1
|
Hu S, Fu Y, Xue M, Lan Y, Xi W, Xu Z, Han W, Wu D, Cheng C. Simultaneous removal of antibiotic-resistant Escherichia coli and its resistance genes by dielectric barrier discharge plasma. ENVIRONMENTAL RESEARCH 2023; 231:116163. [PMID: 37217128 DOI: 10.1016/j.envres.2023.116163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
As emerging contaminants, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been widely detected in various aqueous environments. For antibiotic resistance to be inhibited in the environment, it is essential to control ARB and ARGs. In this study, dielectric barrier discharge (DBD) plasma was used to inactivate antibiotic resistant Escherichia coli (AR E. coli) and remove ARGs simultaneously. Within 15 s of plasma treatment, 108 CFU/mL of AR E. coli were inactivated by 97.9%. The rupture of the bacterial cell membrane and the increase of intracellular ROS are the main reasons for the rapid inactivation of bacteria. Intracellular ARGs (i-qnrB, i-blaCTX-M, i-sul2) and integron gene (i-int1) decreased by 2.01, 1.84, 2.40, and 2.73 log after 15 min of plasma treatment, respectively. In the first 5 min of discharge, extracellular ARGs (e-qnrB, e-blaCTX-M, e-sul2) and integron gene (e-int1) decreased by 1.99, 2.22, 2.66, and 2.80 log, respectively. The results of the ESR and quenching experiments demonstrated that ·OH and 1O2 played important roles in the removal of ARGs. This study shows that DBD plasma is an effective technique to control ARB and ARGs in waters.
Collapse
Affiliation(s)
- Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yuhang Fu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Muen Xue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan Lan
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, People's Republic of China
| | - Wenhao Xi
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Zimu Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China.
| | - Wei Han
- Institute of Health and Medical Technology/Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Danzhou Wu
- Anhui Engineering Consulting Institute, Hefei 230001, People's Republic of China
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, People's Republic of China.
| |
Collapse
|
2
|
Jiang X, Fielding LA, Davis H, Carroll W, Lisic EC, Deweese JE. Inhibition of Topoisomerases by Metal Thiosemicarbazone Complexes. Int J Mol Sci 2023; 24:12010. [PMID: 37569386 PMCID: PMC10419228 DOI: 10.3390/ijms241512010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Topoisomerases, common targets for anti-cancer therapeutics, are crucial enzymes for DNA replication, transcription, and many other aspects of DNA metabolism. The potential anti-cancer effects of thiosemicarbazones (TSC) and metal-TSC complexes have been demonstrated to target several biological processes, including DNA metabolism. Human topoisomerases were discovered among the molecular targets for TSCs, and metal-chelated TSCs specifically displayed significant inhibition of topoisomerase II. The processes by which metal-TSCs or TSCs inhibit topoisomerases are still being studied. In this brief review, we summarize the TSCs and metal-TSCs that inhibit various types of human topoisomerases, and we note some of the key unanswered questions regarding this interesting class of diverse compounds.
Collapse
Affiliation(s)
- Xiaohua Jiang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Lauren A. Fielding
- Department of Biological, Physical and Human Sciences, Freed Hardeman University, Henderson, TN 38340, USA
| | - Hunter Davis
- Department of Chemistry, Tennessee Tech University, Cookeville, TN 38505, USA
| | - William Carroll
- Department of Chemistry, Tennessee Tech University, Cookeville, TN 38505, USA
| | - Edward C. Lisic
- Department of Chemistry, Tennessee Tech University, Cookeville, TN 38505, USA
| | - Joseph E. Deweese
- Department of Biological, Physical and Human Sciences, Freed Hardeman University, Henderson, TN 38340, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
3
|
Zhang W, Gou P, Dupret JM, Chomienne C, Rodrigues-Lima F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl Oncol 2021; 14:101169. [PMID: 34243013 PMCID: PMC8273223 DOI: 10.1016/j.tranon.2021.101169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/13/2023] Open
Abstract
Etoposide is a semi-synthetic glycoside derivative of podophyllotoxin, also known as VP-16. It is a widely used anticancer medicine in clinics. Unfortunately, high doses or long-term etoposide treatment can induce therapy-related leukemia. The mechanism by which etoposide induces secondary hematopoietic malignancies is still unclear. In this article, we review the potential mechanisms of etoposide induced therapy-related leukemia. Etoposide related leukemogenesis is known to depend on reactive oxidative metabolites of etoposide, notably etoposide quinone, which interacts with cellular proteins such as topoisomerases II (TOP2), CREB-binding protein (CREBBP), and T-Cell Protein Tyrosine Phosphatase (TCPTP). CYP3A4 and CYP3A5 metabolize etoposide to etoposide catechol, which readily oxidizes to etoposide quinone. As a poison of TOP2 enzymes, etoposide and its metabolites induce DNA double-stranded breaks (DSB), and the accumulation of DSB triggers cell apoptosis. If the cell survives, the DSB gives rise to the likelihood of faulty DNA repair events. The gene translocation could occur in mixed-lineage leukemia (MLL) gene, which is well-known in leukemogenesis. Recently, studies have revealed that etoposide metabolites, especially etoposide quinone, can covalently bind to cysteines residues of CREBBP and TCPTP enzymes, . This leads to enzyme inhibition and further affects histone acetylation and phosphorylation of the JAK-STAT pathway, thus putatively altering the proliferation and differentiation of hematopoietic stem cells (HSC). In brief, current studies suggest that etoposide and its metabolites contribute to etoposide therapy-related leukemia through TOP2 mediated DSB and impairs specific enzyme activity, such as CREBBP and TCPTP.
Collapse
Affiliation(s)
- Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, Paris F-75013, France.
| | - Panhong Gou
- Inserm UMR-S1131, Université de Paris, IRSL, Hôpital Saint-Louis, Paris, France
| | | | - Christine Chomienne
- Inserm UMR-S1131, Université de Paris, IRSL, Hôpital Saint-Louis, Paris, France; Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | | |
Collapse
|
4
|
Vann KR, Oviatt AA, Osheroff N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry 2021; 60:1630-1641. [PMID: 34008964 PMCID: PMC8209676 DOI: 10.1021/acs.biochem.1c00240] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.
Collapse
Affiliation(s)
- Kendra R Vann
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A Oviatt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
5
|
Brisson GD, de Almeida Lopes B, Andrade FG, Dos Santos Bueno FV, Sardou-Cezar I, de Aguiar Gonçalves BA, Terra-Granado E, Paraguassú-Braga FH, Pombo-de-Oliveira MS. EPHX1 rs1051740 T>C (Tyr113His) is strongly associated with acute myeloid leukemia and KMT2A rearrangements in early age. Arch Toxicol 2018; 92:2001-2012. [PMID: 29605894 DOI: 10.1007/s00204-018-2198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/21/2018] [Indexed: 01/18/2023]
Abstract
Experimental and epidemiological data have shown that acute myeloid leukemia in early-age (i-AML) originates prenatally. The risk association between transplacental exposure to benzene metabolites and i-AML might be influenced by genetic susceptibility. In this study, we investigated the relationship between genetic polymorphisms in CYP2E1, EPHX1, MPO, NQO1, GSTM1 and GSTT1 genes, and i-AML risk. The study included 101 i-AMLs and 416 healthy controls. Genomic DNA from study subjects was purified from bone marrow or peripheral blood aspirates and genotyped for genetic polymorphisms by real-time PCR allelic discrimination, Sanger sequencing and multiplex PCR. Crude and adjusted odds ratios (OR, adjOR, respectively) with 95% confidence intervals (95% CI) were assessed using unconditional logistic regression to estimate the magnitude of risk associations. EPHX1 rs1051740 T>C was associated with i-AML risk under the co-dominant (adjOR 3.04, P = 0.003) and recessive (adjOR 2.99, P = 0.002) models. In stratified analysis, EPHX1 rs1051740 was associated with increased risk for i-AML with KMT2A rearrangement (adjOR 3.06, P = 0.045), i-AML with megakaryocytic differentiation (adjOR 5.10, P = 0.008), and i-AML with type I mutation (adjOR 2.02, P = 0.037). EPHX1 rs1051740-rs2234922 C-G haplotype was also associated with increased risk for i-AML (adjOR 2.55, P = 0.043), and for i-AML with KMT2A rearrangement (adjOR 3.23, P = 0.034). Since EPHX1 enzyme is essential in cellular defense against epoxides, the diminished enzymatic activity conferred by the variant allele C could explain the risk associations found for i-AML. In conclusion, EPHX1 rs1051740 plays an important role in i-AML's genetic susceptibility by modulating the carcinogenic effects of epoxide exposures in the bone marrow.
Collapse
Affiliation(s)
- Gisele Dallapicola Brisson
- Pediatric Hematology-Oncology Research Program, Research Center, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ, Brazil
| | - Bruno de Almeida Lopes
- Pediatric Hematology-Oncology Research Program, Research Center, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ, Brazil
| | - Francianne Gomes Andrade
- Pediatric Hematology-Oncology Research Program, Research Center, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ, Brazil
| | - Filipe Vicente Dos Santos Bueno
- Pediatric Hematology-Oncology Research Program, Research Center, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ, Brazil
| | - Ingrid Sardou-Cezar
- Pediatric Hematology-Oncology Research Program, Research Center, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ, Brazil
| | - Bruno Alves de Aguiar Gonçalves
- Pediatric Hematology-Oncology Research Program, Research Center, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ, Brazil
| | - Eugênia Terra-Granado
- Pediatric Hematology-Oncology Research Program, Research Center, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ, Brazil
| | - Flávio Henrique Paraguassú-Braga
- Centro de Processamento e Armazenamento Celular, Banco de Sangue de Cordão Umbilical, Centro de Transplante e Terapia Celular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha 23, Rio de Janeiro, RJ, Brazil
| | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Research Program, Research Center, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Jiménez-Garza O, Guo L, Byun HM, Carrieri M, Bartolucci GB, Zhong J, Baccarelli AA. Promoter methylation status in genes related with inflammation, nitrosative stress and xenobiotic metabolism in low-level benzene exposure: Searching for biomarkers of oncogenesis. Food Chem Toxicol 2017; 109:669-676. [DOI: 10.1016/j.fct.2017.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
|
7
|
Vann KR, Ekiz G, Zencir S, Bedir E, Topcu Z, Osheroff N. Effects of Secondary Metabolites from the Fungus Septofusidium berolinense on DNA Cleavage Mediated by Human Topoisomerase IIα. Chem Res Toxicol 2016; 29:415-20. [PMID: 26894873 DOI: 10.1021/acs.chemrestox.6b00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two metabolites from the ascomycete fungus Septofusidium berolinense were recently identified as having antineoplastic activity [Ekiz et al. (2015) J. Antibiot. , DOI: 10.1038/ja.2015.84]. However, the basis for this activity is not known. One of the compounds [3,6-dihydroxy-2-propylbenzaldehyde (GE-1)] is a hydroquinone, and the other [2-hydroxymethyl-3-propylcyclohexa-2,5-diene-1,4-dione (GE-2)] is a quinone. Because some hydroquinones and quinones act as topoisomerase II poisons, the effects of GE-1 and GE-2 on DNA cleavage mediated by human topoisomerase IIα were assessed. GE-2 enhanced DNA cleavage ∼4-fold and induced scission with a site specificity similar to that of the anticancer drug etoposide. Similar to other quinone-based topoisomerase II poisons, GE-2 displayed several hallmark characteristics of covalent topoisomerase II poisons, including (1) the inability to poison a topoisomerase IIα construct that lacks the N-terminal domain, (2) the inhibition of DNA cleavage when the compound was incubated with the enzyme prior to the addition of plasmid, and (3) the loss of poisoning activity in the presence of a reducing agent. In contrast to GE-2, GE-1 did not enhance DNA cleavage mediated by topoisomerase IIα except at very high concentrations. However, the activity and potency of the metabolite were dramatically enhanced under oxidizing conditions. These results suggest that topoisomerase IIα may play a role in mediating the cytotoxic effects of these fungal metabolites.
Collapse
Affiliation(s)
| | | | - Sevil Zencir
- Department of Medical Biology, Faculty of Medicine, Pamukkale University , 20070 Denizli, Turkey
| | | | | | - Neil Osheroff
- VA Tennessee Valley Healthcare System , Nashville, Tennessee 37212, United States
| |
Collapse
|
8
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells. Mutat Res 2015; 779:86-95. [PMID: 26163765 PMCID: PMC4808301 DOI: 10.1016/j.mrfmmm.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/27/2015] [Accepted: 06/23/2015] [Indexed: 01/27/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The distribution of breakpoints by exposure to non-cytotoxic levels of chemicals showed a similar pattern to fusion breakpoints in leukemia patients. Our findings demonstrate that HSPCs exposed to non-cytotoxic levels of environmental chemicals and chemotherapeutic agents are prone to topoisomerase II-mediated DNA damage at the leukemia-associated genes MLL and CBFB. These data suggest a role for long-term environmental chemical or residual chemotherapeutic drug exposure in generation of DNA breakage at sites with a propensity to form leukemia-causing gene rearrangements.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA.
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA.
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
10
|
De Palma G, Manno M. Metabolic polymorphisms and biomarkers of effect in the biomonitoring of occupational exposure to low-levels of benzene: state of the art. Toxicol Lett 2014; 231:194-204. [PMID: 25447454 DOI: 10.1016/j.toxlet.2014.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022]
Abstract
Current levels of occupational exposure to benzene, a genotoxic human carcinogen, in Western countries are reduced by two-three orders of magnitude (from ppm to ppb) as compared to the past. However, as benzene toxicity is strongly dependent on biotransformation and recent evidence underlines a higher efficiency of bio-activation pathways at lower levels of exposure, toxic effects at low doses could be higher than expected, particularly in susceptible individuals. Currently, biological monitoring can allow accurate exposure assessment, relying on sensitive and specific enough biomarkers of internal dose. The availability of similarly reliable biomarkers of early effect or susceptibility could greatly improve the risk assessment process to such an extent that risk could even be assessed at the individual level. As to susceptibility biomarkers, functional genetic polymorphisms of relevant biotransformation enzymes may modulate the risk of adverse effects (NQO1) and the levels of biomarkers of internal dose, in particular S-phenylmercapturic acid (GSTM1, GSTT1, GSTA1). Among biomarkers of early effect, genotoxicity indicators, although sensitive in some cases, are too aspecific for routine use in occupational health surveillance programmes. Currently only the periodical blood cell count seems suitable enough to be applied in the longitudinal monitoring of effects from benzene exposure. Novel biomarkers of early effect are expected from higher collaboration among toxicologists and clinicians, also using advanced "omics" techniques.
Collapse
Affiliation(s)
- G De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Public Health and Human Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - M Manno
- Department of Public Health, Section of Occupational Medicine and Toxicology, University of Napoli Federico II, Via S. Pansini, 5, 80131 Napoli, Italy
| |
Collapse
|
11
|
Ashley RE, Osheroff N. Natural products as topoisomerase II poisons: effects of thymoquinone on DNA cleavage mediated by human topoisomerase IIα. Chem Res Toxicol 2014; 27:787-93. [PMID: 24650156 PMCID: PMC4033629 DOI: 10.1021/tx400453v] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
seeds of Nigella sativa (often
referred to as black seed) have long been utilized as a medicinal
herb in Middle Eastern, Northern African, and Indian cultures. Historically,
black seed has been used to treat a variety of illnesses associated
with inflammation. More recent studies have found that it induces
apoptosis and displays anticancer activity in animal and cellular
models. The major bioactive compound of black seed is thymoquinone,
which shares structural features with 1,4-benzoquinone and other covalent
topoisomerase II poisons. Because a number of anticancer drugs target
type II topoisomerases, we determined the effects of thymoquinone
and a series of related quinones on human topoisomerase IIα.
Thymoquinone enhanced enzyme-mediated DNA cleavage ∼5-fold,
which is similar to the increase seen with the anticancer drug etoposide.
In order to enhance cleavage, compounds had to have at least two positions
available for acylation. Furthermore, activity was decreased by the
inclusion of electron-donating groups or bulky substituents. As predicted
for a covalent topoisomerase II poison, the activity of thymoquinone
(and related compounds) was abrogated by the addition of a reducing
agent. Also, thymoquinone inhibited topoisomerase IIα activity
when incubated with the enzyme prior to the addition of DNA. Cleavage
complexes formed in the presence of the compound were stable for at
least 8 h. Lastly, black seed extract and black seed oil both increased
levels of enzyme-mediated DNA cleavage, suggesting that thymoquinone
is active even in more complex herbal formulations. These findings
indicate that thymoquinone can be added to the growing list of dietary
and medicinal natural products with activity against human type II
topoisomerases.
Collapse
Affiliation(s)
- Rachel E Ashley
- Departments of †Biochemistry and ‡Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | |
Collapse
|
12
|
Sobek S, Boege F. DNA topoisomerases in mtDNA maintenance and ageing. Exp Gerontol 2014; 56:135-41. [PMID: 24440386 DOI: 10.1016/j.exger.2014.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/26/2022]
Abstract
DNA topoisomerases pass DNA strands through each other, a function essential for all DNA metabolic processes that create supercoils or entanglements of DNA. Topoisomerases play an ambivalent role in nuclear genome maintenance: Deficiency compromises gene transcription, replication and chromosome segregation, while the inherent DNA-cleavage activity of the enzymes endangers DNA integrity. Indeed, many DNA-damaging agents act through enhancing topoisomerase DNA cleavage. Mitochondrial DNA (mtDNA) clearly requires topoisomerase activity for transcription and replication, because it is a closed, double-stranded DNA molecule. Three topoisomerases have so far been found in mammalian mitochondria (I, IIβ, IIIα), but their precise role in mtDNA metabolism, mitochondrial maintenance and respiratory function remains mostly unclear. It is a reasonable surmise that these enzymes exhibit similar ambiguity with respect to genome maintenance and gene transcription as their nuclear counterparts. Here, we review what is known about the physiological roles of mitochondrial topoisomerases and draft three scenarios of how these enzymes possibly contribute to ageing-related mtDNA attrition and respiratory chain dysfunction. These scenarios are: mtDNA attrition by exogenously stimulated topoisomerase DNA cleavage, unbalancing of mitochondrial and nuclear transcription by direct effects on mitochondrial transcription, and contributions to enhanced mtDNA entanglement and recombination.
Collapse
Affiliation(s)
- Stefan Sobek
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany.
| |
Collapse
|
13
|
Timmel MA, Byl JAW, Osheroff N. Epimerization of green tea catechins during brewing does not affect the ability to poison human type II topoisomerases. Chem Res Toxicol 2013; 26:622-8. [PMID: 23514406 DOI: 10.1021/tx4000667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
(-)-Epigallocatechin gallate (EGCG) is the most abundant and biologically active polyphenol in green tea (Camellia sinensis) leaves, and many of its cellular effects are consistent with its actions as a topoisomerase II poison. In contrast to genistein and several related bioflavonoids that act as interfacial poisons, EGCG was the first bioflavonoid shown to act as a covalent topoisomerase II poison. Although studies routinely examine the effects of dietary phytochemicals on enzyme and cellular systems, they often fail to consider that many compounds are altered during cooking or cellular metabolism. To this point, the majority of EGCG and related catechins in green tea leaves are epimerized during the brewing process. Epimerization inverts the stereochemistry of the bond that bridges the B- and C-rings and converts EGCG to (-)-gallocatechin gallate (GCG). Consequently, a significant proportion of EGCG that is ingested during the consumption of green tea is actually GCG. Therefore, the effects of GCG and related epimerized green tea catechins on human topoisomerase IIα and IIβ were characterized. GCG increased levels of DNA cleavage mediated by both enzyme isoforms with an activity that was similar to that of EGCG. GCG acted primarily by inhibiting the ability of topoisomerase IIα and IIβ to ligate cleaved DNA. Several lines of evidence indicate that GCG functions as a covalent topoisomerase II poison that adducts the enzyme. Finally, epimerization did not affect the reactivity of the chemical substituents (the three hydroxyl groups on the B-ring) that were required for enzyme poisoning. Thus, the activity of covalent topoisomerase II poisons appears to be less sensitive to stereochemical changes than interfacial poisons.
Collapse
Affiliation(s)
- M Anne Timmel
- Departments of †Biochemistry and ‡Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | |
Collapse
|
14
|
Ketron AC, Gordon ON, Schneider C, Osheroff N. Oxidative metabolites of curcumin poison human type II topoisomerases. Biochemistry 2012; 52:221-7. [PMID: 23253398 DOI: 10.1021/bi3014455] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The polyphenol curcumin is the principal flavor and color component of the spice turmeric. Beyond its culinary uses, curcumin is believed to positively impact human health and displays antioxidant, anti-inflammatory, antibacterial, and chemopreventive properties. It also is in clinical trials as an anticancer agent. In aqueous solution at physiological pH, curcumin undergoes spontaneous autoxidation that is enhanced by oxidizing agents. The reaction proceeds through a series of quinone methide and other reactive intermediates to form a final dioxygenated bicyclopentadione product. Several naturally occurring polyphenols that can form quinones have been shown to act as topoisomerase II poisons (i.e., they increase levels of topoisomerase II-mediated DNA cleavage). Because several of these compounds have chemopreventive properties, we determined the effects of curcumin, its oxidative metabolites, and structurally related degradation products (vanillin, ferulic acid, and feruloylmethane) on the DNA cleavage activities of human topoisomerase IIα and IIβ. Intermediates in the curcumin oxidation pathway increased the level of DNA scission mediated by both enzymes ~4-5-fold. In contrast, curcumin and the bicyclopentadione, as well as vanillin, ferulic acid, and feruloylmethane, had no effect on DNA cleavage. As found for other quinone-based compounds, curcumin oxidation intermediates acted as redox-dependent (as opposed to interfacial) topoisomerase II poisons. Finally, under conditions that promote oxidation, the dietary spice turmeric enhanced topoisomerase II-mediated DNA cleavage. Thus, even within the more complex spice formulation, oxidized curcumin intermediates appear to function as topoisomerase II poisons.
Collapse
Affiliation(s)
- Adam C Ketron
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
15
|
Siew EL, Chan KM, Williams GT, Ross D, Inayat-Hussain SH. Protection of hydroquinone-induced apoptosis by downregulation of Fau is mediated by NQO1. Free Radic Biol Med 2012; 53:1616-24. [PMID: 22687461 DOI: 10.1016/j.freeradbiomed.2012.05.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/26/2012] [Accepted: 05/30/2012] [Indexed: 01/11/2023]
Abstract
The Fau gene (Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)-associated ubiquitously expressed gene) was identified as a potential tumor suppressor gene using a forward genetics approach. Downregulation of Fau by overexpression of its reverse sequence has been shown to inhibit apoptosis induced by DNA-damaging agents. To address a potential role of Fau in benzene toxicity, we investigated the apoptotic effects of hydroquinone (HQ), a major benzene metabolite, in W7.2 mouse thymoma cells transfected with either a plasmid construct expressing the antisense sequence of Fau (rfau) or the empty vector (pcDNA3.1) as a control. HQ induced apoptosis via increased production of reactive oxygen species and DNA damage, measured using dihydroethidine (HE) staining and alkaline Comet assay, respectively, in W7.2 pcDNA3.1 cells. In contrast, when Fau was downregulated by the antisense sequence in W7.2 rfau cells, HQ treatment did not cause DNA damage and oxidative stress and these cells were markedly more resistant to HQ-induced apoptosis. Further investigation revealed that there was an upregulation of NAD(P)H: quinone oxidoreductase 1 (NQO1), a detoxification enzyme for benzene-derived quinones, in W7.2 rfau cells. Compromising cellular NQO1 by use of a specific mechanism-based inhibitor (MAC 220) and NQO1 siRNA resensitized W7.2 rfau cells to HQ-induced apoptosis. Silencing of Fau in W7.2 wild-type cells resulted in increased levels of NQO1, confirming that downregulation of Fau results in NQO1 upregulation which protects against HQ-induced apoptosis.
Collapse
Affiliation(s)
- E L Siew
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | | | | | | | | |
Collapse
|
16
|
Leukemia and benzene. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2875-93. [PMID: 23066403 PMCID: PMC3447593 DOI: 10.3390/ijerph9082875] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/05/2012] [Accepted: 08/07/2012] [Indexed: 01/21/2023]
Abstract
Excessive exposure to benzene has been known for more than a century to damage the bone marrow resulting in decreases in the numbers of circulating blood cells, and ultimately, aplastic anemia. Of more recent vintage has been the appreciation that an alternative outcome of benzene exposure has been the development of one or more types of leukemia. While many investigators agree that the array of toxic metabolites, generated in the liver or in the bone marrow, can lead to traumatic bone marrow injury, the more subtle mechanisms leading to leukemia have yet to be critically dissected. This problem appears to have more general interest because of the recognition that so-called "second cancer" that results from prior treatment with alkylating agents to yield tumor remissions, often results in a type of leukemia reminiscent of benzene-induced leukemia. Furthermore, there is a growing literature attempting to characterize the fine structure of the marrow and the identification of so called "niches" that house a variety of stem cells and other types of cells. Some of these "niches" may harbor cells capable of initiating leukemias. The control of stem cell differentiation and proliferation via both inter- and intra-cellular signaling will ultimately determine the fate of these transformed stem cells. The ability of these cells to avoid checkpoints that would prevent them from contributing to the leukemogenic response is an additional area for study. Much of the study of benzene-induced bone marrow damage has concentrated on determining which of the benzene metabolites lead to leukemogenesis. The emphasis now should be directed to understanding how benzene metabolites alter bone marrow cell biology.
Collapse
|
17
|
Auzanneau C, Montaudon D, Jacquet R, Puyo S, Pouységu L, Deffieux D, Elkaoukabi-Chaibi A, De Giorgi F, Ichas F, Quideau S, Pourquier P. The polyphenolic ellagitannin vescalagin acts as a preferential catalytic inhibitor of the α isoform of human DNA topoisomerase II. Mol Pharmacol 2012; 82:134-41. [PMID: 22528119 DOI: 10.1124/mol.111.077537] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polyphenolic ellagitannins are natural compounds that are often associated with the therapeutic activity of plant extracts used in traditional medicine. They display cancer-preventing activity in animal models by a mechanism that remains unclear. Potential targets have been proposed, including DNA topoisomerases II (Top2). Top2α and Top2β, the two isoforms of the human Top2, play a crucial role in the regulation of replication, transcription, and chromosome segregation. They are the target of anticancer agents used in the clinic such as anthracyclines (e.g., doxorubicin) or the epipodophyllotoxin etoposide. It was recently shown that the antitumor activity of etoposide was due primarily to the inhibition of Top2α, whereas inhibition of Top2β was responsible for the development of secondary malignancies, pointing to the need for more selective Top2α inhibitors. Here, we show that the polyphenolic ellagitannin vescalagin preferentially inhibits the decatenation activity of Top2α in vitro, by a redox-independent mechanism. In CEM cells, we also show that transient small interfering RNA-mediated down-regulation of Top2α but not of Top2β conferred a resistance to vescalagin, indicating that the α isoform is a preferential target. We further confirmed that Top2α inhibition was due to a catalytic inhibition of the enzyme because it did not induce DNA double-strand breaks in CEM-treated cells but prevented the formation of Top2α- rather than Top2β-DNA covalent complexes induced by etoposide. To our knowledge, vescalagin is the first example of a catalytic inhibitor for which cytotoxicity is due, at least in part, to the preferential inhibition of Top2α.
Collapse
Affiliation(s)
- Céline Auzanneau
- Institut National de la Santé et de la Recherche Médicale U916 and Université de Bordeaux, Institut Bergonié, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ketron AC, Denny WA, Graves DE, Osheroff N. Amsacrine as a topoisomerase II poison: importance of drug-DNA interactions. Biochemistry 2012; 51:1730-9. [PMID: 22304499 DOI: 10.1021/bi201159b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amsacrine (m-AMSA) is an anticancer agent that displays activity against refractory acute leukemias as well as Hodgkin's and non-Hodgkin's lymphomas. The drug is comprised of an intercalative acridine moiety coupled to a 4'-amino-methanesulfon-m-anisidide headgroup. m-AMSA is historically significant in that it was the first drug demonstrated to function as a topoisomerase II poison. Although m-AMSA was designed as a DNA binding agent, the ability to intercalate does not appear to be the sole determinant of drug activity. Therefore, to more fully analyze structure-function relationships and the role of DNA binding in the action of m-AMSA, we analyzed a series of derivatives for the ability to enhance DNA cleavage mediated by human topoisomerase IIα and topoisomerase IIβ and to intercalate DNA. Results indicate that the 3'-methoxy (m-AMSA) positively affects drug function, potentially by restricting the rotation of the headgroup in a favorable orientation. Shifting the methoxy to the 2'-position (o-AMSA), which abrogates drug function, appears to increase the degree of rotational freedom of the headgroup and may impair interactions of the 1'-substituent or other portions of the headgroup within the ternary complex. Finally, the nonintercalative m-AMSA headgroup enhanced enzyme-mediated DNA cleavage when it was detached from the acridine moiety, albeit with 100-fold lower affinity. Taken together, our results suggest that much of the activity and specificity of m-AMSA as a topoisomerase II poison is embodied in the headgroup, while DNA intercalation is used primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA cleavage complex.
Collapse
Affiliation(s)
- Adam C Ketron
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | | | | | | |
Collapse
|
19
|
Peng D, Jiaxing W, Chunhui H, Weiyi P, Xiaomin W. Study on the cytogenetic changes induced by benzene and hydroquinone in human lymphocytes. Hum Exp Toxicol 2012; 31:322-35. [DOI: 10.1177/0960327111433900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Benzene (BN) is a prototypical hematotoxicant, genotoxic carcinogen, and ubiquitous environmental pollutant. Although the molecular mechanisms of BN-induced cytotoxicity and genotoxic damage are poorly understood in humans, previous studies suggested that bioactivated BN metabolites are capable of oxidative stress, cell cycle arrest, apoptosis, and DNA damage. The objective of the current study was to investigate the BN-induced cytogenetic changes and underlying mechanisms based on these hypotheses. Peripheral blood lymphocytes (PBLs) might be the targets for BN-induced cytotoxicity and genotoxicity, and therefore DNA damage responses of PBLs after exposure to different concentrations of BN (0.25, 3.5, 50 μmol/L) or BN metabolite, hydroquinone (HQ; 50, 150, 450 μmol/L) were studied in vitro. Microculture tetrazolium assay, flow cytometry, 2′,7′-dichlorodihydrofluorescein-diacetate assay, comet assay, micronuclei assay, and attenuated total reflectance microspectroscope were chosen for this study. Based on the results, we reached the conclusion that different concentrations of BN or HQ significantly inhibited cell growth, induced the arrest of S phase and G2/M phase, and increased late apoptosis in a concentration-dependent manner. Furthermore, evidence was also provided to support the conclusion that BN and HQ induced DNA strand breaks and chromosomal mutations in PBL, which indicated the genotoxicity of BN and HQ. Current evidence has indicated that multiple mechanisms including dysfunction of cell cycle, programmed cell death, oxidative stress, and DNA lesions are likely to contribute to BN-induced cytogenetic changes.
Collapse
Affiliation(s)
- D Peng
- Department of Public Health, School of Basic Medical, Hubei University of Medicine, Shiyan, Hubei, PR China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - W Jiaxing
- School of Chemical Project, Beijing University of Chemical Technology, Beijing, PR China
| | - H Chunhui
- Department of Clinical Laboratories, the Affiliated Taihe Hospital, Hubei University of Medicine, Hubei Shiyan, PR China
| | - P Weiyi
- Department of Health Statistics and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - W Xiaomin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|
20
|
Harris CM, Stec DF, Christov PP, Kozekov ID, Rizzo CJ, Harris TM. Deoxyguanosine forms a bis-adduct with E,E-muconaldehyde, an oxidative metabolite of benzene: implications for the carcinogenicity of benzene. Chem Res Toxicol 2011; 24:1944-56. [PMID: 21972945 PMCID: PMC3408037 DOI: 10.1021/tx2002838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Benzene is employed in large quantities in the chemical industry and is an ubiquitous contaminant in the environment. There is strong epidemiological evidence that benzene exposure induces hematopoietic malignancies, especially acute myeloid leukemia, in humans, but the chemical mechanisms remain obscure. E,E-Muconaldehyde is one of the products of metabolic oxidation of benzene. This paper explores the proposition that E,E-muconaldehyde is capable of forming Gua-Gua cross-links. If formed in DNA, the replication and repair of such cross-links might introduce structural defects that could be the origin of the carcinogenicity. We have investigated the reaction of E,E-muconaldehyde with dGuo and found that the reaction yields two pairs of interconverting diastereomers of a novel heptacyclic bis-adduct having a spiro ring system linking the two Gua residues. The structures of the four diastereomers have been established by NMR spectroscopy and their absolute configurations by comparison of CD spectra with those of model compounds having known configurations. The final two steps in the formation of the bis-nucleoside (5-ring → 6-ring → 7-ring) have significant reversibility, which is the basis for the observed epimerization. The 6-ring precursor was trapped from the equilibrating mixture by reduction with NaBH(4). The anti relationship of the two Gua residues in the heptacyclic bis-adduct precludes it from being formed in B DNA, but the 6-ring precursor could readily be accommodated as an interchain or intrachain cross-link. It should be possible to form similar cross-links of dCyt, dAdo, the ε-amino group of lysine, the imidazole NH of histidine, and N termini of peptides with the dGuo-muconaldehyde monoadduct.
Collapse
Affiliation(s)
| | - Donald F. Stec
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | | | - Ivan D. Kozekov
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - Carmelo J. Rizzo
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - Thomas M. Harris
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
21
|
North M, Tandon VJ, Thomas R, Loguinov A, Gerlovina I, Hubbard AE, Zhang L, Smith MT, Vulpe CD. Genome-wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast. PLoS One 2011; 6:e24205. [PMID: 21912624 PMCID: PMC3166172 DOI: 10.1371/journal.pone.0024205] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 08/06/2011] [Indexed: 11/18/2022] Open
Abstract
Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ), catechol (CAT) and 1,2,4-benzenetriol (BT), in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(P)H:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease.
Collapse
Affiliation(s)
- Matthew North
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Vickram J. Tandon
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Reuben Thomas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, United States of America
| | - Alex Loguinov
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Inna Gerlovina
- Division of Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - Alan E. Hubbard
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, United States of America
- Division of Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, United States of America
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, United States of America
| | - Chris D. Vulpe
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Verma Y, Rana SVS. Modulation of phase-II enzyme activities in benzene treated ovariectomized rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:371-377. [PMID: 21787707 DOI: 10.1016/j.etap.2011.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/10/2011] [Accepted: 01/23/2011] [Indexed: 05/31/2023]
Abstract
The aim of the study was to determine the influence of ovariectomy on phase II enzymes viz. glutathione-S-transferase (GST), glutathione peroxidase (GPX) and catalase (CAT) in liver and kidney of female rats treated with benzene. The results showed the significant decrease of the GST and GPX activity in benzene treated rats after ovariectomy. However progesterone supplementation stimulated the activity of GST and GPX in liver and kidney of benzene treated non ovariectomized and ovariectomized rats. Progesterone supplementation to benzene treated ovariectomized rats helps to gain in CAT activity. Our results on DNA damage using single cell gel electrophoresis also confirmed our findings on antioxidant enzymes. The results showed that lack of protective progesterone against benzene toxicity is reflected in alterations in antioxidant enzyme activities. However progesterone therapy to benzene treated ovariectomized rats results in activating the antioxidant defence system. Since female workers are engaged in industrial sector, these results are important from occupational health point of view. Benzene exposure affects their reproductive health. Nevertheless, it could be modulated by suitable hormonal therapy.
Collapse
Affiliation(s)
- Yeshvandra Verma
- Toxicology Laboratory, Department of Zoology, Ch. Charan Singh University, Meerut 250004, India.
| | | |
Collapse
|
23
|
Kalfalah FM, Mielke C, Christensen MO, Baechler S, Marko D, Boege F. Genotoxicity of dietary, environmental and therapeutic topoisomerase II poisons is uniformly correlated to prolongation of enzyme DNA residence. Mol Nutr Food Res 2011; 55 Suppl 1:S127-42. [DOI: 10.1002/mnfr.201000509] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/15/2011] [Accepted: 01/21/2011] [Indexed: 12/28/2022]
|
24
|
Wu XR, Xue M, Li XF, Wang Y, Wang J, Han QL, Yi ZC. Phenolic metabolites of benzene inhibited the erythroid differentiation of K562 cells. Toxicol Lett 2011; 203:190-9. [PMID: 21414390 DOI: 10.1016/j.toxlet.2011.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 01/27/2023]
Abstract
Benzene is a common occupational hazard and a ubiquitous environmental pollutant. Benzene exposure at the levels even below 1ppm still showed hematotoxicity. It is widely accepted that the metabolites of benzene play important roles in the benzene toxicity to the hematopoietic system, but little is known about the effects of benzene metabolites on erythropoiesis. In present study, erythroid progenitor-like K562 cells were used to determine the effects of phenolic metabolites of benzene, including phenol, hydroquinone and 1,2,4-benzenetriol, on the erythroid differentiation. After the treatment with these benzene metabolites at the concentrations with no obvious cytotoxicity, the hemin-induced hemoglobin synthesis in K562 cells decreased in a concentration- and time-dependent manner, and the expression of CD71 and GPA protein on the surface of K562 cells was also inhibited. The reverse transcription-PCR was used to determine the mRNA level of the erythroid related genes in the K562 cells that were treated with benzene metabolites. The hemin-induced expression of globin genes, including α-, β- and γ-globin genes, and the gene encoding the heme synthesis enzyme porphobilinogen deaminase was inhibited by benzene metabolites. When the K562 cells were pretreated with benzene metabolites, the hemin-induced expression of two transcription factor genes GATA-1 and NF-E2 was distinctly reduced, and the pre-treatment with benzene metabolites promoted the decrease of the mRNA level of transcription factor gene GATA-2 by hemin. These results indicated that benzene metabolites inhibited the hemin-induced erythroid differentiation through affecting the transcription of the erythroid related genes.
Collapse
Affiliation(s)
- Xiao-Rong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Nakayama A, Isono T, Kikuchi T, Ohnishi I, Igarashi J, Yoneda M, Morisawa S. Benzene risk estimation using radiation equivalent coefficients. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2009; 29:380-392. [PMID: 19192235 DOI: 10.1111/j.1539-6924.2008.01174.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We estimated benzene risk using a novel framework of risk assessment that employed the measurement of radiation dose equivalents to benzene metabolites and a PBPK model. The highest risks for 1 microg/m(3) and 3.2 mg/m(3) life time exposure of benzene estimated with a linear regression were 5.4 x 10(-7) and 1.3 x 10(-3), respectively. Even though these estimates were based on in vitro chromosome aberration test data, they were about one-sixth to one-fourteenth that from other studies and represent a fairly good estimate by using radiation equivalent coefficient as an "internal standard."
Collapse
Affiliation(s)
- Aki Nakayama
- Kyoto University, Graduate School of Engineering, Urban and Environmental Engineering, Kyoto Daigaku Katsura 4, Nishikyo, Kyoto, 615-8540, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Pandey AK, Bajpayee M, Parmar D, Kumar R, Rastogi SK, Mathur N, Thorning P, de Matas M, Shao Q, Anderson D, Dhawan A. Multipronged evaluation of genotoxicity in Indian petrol-pump workers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:695-707. [PMID: 18800353 DOI: 10.1002/em.20419] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Petrol (gasoline) contains a number of toxicants. This study used human biomonitoring to evaluate the genotoxic effects of exposure to benzene in petrol fumes in 100 Indian petrol-pump workers (PPWs) and an equal number of controls. The study was corroborated with in silico assessments of the Comet assay results from the human biomonitoring study. An in vitro study in human lymphocytes was also conducted to understand the genotoxicity of benzene and its metabolites. In a subset of the population studied, higher blood benzene levels were detected in the PPWs (n = 39; P < 0.01) than the controls (n = 18), and 100-250 ppb benzene was also detected in air samples from the petrol pumps. PPWs had higher levels of DNA damage than the controls (P < 0.01). In addition, the micronucleus assay was performed on lymphocytes from a subset of the subjects, and the micronucleus frequency for PPWs was significantly higher (n = 39; 14.79 +/- 3.92 per thousand) than the controls (n = 18; 7.54 +/- 3.00 per thousand). Human lymphocytes were treated in vitro with benzene and several of its metabolites and assayed for DNA damage with the Comet assay. Benzene and its metabolites produced significant (P < 0.05) levels of DNA damage at and above concentrations of 10 microM. The metabolite, p-benzoquinone, produced the greatest amount of DNA damage, followed by hydroquinone > benzene > catechol > 1,2,4,-benzenetriol > muconic acid. This study demonstrates that, using sensitive techniques, it is possible to detect human health risks at an early stage when intervention is possible. possible.
Collapse
Affiliation(s)
- Alok K Pandey
- Developmental Toxicology Division, Indian Institute of Toxicology Research, Lucknow 226001, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Deweese JE, Osheroff N. The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Res 2008; 37:738-48. [PMID: 19042970 PMCID: PMC2647315 DOI: 10.1093/nar/gkn937] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Topoisomerase II is an essential enzyme that is required for virtually every process that requires movement of DNA within the nucleus or the opening of the double helix. This enzyme helps to regulate DNA under- and overwinding and removes knots and tangles from the genetic material. In order to carry out its critical physiological functions, topoisomerase II generates transient double-stranded breaks in DNA. Consequently, while necessary for cell survival, the enzyme also has the capacity to fragment the genome. The DNA cleavage/ligation reaction of topoisomerase II is the target for some of the most successful anticancer drugs currently in clinical use. However, this same reaction also is believed to trigger chromosomal translocations that are associated with specific types of leukemia. This article will familiarize the reader with the DNA cleavage/ligation reaction of topoisomerase II and other aspects of its catalytic cycle. In addition, it will discuss the interaction of the enzyme with anticancer drugs and the mechanisms by which these agents increase levels of topoisomerase II-generated DNA strand breaks. Finally, it will describe dietary and environmental agents that enhance DNA cleavage mediated by the enzyme.
Collapse
Affiliation(s)
- Joseph E Deweese
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 USA
| | | |
Collapse
|
28
|
Bandele OJ, Osheroff N. (-)-Epigallocatechin gallate, a major constituent of green tea, poisons human type II topoisomerases. Chem Res Toxicol 2008; 21:936-43. [PMID: 18293940 DOI: 10.1021/tx700434v] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
(-)-Epigallocatechin gallate (EGCG) is the most abundant and biologically active polyphenol in green tea, and many of the therapeutic benefits of the beverage have been attributed to this compound. High concentrations of EGCG are cytotoxic and trigger genotoxic events in mammalian cells. Although this catechin affects a number of cellular systems, the genotoxic effects of several bioflavonoid-based dietary polyphenols are believed to be mediated, at least in part, by their actions on topoisomerase II. Therefore, the effects of green tea extract and EGCG on DNA cleavage mediated by human topoisomerase IIalpha and beta were characterized. The extract and EGCG increased levels of DNA strand breaks generated by both enzyme isoforms. However, EGCG acted by a mechanism that was distinctly different from those of genistein, a dietary polyphenol, and etoposide, a widely prescribed anticancer drug. In contrast to these agents, EGCG exhibited all of the characteristics of a redox-dependent topoisomerase II poison that acts by covalently adducting to the enzyme. First, EGCG stimulated DNA scission mediated by both isoforms primarily at sites that were cleaved in the absence of compounds. Second, exposure of EGCG to the reducing agent dithiothreitol (DTT) prior to its addition to DNA cleavage assays abrogated the effects of the catechin on DNA scission. Third, once EGCG stimulated topoisomerase II-mediated DNA cleavage, exposure to DTT did not effect levels of DNA strand breaks. Finally, EGCG inhibited the DNA cleavage activities of topoisomerase IIalpha and beta when incubated with either enzyme prior to the addition of DNA. Taken together, these results provide strong evidence that EGCG is a redox-dependent topoisomerase II poison and utilizes a mechanism similar to that of 1,4-benzoquinone.
Collapse
Affiliation(s)
- Omari J Bandele
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
29
|
Ghaly IS, Said A, Abdel-Wahhab MA. Zizyphus jujuba and Origanum majorana extracts protect against hydroquinone-induced clastogenicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:10-19. [PMID: 21783830 DOI: 10.1016/j.etap.2007.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 06/26/2007] [Accepted: 07/02/2007] [Indexed: 05/31/2023]
Abstract
Hydroquinone (HQ) is a myelotoxin that is found in many foods and formed through the metabolism of benzene. HQ is genotoxic in several in vitro and in vivo test systems, inducing micronuclei (MN), sister-chromatid exchange (SCE), and chromosomal aberrations. The aim of the current study was to explore the protective effect of Zizyphus jujuba and Origanum majorana extracts against HQ-induced genotoxicity in male mice. Five groups of mice included the control group, HQ-treated group, and the groups treated with the extracts alone or in combination with HQ. The results indicated that treatment with HQ resulted in significant clastogenetic effects and histological changes typical to those reported in the literature. Both extracts exhibited a protection against HQ-induced cytogenesis and histological changes. Moreover, Z. jujuba extract was effective than O. majorana extract. It could be concluded that both extracts are useful especially for people who are occupationally exposed to benzene or its metabolites.
Collapse
Affiliation(s)
- Inas S Ghaly
- Cell Biology Department, National Research Center, Dokki, Cairo, Egypt
| | | | | |
Collapse
|
30
|
Abstract
A large population of humans is exposed to benzene from various occupational and environmental sources. Benzene is an established human and animal carcinogen. Exposure to benzene has been associated with leukaemia in humans and several types of malignancies in animals. The exact mechanism of benzene-induced toxicity is poorly understood. It is believed that benzene exerts its adverse effects by metabolic activation to toxic metabolites. Certain benzene metabolites are genotoxic and mutagenic. This consolidated short-review is composed of human and animal studies to summarize the adverse effects of benzene with special reference to molecular mechanisms involved in benzene-induced toxicity.
Collapse
Affiliation(s)
- Haseeb Ahmad Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
31
|
Abstract
Acute leukemias with balanced chromosomal translocations, protean morphologic and immunophenotypic presentations but generally shorter latency and absence of myelodysplasia are recognized as a complication of anti-cancer drugs that behave as topoisomerase II poisons. Translocations affecting the breakpoint cluster region of the MLL gene at chromosome band 11q23 are the most common molecular genetic aberrations in leukemias associated with the topoisomerase II poisons. These agents perturb the cleavage-religation equilibrium of topoisomerase II and increase cleavage complexes. One model suggests that this damages the DNA directly and leads to chromosomal breakage, which may result in untoward DNA recombination in the form of translocations. This review will summarize the evidence for topoisomerase II involvement in the genesis of translocations and extension of the model to acute leukemia in infants characterized by similar MLL translocations.
Collapse
Affiliation(s)
- Carolyn A Felix
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|