1
|
Balogh C, Kobak J, Serfőző Z. Lipid storage may help invasive mussels to survive in limited food conditions. Integr Zool 2024. [PMID: 39219011 DOI: 10.1111/1749-4877.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The flow direction forms a west-east nutrient gradient in Lake Balaton and separates two basins with different food conditions indicated by the annual mean of water chlorophyll-a concentration. Trends of protein and carbohydrate contents of the invasive quagga mussel decline along the longitudinal coordinates, whereas lipids increase in mussels living between the two basins under moderate food conditions. Lipid accumulation might rescue the mussels when carbohydrate stores deplete.
Collapse
Affiliation(s)
- Csilla Balogh
- HUN-REN Balaton Limnological Research Institute, Tihany, Veszprém, Hungary
| | - Jarosław Kobak
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Zoltán Serfőző
- HUN-REN Balaton Limnological Research Institute, Tihany, Veszprém, Hungary
| |
Collapse
|
2
|
Geng Q, Zou L, Guo M, Peng J, Li F, Bi Y, Jiang S, Qin H, Tan Z. Insights into the combined toxicity and mechanisms of BDE-47 and PFOA in marine blue mussel: An integrated study at the physiochemical and molecular levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106999. [PMID: 38875954 DOI: 10.1016/j.aquatox.2024.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
The coexistence of multiple emerging contaminants imposes a substantial burden on the ecophysiological functions in organisms. The combined toxicity and underlying mechanism requires in-depth understanding. Here, marine blue mussel (Mytilus galloprovincialis L.) was selected and exposed to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and perfluorooctanoic acid (PFOA) individually and in combination at environmental related concentrations to elucidate differences in stress responses and potential toxicological mechanisms. Characterization and comparison of accumulation, biomarkers, histopathology, transcriptomics and metabolomics were performed. Co-exposure resulted in differential accumulation patterns, exacerbated histopathological alterations, and different responses in oxidative stress and biomarkers for xenobiotic transportation. Moreover, the identified differentially expressed genes (DEGs) and differential metabolites (DEMs) in mussels were found to be annotated to different metabolic pathways. Correlation analyses further indicated that DEGs and DEMs were significantly correlated with the above biomarkers. BDE-47 and PFOA altered the genes and metabolites related to amino acid metabolism, energy and purine metabolism, ABC transporters, and glutathione metabolism to varying degrees, subsequently inducing accumulation differences and combined toxicity. Furthermore, the present work highlighted the pivotal role of Nrf2-keap1 detoxification pathway in the acclimation of M. galloprovincialis to reactive oxygen species (ROS) stress induced by BDE-47 and PFOA. This study enabled more comprehensive understanding of combined toxic mechanism of multi emerging contaminants pollution.
Collapse
Affiliation(s)
- Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Liang Zou
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yujie Bi
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shuqi Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hanlin Qin
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
Legrand E, Bayless AL, Bearden DW, Casu F, Edwards M, Jacob A, Johnson WE, Schock TB. Untargeted Metabolomics Analyses and Contaminant Chemistry of Dreissenid Mussels at the Maumee River Area of Concern in the Great Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19169-19179. [PMID: 38053340 DOI: 10.1021/acs.est.3c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Bivalves serve as an ideal ecological indicator; hence, their use by the NOAA Mussel Watch Program to monitor environmental health. This study aimed to expand the baseline knowledge of using metabolic end points in environmental monitoring by investigating the dreissenid mussel metabolome in the field. Dreissenids were caged at four locations along the Maumee River for 30 days. The mussel metabolome was measured using nuclear magnetic resonance spectroscopy, and mussel tissue chemical contaminants were analyzed using gas or liquid chromatography coupled with mass spectrometry. All Maumee River sites had a distinct mussel metabolome compared to the reference site and revealed changes in the energy metabolism and amino acids. Data also highlighted the importance of considering seasonality or handling effects on the metabolome at the time of sampling. The furthest upstream site presented a specific mussel tissue chemical signature of pesticides (atrazine and metolachlor), while a downstream site, located at Toledo's wastewater treatment plant, was characterized by polycyclic aromatic hydrocarbons and other organic contaminants. Further research into the dreissenid mussel's natural metabolic cycle and metabolic response to specific anthropogenic stressors is necessary before successful implementation of metabolomics in a biomonitoring program.
Collapse
Affiliation(s)
- Elena Legrand
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Amanda L Bayless
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Daniel W Bearden
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Fabio Casu
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| | - Michael Edwards
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, 1305 East-West Highway, Silver Spring, Maryland 20910, United States
| | - Annie Jacob
- Consolidated Safety Services, 10301 Democracy Lane, Suite 300, Fairfax, Virginia 22030, United States
| | - W Edward Johnson
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, 1305 East-West Highway, Silver Spring, Maryland 20910, United States
| | - Tracey B Schock
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412, United States
| |
Collapse
|
4
|
Ericson JA, Venter L, Welford MRV, Kumanan K, Alfaro AC, Ragg NLC. Effects of seawater temperature and acute Vibriosp. challenge on the haemolymph immune and metabolic responses of adult mussels (Perna canaliculus). FISH & SHELLFISH IMMUNOLOGY 2022; 128:664-675. [PMID: 35981703 DOI: 10.1016/j.fsi.2022.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The New Zealand Greenshell™ mussel (Perna canaliculus) is an endemic bivalve species with cultural importance, that is harvested recreationally and commercially. However, production is currently hampered by increasing incidences of summer mortality in farmed and wild populations. While the causative factors for these mortality events are still unknown, it is believed that increasing seawater temperatures and pathogen loads are potentially at play. To improve our understanding of these processes, challenge experiments were conducted to investigate the combined effects of increased seawater temperature and Vibrio infection on the immune and metabolic responses of adult mussels. Biomarkers that measure the physiological response of mussels to multiple-stressors can be utilised to study resilience in a changing environment, and support efforts to strengthen biosecurity management. Mussels acclimated to two temperatures (16 °C and 24 °C) were injected with either autoclaved, filtered seawater (control) or Vibriosp. DO1 (infected). Then, haemolymph was sampled 24 h post-injection and analysed to quantify haemocyte immune responses (via flow-cytometry), antioxidant capacity (measured electrochemically) and metabolic responses (via gas chromatography-mass spectrometry) to bacterial infection. Both seawater temperature and injection type significantly influenced the immune and metabolite status of mussels. A lack of interaction effects between temperature and injection type indicated that the effects of Vibrio sp. 24 h post-infection were similar between seawater temperatures. Infected mussels had a higher proportion of dead haemocytes and lower overall haemocyte counts than uninfected controls. The proportion of haemocytes showing evidence of apoptosis was higher in mussels held at 24 °C compared with those held at 16 °C. The proportion of haemocytes producing reactive oxygen species did not differ between temperatures or injection treatments. Mussels held at 24 °C exhibited elevated levels of metabolites linked to the glycolysis pathway to support energy production. The saccharopin-lysine pathway metabolites were also increased in these mussels, indicating the role of lysine metabolism. A decrease in metabolic activity (decreases in BCAAs, GABA, urea cycle metabolites, oxidative stress metabolites) was largely seen in mussels injected with Vibrio sp. Itaconate increased as seen in previous studies, suggesting that antimicrobial activity may have been activated in infected mussels. This study highlights the complex nature of immune and metabolic responses in mussels exposed to multiple stressors and gives an insight into Vibrio sp. infection mechanisms at different seawater temperatures.
Collapse
Affiliation(s)
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mena R V Welford
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Karthiga Kumanan
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| |
Collapse
|
5
|
Li C, Xing X, Qi H, Liu Y, Jian F, Wang J. The arachidonic acid and its metabolism pathway play important roles for Apostichopus japonicus infected by Vibrio splendens. FISH & SHELLFISH IMMUNOLOGY 2022; 125:152-160. [PMID: 35561951 DOI: 10.1016/j.fsi.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Improving the immune ability and guiding healthy culture for sea cucumber by purposefully screening the significant differential metabolites when Apostichopus japonicus (A. japonicus) is infected by pathogens is important. In this study, 35 types of significant differential metabolites appeared when A. japonicus were infected by Vibrio splendens (VSI group) compared with the control A. japonicus group (CK group) by using liquid chromatography-mass spectrometry (LC-MS/MS)-based untargeted metabolomics. Based on that finding, the 10 types of key metabolic pathways were analyzed by MetPA. The "arachidonic acid (ARA) metabolism" pathway, which was screened by three elevated biomarkers: ARA, prostaglandin F2α and 2-arachidonoyl glycerol, had an important impact on immune stress in A. japonicus. Due to the similar changes in several metabolites in its metabolic pathway, the ARA metabolic pathway was selected for further study. The activities of ACP, AKP and lysozyme, which are important innate immune-related enzymes, the survival rates of A. japonicus infected with V. splendidus and the relative content of ARA in the body wall detected by GC-MS were all upregulated significantly by exogenous daily 0.60% and 1.09% ARA consumption over a short period of approximately 7 days. These results demonstrated that ARA and its metabolic pathway indeed played important roles in the immunity of A. japonicus infected by the pathogen. The findings also provide novel insights for the effects of metabolites in A. japonicum healthy culture.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China.
| | - Xuan Xing
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Hongqing Qi
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Ying Liu
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Fanjie Jian
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Jihui Wang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| |
Collapse
|
6
|
Abstract
In the last decade, metal engineered nanomaterials (ENMs) have seen an exponential use in many critical technologies and products, as well an increasing release into the environment. Coastal ecosystems worldwide may receive ENM-polluted waters and wastes, with a consequent alteration of habitats and contamination of aquatic biota. There is a scarcity of data regarding the fate of these emerging contaminants in such environments. Open issues include the determination of the sources, the quantification of the interactions with marine sediments, the bioaccumulation pathways, the ecotoxicology on marine fauna and the identification of the principal biotic and abiotic factors that may alter metal ENMs toxicity. Little is known about their potential transference into the food web, as well toxicity features and co-stressors of single or multiple ENMs under laboratory and real environmental conditions for various taxonomic phyla. This review reports current knowledge on the ecological impact of ENMs under the complex environmental conditions of estuary systems, identifies gaps in current knowledge and provides directions for future research.
Collapse
|
7
|
Chen MH, Ma WL. A review on the occurrence of organophosphate flame retardants in the aquatic environment in China and implications for risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147064. [PMID: 34088162 DOI: 10.1016/j.scitotenv.2021.147064] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 05/28/2023]
Abstract
Organophosphate flame retardants (OPFRs), used extensively as substitutes for polybrominated diphenyl ethers, are ubiquitous environmental contaminants. OPFR pollution in aquatic environments, the main sink of pollutants, has been studied extensively over the past decade. Here, we review the current knowledge on the consumption and applications of OPFRs, and on their ecotoxicity in aquatic environments worldwide. We also synthesize the available evidence on the occurrence of OPFRs in aquatic environments in China (wastewater treatment plant influent and effluent, surface water, sediment, aquatic biota, and drinking water). Across China, the measured concentrations of OPFRs differ by more than three orders of magnitude. Risk assessments based on these measurements indicate a low level of ecological risk from OPFRs in most aquatic environments in China, and a low risk to human health from drinking water and aquatic products. Finally, we identify gaps in the current knowledge and directions for further research on OPFRs in aquatic environments.
Collapse
Affiliation(s)
- Mei-Hong Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|
8
|
Gyawali P, Karpe AV, Hillyer KE, Nguyen TV, Hewitt J, Beale DJ. A multi-platform metabolomics approach to identify possible biomarkers for human faecal contamination in Greenshell™ mussels (Perna canaliculus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145363. [PMID: 33736167 DOI: 10.1016/j.scitotenv.2021.145363] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Bivalve molluscs have the potential to bioaccumulate microbial pathogens including noroviruses from aquatic environments and as such, there is a need for a rapid and cheap in-situ method for their detection. Here, we characterise the tissue-specific response of New Zealand Greenshell™ mussels (Perna canaliculus) to faecal contamination from two different sources (municipal sewage and human faeces). This is done with the view to identify potential biomarkers that could be further developed into low cost, rapid and sensitive in-situ biosensors for human faecal contamination detection of mussels in growing areas. Tissue-specific metabolic profiles from gills, haemolymph and digestive glands were analysed using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Clear differentiation of metabolic profiles was observed among treatments in each tissue type. Overall, energy pathways such as glycolysis, citrate cycle and oxidative phosphorylation were downregulated across the three mussel tissues studied following simulated contamination events. Conversely, considerable sterol upregulation in the gills was observed after exposure to contamination. Additionally, free pools of nucleotide phosphates and the antioxidant glutathione declined considerably post-exposure to contamination in gills. These results provide important insights into the tissue-specific metabolic effects of human faecal contamination in mussels. This study demonstrates the utility of metabolomics as a tool for identifying potential biomarkers in mussels.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua 5240, New Zealand.
| | - Avinash V Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Katie E Hillyer
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Thao V Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand; Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd (ESR), Porirua 5240, New Zealand
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| |
Collapse
|
9
|
McCauley M, Chiarello M, Atkinson CL, Jackson CR. Gut Microbiomes of Freshwater Mussels (Unionidae) Are Taxonomically and Phylogenetically Variable across Years but Remain Functionally Stable. Microorganisms 2021; 9:411. [PMID: 33669471 PMCID: PMC7920476 DOI: 10.3390/microorganisms9020411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/01/2023] Open
Abstract
Freshwater mussels perform essential ecosystem functions, yet we have no information on how their microbiomes fluctuate over time. In this study, we examined temporal variation in the microbiome of six mussel species (Lampsilis ornata, Obovaria unicolor, Elliptio arca, Fusconaia cerina, Cyclonaias asperata, and Tritogonia verrucosa) sampled from the same river in 2016 and 2019. We examined the taxonomic, phylogenetic, and inferred functional (from 16S rRNA sequences) facets of their microbiome diversity. Significant differences between the two years were identified in five of the six species sampled. However, not all species that exhibited a temporally variable microbiome were functionally distinct across years, indicating functional redundancy within the mussel gut microbiome. Inferred biosynthesis pathways showed temporal variation in pathways involved in degradation, while pathways involved in cellular metabolism were stable. There was no evidence for phylosymbiosis across any facet of microbiome biodiversity. These results indicate that temporal variation is an important factor in the assembly of the gut microbiomes of freshwater mussels and provides further support that the mussel gut microbiome is involved in host development and activity.
Collapse
Affiliation(s)
- Mark McCauley
- Department of Biology, University of Mississippi, University, MS 38677, USA; (M.C.); (C.R.J.)
| | - Marlène Chiarello
- Department of Biology, University of Mississippi, University, MS 38677, USA; (M.C.); (C.R.J.)
| | - Carla L. Atkinson
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35401, USA;
| | - Colin R. Jackson
- Department of Biology, University of Mississippi, University, MS 38677, USA; (M.C.); (C.R.J.)
| |
Collapse
|
10
|
Roznere I, Sinn BT, Daly M, Watters GT. Freshwater mussels (Unionidae) brought into captivity exhibit up-regulation of genes involved in stress and energy metabolism. Sci Rep 2021; 11:2241. [PMID: 33500457 PMCID: PMC7838317 DOI: 10.1038/s41598-021-81856-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/31/2020] [Indexed: 01/30/2023] Open
Abstract
Approximately two thirds of freshwater mussel species in the United States and Canada are imperiled, and populations are declining rapidly. Translocation and captive management are commonly used to mitigate losses of freshwater mussel biodiversity, but these conservation tools may result in decreased growth and increased mortality. This study uses RNA-Seq to determine how translocation into captivity affects gene expression in Amblema plicata. Mussels were collected from the Muskingum River in Ohio, USA and brought into a captive holding facility. RNA was extracted from gill tissue 11 months post translocation from mussels in captivity and the Muskingum River on the same day. RNA was sequenced on an Illumina HiSeq 2500, and differential expression analysis was performed on de novo assembled transcripts. More than 1200 transcripts were up-regulated in captive mussels, and 246 were assigned functional annotations. Many up-regulated transcripts were involved in energy metabolism and the stress response, such as heat shock proteins and antioxidants. More than 500 transcripts were down-regulated in captive mussels, and 41 were assigned functional annotations. We observed an over-representation of down-regulated transcripts associated with immune response. Our work suggests that A. plicata experienced moderate levels of stress and altered energy metabolism and immune response for at least 11 months post translocation into captivity.
Collapse
Affiliation(s)
- Ieva Roznere
- grid.261331.40000 0001 2285 7943Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Brandon T. Sinn
- grid.261485.c0000 0001 2235 8896Department of Biology and Earth Science, Otterbein University, Westerville, OH 43081 USA
| | - Marymegan Daly
- grid.261331.40000 0001 2285 7943Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210 USA
| | - G. Thomas Watters
- grid.261331.40000 0001 2285 7943Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
11
|
Douda K, Escobar-Calderón F, Vodáková B, Horký P, Slavík O, Sousa R. In situ and low-cost monitoring of particles falling from freshwater animals: from microplastics to parasites. CONSERVATION PHYSIOLOGY 2020; 8:coaa088. [PMID: 33005421 PMCID: PMC7519624 DOI: 10.1093/conphys/coaa088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
A simple and low-cost method of monitoring and collecting particulate matter detaching from (or interacting with) aquatic animals is described using a novel device based on an airlift pump principle applied to floating cages. The efficiency of the technique in particle collection is demonstrated using polyethylene microspheres interacting with a cyprinid fish (Carassius carassius) and a temporarily parasitic stage (glochidia) of an endangered freshwater mussel (Margaritifera margaritifera) dropping from experimentally infested host fish (Salmo trutta). The technique enables the monitoring of temporal dynamics of particle detachment and their continuous collection both in the laboratory and in situ, allowing the experimental animals to be kept under natural water quality regimes and reducing the need for handling and transport. The technique can improve the representativeness of current experimental methods used in the fields of environmental parasitology, animal feeding ecology and microplastic pathway studies in aquatic environments. In particular, it makes it accessible to study the physiological compatibility of glochidia and their hosts, which is an essential but understudied autecological feature in mussel conservation programs worldwide. Field placement of the technique can also aid in outreach programs with pay-offs in the increase of scientific literacy of citizens concerning neglected issues such as the importance of fish hosts for the conservation of freshwater mussels.
Collapse
Affiliation(s)
- Karel Douda
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Czech Republic
| | - Felipe Escobar-Calderón
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Czech Republic
| | - Barbora Vodáková
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Czech Republic
| | - Pavel Horký
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague, Czech Republic
| | - Ronaldo Sousa
- CBMA, Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
12
|
Soong R, Liaghati Mobarhan Y, Tabatabaei M, Bastawrous M, Biswas RG, Simpson M, Simpson A. Flow-based in vivo NMR spectroscopy of small aquatic organisms. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:411-426. [PMID: 32239577 DOI: 10.1002/mrc.4886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/08/2019] [Accepted: 04/28/2019] [Indexed: 06/11/2023]
Abstract
NMR applied to living organisms is arguably the ultimate tool for understanding environmental stress responses and can provide desperately needed information on toxic mechanisms, synergistic effects, sublethal impacts, recovery, and biotransformation of xenobiotics. To perform in vivo NMR spectroscopy, a flow cell system is required to deliver oxygen and food to the organisms while maintaining optimal line shape for NMR spectroscopy. In this tutorial, two such flow cell systems and their constructions are discussed: (a) a single pump high-volume flow cell design is simple to build and ideal for organisms that do not require feeding (i.e., eggs) and (b) a more advanced low-volume double pump flow cell design that permits feeding, maintains optimal water height for water suppression, improves locking and shimming, and uses only a small recirculating volume, thus reducing the amount of xenobiotic required for testing. In addition, key experimental aspects including isotopic enrichment, water suppression, and 2D experiments for both 13 C enriched and natural abundance organisms are discussed.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Yalda Liaghati Mobarhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Maryam Tabatabaei
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Monica Bastawrous
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rajshree Ghosh Biswas
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Myrna Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Andre Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Jiang Y, Jiao H, Sun P, Yin F, Tang B. Metabolic response of Scapharca subcrenata to heat stress using GC/MS-based metabolomics. PeerJ 2020; 8:e8445. [PMID: 32025378 PMCID: PMC6993748 DOI: 10.7717/peerj.8445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022] Open
Abstract
Marine mollusks are commonly subjected to heat stress. To evaluate the effects of heat stress on the physiological metabolism of the ark shell Scapharca subcrenata, clams were exposed to different high temperatures (24, 28 and 32 °C) for 72 h. The oxygen consumption and ammonia excretion rates were measured at 2, 12, 24, 48 and 72 h. The results indicated that the metabolic rates of the ark shell significantly increased with increasing heat stress, accompanied by mortalities in response to prolonged exposure. A metabolomics approach based on gas chromatography coupled with mass spectrometry was further applied to assess the changes of metabolites in the mantle of the ark shell at 32 °C. Moreover, multivariate and pathway analyses were conducted for the different metabolites. The results showed that the heat stress caused changes in energy metabolism, amino acid metabolism, osmotic regulation, carbohydrate metabolism and lipid metabolism through different metabolic pathways. These results are consistent with the significant changes of oxygen consumption rate and ammonia excretion rate. The present study contributes to the understanding of the impacts of heat stress on intertidal bivalves and elucidates the relationship between individual-level responses and underlying molecular metabolic dynamics.
Collapse
Affiliation(s)
- Yazhou Jiang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Haifeng Jiao
- Ningbo Academy of Ocean and Fishery, Ningbo, Zhejiang, China
| | - Peng Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Baojun Tang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
14
|
Affiliation(s)
- Diane L. Waller
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 USA
| | - W. Gregory Cope
- Department of Applied Ecology, North Carolina State University, Raleigh NC 27695-7617 USA
| |
Collapse
|
15
|
Kovacevic V, Simpson AJ, Simpson MJ. Metabolic profiling of Daphnia magna exposure to a mixture of hydrophobic organic contaminants in the presence of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1252-1262. [PMID: 31726555 DOI: 10.1016/j.scitotenv.2019.06.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
The hydrophobic organic contaminants triclosan, triphenyl phosphate (TPhP) and diazinon sorb to dissolved organic matter (DOM) and this may alter their bioavailability and toxicity. 1H nuclear magnetic resonance (NMR)-based metabolomics was used to investigate how DOM at 1 and 5 mg organic carbon/L may alter the metabolome of Daphnia magna from exposure to equitoxic mixtures of triclosan, TPhP and diazinon. These contaminants have different modes of action toward D. magna. The contaminant concentrations in each mixture were an equal percentage of their lethal concentration to 50% of the population (LC50) values, which equates to 1250 μg/L TPhP, 330 μg/L triclosan and 0.9 μg/L diazinon. The ternary mixture exposure at 1% LC50 values did not alter the D. magna metabolome. Contaminant mixture exposures at 5%, 10%, and 15% LC50 values decreased glucose, serine and glycine concentrations and increased asparagine and threonine concentrations, suggesting disruptions in energy metabolism. The contaminant mixture had a unique mode of action in D. magna and DOM at 1 and 5 mg organic carbon/L did not change this mode of action. The estimated sorption of triclosan, TPhP or diazinon to DOM at 1 or 5 mg organic carbon/L in this experimental design was calculated to be <50% for each contaminant. This suggests that the mode of action of the contaminant mixture was not altered by DOM because the two environmentally relevant concentrations of DOM may have not substantially altered contaminant bioavailability. Our results indicate that DOM may not inevitably mitigate or alter the sub-lethal toxicity of a mixture of hydrophobic organic contaminants. This indicates the complexity of predicting the molecular-level toxicity of environmental mixtures. For adequate risk assessment of freshwater ecosystems, it is vital to account for the combined sub-lethal toxicity of an environmental mixture of contaminants.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
16
|
Tabatabaei Anaraki M, Dutta Majumdar R, Wagner N, Soong R, Kovacevic V, Reiner EJ, Bhavsar SP, Ortiz Almirall X, Lane D, Simpson MJ, Heumann H, Schmidt S, Simpson AJ. Development and Application of a Low-Volume Flow System for Solution-State in Vivo NMR. Anal Chem 2018; 90:7912-7921. [DOI: 10.1021/acs.analchem.8b00370] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Rudraksha Dutta Majumdar
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Nicole Wagner
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Ronald Soong
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Vera Kovacevic
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Eric J. Reiner
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Ministry of Environment and Climate Change, Toronto, Ontario M9P 3V6, Canada
| | | | | | - Daniel Lane
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Myrna J. Simpson
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | | | | | - André J. Simpson
- Department of Physical and Environment Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
17
|
Kovacevic V, Simpson AJ, Simpson MJ. Investigation of Daphnia magna Sub-Lethal Exposure to Organophosphate Esters in the Presence of Dissolved Organic Matter Using ¹H NMR-Based Metabolomics. Metabolites 2018; 8:metabo8020034. [PMID: 29783758 PMCID: PMC6027453 DOI: 10.3390/metabo8020034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Organophosphate esters (OPEs) are frequently detected in aquatic environments. Hydrophobic OPEs with high octanol-water partition coefficients (Log KOW) will likely sorb to dissolved organic matter (DOM) and consequently alter OPE bioavailability and sub-lethal toxicity. 1H nuclear magnetic resonance (NMR)-based metabolomics was used to evaluate how DOM (5 mg organic carbon/L) alters the metabolic response of Daphnia magna exposed to sub-lethal concentrations of three individual OPEs with varying hydrophobicity. D. magna exposed to the hydrophilic contaminant (Log KOW = 1.43) tris(2-chloroethyl) phosphate (TCEP) did not have substantial metabolic changes and DOM did not alter the metabolic response. There were significant increases in amino acids and a decrease in glucose from exposure to the hydrophobic contaminant (Log KOW = 3.65) tris(2-butoxyethyl) phosphate (TBOEP) which DOM did not mitigate, likely due to the high sub-lethal toxicity of TBOEP. Exposure to DOM and the hydrophobic contaminant (Log KOW = 4.76) triphenyl phosphate (TPhP) resulted in a unique metabolic response which was unlike TPhP only exposure, perhaps because DOM may be an additional stressor with TPhP exposure. Therefore, Log KOW values may not always predict how sub-lethal contaminant toxicity will change with DOM and there should be more consideration to incorporate DOM in sub-lethal ecotoxicology testing.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
18
|
Venter L, Loots DT, Mienie LJ, Jansen van Rensburg PJ, Mason S, Vosloo A, Lindeque JZ. Uncovering the metabolic response of abalone (Haliotis midae) to environmental hypoxia through metabolomics. Metabolomics 2018; 14:49. [PMID: 30830330 DOI: 10.1007/s11306-018-1346-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/03/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Oxygen is essential for metabolic processes and in the absence thereof alternative metabolic pathways are required for energy production, as seen in marine invertebrates like abalone. Even though hypoxia has been responsible for significant losses to the aquaculture industry, the overall metabolic adaptations of abalone in response to environmental hypoxia are as yet, not fully elucidated. OBJECTIVE To use a multiplatform metabolomics approach to characterize the metabolic changes associated with energy production in abalone (Haliotis midae) when exposed to environmental hypoxia. METHODS Metabolomics analysis of abalone adductor and foot muscle, left and right gill, hemolymph, and epipodial tissue samples were conducted using a multiplatform approach, which included untargeted NMR spectroscopy, untargeted and targeted LC-MS spectrometry, and untargeted and semi-targeted GC-MS spectrometric analyses. RESULTS Increased levels of anaerobic end-products specific to marine animals were found which include alanopine, strombine, tauropine and octopine. These were accompanied by elevated lactate, succinate and arginine, of which the latter is a product of phosphoarginine breakdown in abalone. Primarily amino acid metabolism was affected, with carbohydrate and lipid metabolism assisting with anaerobic energy production to a lesser extent. Different tissues showed varied metabolic responses to hypoxia, with the largest metabolic changes in the adductor muscle. CONCLUSIONS From this investigation, it becomes evident that abalone have well-developed (yet understudied) metabolic mechanisms for surviving hypoxic periods. Furthermore, metabolomics serves as a powerful tool for investigating the altered metabolic processes in abalone.
Collapse
Affiliation(s)
- Leonie Venter
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lodewyk Japie Mienie
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Peet J Jansen van Rensburg
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Shayne Mason
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Andre Vosloo
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Jeremie Zander Lindeque
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
19
|
Schenekar T, Weiss S. Selection and genetic drift in captive versus wild populations: an assessment of neutral and adaptive (MHC-linked) genetic variation in wild and hatchery brown trout (Salmo trutta) populations. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0949-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Fletcher QE, Selman C. Aging in the wild: Insights from free-living and non-model organisms. Exp Gerontol 2015; 71:1-3. [PMID: 26403678 DOI: 10.1016/j.exger.2015.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Quinn E Fletcher
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|