy supply may have caused the addition of subunits encoded by the nucleus in a process comparable to a "domestication scenario" such that the host tends to control more and more tightly the ancestral activity of COX performed by the mtDNA encoded subunits.
Collapse
Affiliation(s)
- Denis Pierron
- Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
48
|
Martins VDP, Dinamarco TM, Curti C, Uyemura SA. Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets. J Bioenerg Biomembr 2011; 43:81-8. [PMID: 21271279 DOI: 10.1007/s10863-011-9331-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Collapse
Affiliation(s)
- Vicente de Paulo Martins
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
49
|
Miller RE, Grant NM, Giles L, Ribas-Carbo M, Berry JA, Watling JR, Robinson SA. In the heat of the night--alternative pathway respiration drives thermogenesis in Philodendron bipinnatifidum. THE NEW PHYTOLOGIST 2011; 189:1013-1026. [PMID: 21118259 DOI: 10.1111/j.1469-8137.2010.03547.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
• Philodendron bipinnatifidum inflorescences heat up to 42 °C and thermoregulate. We investigated whether they generate heat via the cytochrome oxidase pathway uncoupled by uncoupling proteins (pUCPs), or the alternative oxidase (AOX). • Contribution of AOX and pUCPs to heating in fertile (FM) and sterile (SM) male florets was determined using a combination of oxygen isotope discrimination, protein and substrate analyses. • Both FM and SM florets thermoregulated independently for up to 30 h ex planta. In both floret types, AOX contributed > 90% of respiratory flux during peak heating. The AOX protein increased fivefold with the onset of thermogenesis in both floret types, whereas pUCP remained low throughout development. These data indicate that AOX is primarily responsible for heating, despite FM and SM florets potentially using different substrates, carbohydrates or lipids, respectively. Measurements of discrimination between O₂ isotopes in strongly respiring SM florets were affected by diffusion; however, this diffusional limitation was largely overcome using elevated O₂. • The first in vivo respiratory flux measurements in an arum show AOX contributes the bulk of heating in P. bipinnatifidum. Fine-scale regulation of AOX activity is post-translational. We also demonstrate that elevated O₂ can aid measurement of respiratory pathway fluxes in dense tissues.
Collapse
Affiliation(s)
- Rebecca E Miller
- Institute for Conservation Biology and Environmental Management, The University of Wollongong, Wollongong, NSW 2522, Australia
- Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole M Grant
- Institute for Conservation Biology and Environmental Management, The University of Wollongong, Wollongong, NSW 2522, Australia
- Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Larry Giles
- Department of Global Ecology, Carnegie Institution of Washington, 260 Panama St, Stanford, CA 94305, USA
| | - Miquel Ribas-Carbo
- Departament de Biologia, Universitat de les Illes Balears, Unitat de Fisiologia Vegetal, Illes Balears, Spain
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution of Washington, 260 Panama St, Stanford, CA 94305, USA
| | - Jennifer R Watling
- Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sharon A Robinson
- Institute for Conservation Biology and Environmental Management, The University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
50
|
Gupta KJ, Zabalza A, van Dongen JT. Regulation of respiration when the oxygen availability changes. PHYSIOLOGIA PLANTARUM 2009; 137:383-91. [PMID: 19549068 DOI: 10.1111/j.1399-3054.2009.01253.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxygen is a vital substrate for plant energy metabolism. Since plants do not have a sophisticated mechanism to deliver oxygen to those sites where it is actually needed, a plant cell has to continuously cope with changes of the oxygen tension within the tissue. The actual internal oxygen concentration will depend on the resistance for oxygen diffusion through the tissue, as well as on the actual respiratory activity. This paper discusses the current state of knowledge on the regulation of respiration by the oxygen availability. Contradicting opinions from the literature on plant respiration are reviewed and commented upon. Also, knowledge about the regulation of respiration in animal mitochondria is included. Apart from changes in glycolytic flux, the role of both the cytochrome-c oxidase (COX) and the alternative oxidase (AOX) in the adaptive response of respiration to changes in the oxygen availability are discussed. One hypothesis is formulated which describes an alternative or additional role for AOX. It is suggested that AOX could play a role in maintaining oxygen homeostasis within the mitochondrion. Because of the relative low affinity for oxygen of AOX as compared to COX, the alternative oxidase will not interfere with COX activity, but AOX activity will reduce the free oxygen concentration, thereby decreasing the production of reactive oxygen species (ROS) inside the mitochondrion.
Collapse
Affiliation(s)
- Kapuganti J Gupta
- Max Planck Institute of Molecular Plant Physiology, Energy Metabolism Research Group, Am Muehlenberg 1, D-14476 Potsdam, Germany
| | | | | |
Collapse
|