1
|
Samson N, Bosoi CR, Roy C, Turcotte L, Tribouillard L, Mouchiroud M, Berthiaume L, Trottier J, Silva HCG, Guerbette T, Plata-Gómez AB, Besse-Patin A, Montoni A, Ilacqua N, Lamothe J, Citron YR, Gélinas Y, Gobeil S, Zoncu R, Caron A, Morissette M, Pellegrini L, Rochette PJ, Estall JL, Efeyan A, Shum M, Audet-Walsh É, Barbier O, Marette A, Laplante M. HSDL2 links nutritional cues to bile acid and cholesterol homeostasis. SCIENCE ADVANCES 2024; 10:eadk9681. [PMID: 38820148 PMCID: PMC11141617 DOI: 10.1126/sciadv.adk9681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.
Collapse
Affiliation(s)
- Nolwenn Samson
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Cristina R. Bosoi
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Christian Roy
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laurie Turcotte
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laura Tribouillard
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Mathilde Mouchiroud
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Line Berthiaume
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Jocelyn Trottier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Heitor C. G. Silva
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Thomas Guerbette
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aurèle Besse-Patin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Alicia Montoni
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
| | - Nicolò Ilacqua
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Centre de recherche CERVO, Québec, QC, Canada
| | - Jennifer Lamothe
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Yemima R. Citron
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Yves Gélinas
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | | | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Alexandre Caron
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Mathieu Morissette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Luca Pellegrini
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, QC, Canada
| | - Patrick J. Rochette
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Département d’Ophtalmologie et ORL – chirurgie cervico-faciale, Université Laval, Québec, QC, Canada
| | - Jennifer L. Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Michael Shum
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Olivier Barbier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Rizzotto A, Tollis S, Pham NT, Zheng Y, Abad MA, Wildenhain J, Jeyaprakash AA, Auer M, Tyers M, Schirmer EC. Reduction in Nuclear Size by DHRS7 in Prostate Cancer Cells and by Estradiol Propionate in DHRS7-Depleted Cells. Cells 2023; 13:57. [PMID: 38201261 PMCID: PMC10778050 DOI: 10.3390/cells13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Increased nuclear size correlates with lower survival rates and higher grades for prostate cancer. The short-chain dehydrogenase/reductase (SDR) family member DHRS7 was suggested as a biomarker for use in prostate cancer grading because it is largely lost in higher-grade tumors. Here, we found that reduction in DHRS7 from the LNCaP prostate cancer cell line with normally high levels of DHRS7 increases nuclear size, potentially explaining the nuclear size increase observed in higher-grade prostate tumors where it is lost. An exogenous expression of DHRS7 in the PC3 prostate cancer cell line with normally low DHRS7 levels correspondingly decreases nuclear size. We separately tested 80 compounds from the Microsource Spectrum library for their ability to restore normal smaller nuclear size to PC3 cells, finding that estradiol propionate had the same effect as the re-expression of DHRS7 in PC3 cells. However, the drug had no effect on LNCaP cells or PC3 cells re-expressing DHRS7. We speculate that separately reported beneficial effects of estrogens in androgen-independent prostate cancer may only occur with the loss of DHRS7/ increased nuclear size, and thus propose DHRS7 levels and nuclear size as potential biomarkers for the likely effectiveness of estrogen-based treatments.
Collapse
Affiliation(s)
- Andrea Rizzotto
- The Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.R.); (A.A.J.)
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Nhan T. Pham
- The Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK; (N.T.P.); (Y.Z.); (J.W.); (M.A.)
| | - Yijing Zheng
- The Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK; (N.T.P.); (Y.Z.); (J.W.); (M.A.)
| | - Maria Alba Abad
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK;
| | - Jan Wildenhain
- The Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK; (N.T.P.); (Y.Z.); (J.W.); (M.A.)
| | - A. Arockia Jeyaprakash
- The Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.R.); (A.A.J.)
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK;
- Gene Center and Department of Biochemistry, LMU-München, 81377 Munich, Germany
| | - Manfred Auer
- The Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, UK; (N.T.P.); (Y.Z.); (J.W.); (M.A.)
- Xenobe Research Institute, P.O. Box 3052, San Diego, CA 92163-1052, USA
| | - Mike Tyers
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eric C. Schirmer
- The Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.R.); (A.A.J.)
| |
Collapse
|
3
|
Zhang Y, Wang X, Wang X, Wang Y, Liu J, Wang S, Li W, Jin Y, Akhter D, Chen J, Hu J, Pan R. Bioinformatic analysis of short-chain dehydrogenase/reductase proteins in plant peroxisomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1180647. [PMID: 37360717 PMCID: PMC10288848 DOI: 10.3389/fpls.2023.1180647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Peroxisomes are ubiquitous eukaryotic organelles housing not only many important oxidative metabolic reactions, but also some reductive reactions that are less known. Members of the short-chain dehydrogenase/reductase (SDR) superfamily, which are NAD(P)(H)-dependent oxidoreductases, play important roles in plant peroxisomes, including the conversion of indole-3-butyric acid (IBA) to indole-3-acetic acid (IAA), auxiliary β-oxidation of fatty acids, and benzaldehyde production. To further explore the function of this family of proteins in the plant peroxisome, we performed an in silico search for peroxisomal SDR proteins from Arabidopsis based on the presence of peroxisome targeting signal peptides. A total of 11 proteins were discovered, among which four were experimentally confirmed to be peroxisomal in this study. Phylogenetic analyses showed the presence of peroxisomal SDR proteins in diverse plant species, indicating the functional conservation of this protein family in peroxisomal metabolism. Knowledge about the known peroxisomal SDRs from other species also allowed us to predict the function of plant SDR proteins within the same subgroup. Furthermore, in silico gene expression profiling revealed strong expression of most SDR genes in floral tissues and during seed germination, suggesting their involvement in reproduction and seed development. Finally, we explored the function of SDRj, a member of a novel subgroup of peroxisomal SDR proteins, by generating and analyzing CRISPR/Cas mutant lines. This work provides a foundation for future research on the biological activities of peroxisomal SDRs to fully understand the redox control of peroxisome functions.
Collapse
Affiliation(s)
- Yuchan Zhang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
| | - Xiaowen Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Xinyu Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yukang Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jun Liu
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Saisai Wang
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Weiran Li
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yijun Jin
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Delara Akhter
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jiarong Chen
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, United States
| | - Ronghui Pan
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
4
|
Kim DH, Lim SH, Lee JY. Expression of RsPORB Is Associated with Radish Root Color. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112214. [PMID: 37299194 DOI: 10.3390/plants12112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Radish (Raphanus sativus) plants exhibit varied root colors due to the accumulation of chlorophylls and anthocyanins compounds that are beneficial for both human health and visual quality. The mechanisms of chlorophyll biosynthesis have been extensively studied in foliar tissues but remain largely unknown in other tissues. In this study, we examined the role of NADPH:protochlorophyllide oxidoreductases (PORs), which are key enzymes in chlorophyll biosynthesis, in radish roots. The transcript level of RsPORB was abundantly expressed in green roots and positively correlated with chlorophyll content in radish roots. Sequences of the RsPORB coding region were identical between white (948) and green (847) radish breeding lines. Additionally, virus-induced gene silencing assay with RsPORB exhibited reduced chlorophyll contents, verifying that RsPORB is a functional enzyme for chlorophyll biosynthesis. Sequence comparison of RsPORB promoters from white and green radishes showed several insertions and deletions (InDels) and single-nucleotide polymorphisms. Promoter activation assays using radish root protoplasts verified that InDels of the RsPORB promoter contribute to its expression level. These results suggested that RsPORB is one of the key genes underlying chlorophyll biosynthesis and green coloration in non-foliar tissues, such as roots.
Collapse
Affiliation(s)
- Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Republic of Korea
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
5
|
Zhao P, Zhuang Z, Guan X, Yang J, Wang W, Kuang Z. Crystal structure of the 3-ketodihydrosphingosine reductase TSC10 from Cryptococcus neoformans. Biochem Biophys Res Commun 2023; 670:73-78. [PMID: 37285720 DOI: 10.1016/j.bbrc.2023.05.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
The second step in the de novo sphingolipid biosynthesis is the reduction of 3-ketodihydrosphingosine by 3-ketodihydrosphingosine reductase (KDSR) to produce dihydrosphingosine (sphinganine). Fungal TSC10 and mammalian KDSR (also named FVT-1) proteins are the enzymes responsible for this process and they belong to the short-chain dehydrogenase/reductase (SDR) superfamily. Albeit that both fungal and mammalian 3-ketodihydrosphingosine reductases were identified more than a decade ago, no structure of these enzymes from any species has been experimentally determined. Here we report the crystal structure of the catalytic domain of TSC10 from Cryptococcus neoformans in complex with NADPH. cnTSC10 adopts a Rossmann fold with a central seven-stranded β-sheet flanked by α-helices on both sides. Several regions are disordered that include the segment connecting the serine and tyrosine residues of the catalytic triad, the so-called 'substrate loop', and the C-terminal region that often participates in homo-tetramerization in other SDRs. In addition, the cofactor NADPH is not fully ordered. These structural features indicate that the catalytic site of cnTSC10 possesses significant flexibility. cnTSC10 is predominantly dimeric in solution while a minor portion of the protein forms homo-tetramer. The crystal structure reveals that the homo-dimer interface involves both hydrophobic and hydrophilic interactions mediated by helices α4 and α5, as well as the loop connecting strand β4 and helix α4. Because residues forming hydrogen bonds and salt bridges in the dimer interface are not conserved between fungal TSC10 and mammalian KDSR proteins, it might be possible to develop inhibitors that selectively target fungal TSC10 dimerization.
Collapse
Affiliation(s)
- Panqi Zhao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Zewen Zhuang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Xueyan Guan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Jinjin Yang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
| | - Weiwei Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhihe Kuang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Le L, Qipeng W, Chunmeng M, Hasnat M, Luyong Z, Zhenzhou J, Qinwei Y. 5-Azacytidine promotes HCC cell metastasis by up-regulating RDH16 expression. Eur J Pharmacol 2023; 950:175736. [PMID: 37116561 DOI: 10.1016/j.ejphar.2023.175736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
The level of DNA methylation could affect the expression of tumor promoting and tumor suppressor genes. DNA methyltransferase inhibitors could reduce high methylation levels in cancer and inhibit the progression of a variety of cancers, including HCC. However, the pro-metastatic effect of DNA methyltransferase inhibitors in some cancers suggest the potential risk of their use. Whether DNA methyltransferase inhibitors also promote metastasis in HCC remains unclear. Our study will explore the effect of DNA methyltransferase inhibitor 5-Azacytidine on HCC metastasis. Our study found that 5-Azacytidine inhibited the proliferation of HCC cells while promoting in vitro and in vivo metastasis of HCC. Mechanistically, our study showed that 5-Azacytidine increased the expression of RDH16 by decreasing the methylation of RDH16 gene promoter. RDH16 is a highly methylated gene and its expression is very low in hepatocellular carcinoma. 5-Azacytidine promoted the migration of hepatocellular carcinoma cells by increasing the expression of RDH16. Our results suggest that 5-Azacytidine up-regulates the expression of RDH16 by decreasing the methylation level of RDH16, and then promoting HCC metastasis. These findings suggest that 5-Azacytidine and even other DNA methyltransferase inhibitors may have the risk of promoting metastasis in HCC treatment. RDH16 could be used as a pro-metastasis biomarker in the treatment of HCC with DNA methyltransferase inhibitors.
Collapse
Affiliation(s)
- Li Le
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wu Qipeng
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Miao Chunmeng
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Zhang Luyong
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiang Zhenzhou
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yu Qinwei
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Štěrbová K, Rychlá N, Matoušková P, Skálová L, Raisová Stuchlíková L. Short-chain dehydrogenases in Haemonchus contortus: changes during life cycle and in relation to drug-resistance. Vet Res 2023; 54:19. [PMID: 36882840 PMCID: PMC9993613 DOI: 10.1186/s13567-023-01148-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 03/09/2023] Open
Abstract
Short-chain dehydrogenases/reductases (SDRs) regulate the activities of many hormones and other signaling molecules and participate in the deactivation of various carbonyl-bearing xenobiotics. Nevertheless, knowledge about these important enzymes in helminths remains limited. The aim of our study was to characterize the SDR superfamily in the parasitic nematode Haemonchus contortus. Genome localization of SDRs was explored, and phylogenetic analysis in comparison with SDRs from free-living nematode Caenorhabditis elegans and the domestic sheep (Ovis aries, a typical host of H. contortus) was constructed. The expression profile of selected SDRs during the life cycle along with differences between the drug-susceptible and drug-resistant strains, were also studied. Genome sequencing enabled the identification of 46 members of the SDR family in H. contortus. A number of genes have no orthologue in the sheep genome. In all developmental stages of H. contortus, SDR1, SDR3, SDR5, SDR6, SDR14, and SDR18 genes were the most expressed, although in individual stages, huge differences in expression levels were observed. A comparison of SDRs expression between the drug-susceptible and drug-resistant strains of H. contortus revealed several SDRs with changed expression in the resistant strain. Specifically, SDR1, SDR12, SDR13, SDR16 are SDR candidates related to drug-resistance, as the expression of these SDRs is consistently increased in most stages of the drug-resistant H. contortus. These findings revealing several SDR enzymes of H. contortus warrant further investigation.
Collapse
Affiliation(s)
- Karolína Štěrbová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Nikola Rychlá
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského, 1203, Hradec Králové, Czech Republic.
| |
Collapse
|
8
|
Dang L, Zhang C, Su B, Ning N, Huang Q, Zhou S, Wu M, Ma W, Wang M, Cui P, Li Y, Wang S. Mechanisms of action of Zishen Yutai pills in treating premature ovarian failure determined by integrating UHPLC-Q-TOF-MS and network pharmacology analysis. BMC Complement Med Ther 2022; 22:281. [PMID: 36289509 PMCID: PMC9597968 DOI: 10.1186/s12906-022-03763-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Zishen Yutai (ZSYT) pill, a patent Chinese medicine, has been widely used in the treatment of infertility, abortion, and adjunctive treatment of in vitro fertilization (IVF) for decades. Recently, the results of clinical observations showed that premature ovarian failure (POF) patients exhibited improved expression of steroids and clinical symptoms associated with hormone disorders after treatment with Zishen Yutai pills. However, the pharmacological mechanism of action of these pills remains unclear. Methods The compounds of Zishen Yutai pills found in blood circulation were identified via ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) technique in the serum of POF mice after oral administration of Zishen Yutai pills. The potential targets of compounds were screened using Traditional Chinese Medicine Systems Pharmacology Database, Traditional Chinese Medicine Database@Taiwan, Drugbank Database, PubChem, HIT, Pharmapper, and Swiss Target Prediction. The target genes associated with POF were collected from Online Mendelian Inheritance in Man Database, PharmGkb, Genecards, Therapeutic Target Database, and Genetic Association Database. The overlapping genes between the potential targets of Zishen Yutai pills’ compounds and the target genes associated with POF were clarified via protein-protein interaction (PPI), pathway, and network analysis. Results Nineteen compounds in Zishen Yutai pills were detected in the serum of POF mice after oral administration. A total of 695 Zishen Yutai (ZSYT) pill-related targets were screened, and 344 POF-related targets were collected. From the results of Zishen Yutai (ZSYT) pill-POF PPI analysis, CYP19A1, AKR1C3, ESR1, AR, and SRD5A2 were identified as key targets via network analysis, indicating their core role in the treatment of POF with Zishen Yutai pills. Moreover, the pathway enrichment results suggested that Zishen Yutai pills treated POF primarily by regulating neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and ovarian steroidogenesis. Conclusions Via virtual screening, we found that regulation of neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and ovarian steroidogenesis was the potential therapeutic mechanism of Zishen Yutai pills in treating POF. Our study suggested that combining the analysis of Zishen Yutai pills’ compounds in blood in vivo in the POF model and network pharmacology prediction might offer a tool to characterize the mechanism of Zishen Yutai pills in the POF. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03763-2.
Collapse
Affiliation(s)
- Lei Dang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,Post-Doctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd, Guangzhou, Guangdong China ,Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Chunbo Zhang
- Post-Doctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd, Guangzhou, Guangdong China ,Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Biru Su
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Su Zhou
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Meng Wu
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenqing Ma
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Man Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Pengfei Cui
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Yan Li
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Shixuan Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
9
|
Zhao C, Bao Z, Feng H, Chen L, Li Q. Nitric oxide enhances resistance of Pleurotus eryngii to cadmium stress by alleviating oxidative damage and regulating of short-chain dehydrogenase/reductase family. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53036-53049. [PMID: 35278180 DOI: 10.1007/s11356-022-19613-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The function and mechanism of nitric oxide (NO) in regulating Pleurotus eryngii biological response to cadmium (Cd) stress was evaluated by using anti-oxidation and short-chain dehydrogenase/reductase (SDR) family analysis. The fresh biomass of P. eryngii mycelia sharply decreased after treatment with 50 µM Cd; the lipid peroxidation and H2O2 accumulation in P. eryngii were found responsible for it. Proper exogenous supply of NO (150 µM SNP) alleviated the oxidative damage induced by Cd stress in P. eryngii, which reduced the accumulation of thiobarbituric acid reactive substances (TBARS) and H2O2. The activities of antioxidant enzymes (superoxide dismutase, peroxidase) were significantly increased to deal with Cd stress when treated with SNP (150 µM), and the content of proline was also closely related to NO-mediated reduction of Cd toxicity. Moreover, SDR family members were widely involved in the response to Cd stress, especially PleSCH70 gene was observed for the first time in participating in NO-mediated enhancement of Cd tolerance in P. eryngii. Taken together, this study provides new insights in understanding the tolerance mechanisms of P. eryngii to heavy metal and lays a foundation for molecular breeding of P. eryngii to improve its tolerance to environmental stress.
Collapse
Affiliation(s)
- Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China
| | - Lanchai Chen
- Key Laboratory of Food Biotechnology, School of Food and Biotechnology, Xihua University, Chengdu, 610039, People's Republic of China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, , Chengdu, 610106, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Demange P, Joly E, Marcoux J, Zanon PRA, Listunov D, Rullière P, Barthes C, Noirot C, Izquierdo JB, Rozié A, Pradines K, Hee R, de Brito MV, Marcellin M, Serre RF, Bouchez O, Burlet-Schiltz O, Oliveira MCF, Ballereau S, Bernardes-Génisson V, Maraval V, Calsou P, Hacker SM, Génisson Y, Chauvin R, Britton S. SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic protein-reactive species. eLife 2022; 11:73913. [PMID: 35535493 PMCID: PMC9090334 DOI: 10.7554/elife.73913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.
Collapse
Affiliation(s)
- Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Etienne Joly
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Patrick R A Zanon
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Dymytrii Listunov
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France.,LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pauline Rullière
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Noirot
- INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, Castanet-Tolosan, France
| | - Jean-Baptiste Izquierdo
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | - Alexandrine Rozié
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Karen Pradines
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Romain Hee
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Maria Vieira de Brito
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Brazil
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
| | | | | | | | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| | - Stephan M Hacker
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Yves Génisson
- SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Remi Chauvin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France.,Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
| |
Collapse
|
11
|
Agwunobi DO, Li M, Wang N, Chang G, Zhang X, Xue X, Yu Z, Wang H, Liu J. Proteomic analysis suggests that monoterpenes in lemongrass disrupt Ca 2+ homeostasis in Haemaphysalis longicornis leading to mitochondrial depolarization and cytotoxicity. Proteomics 2022; 22:e2100156. [PMID: 34997954 DOI: 10.1002/pmic.202100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Complex mixtures of bioactive ingredients in plant essential oils present complex chemistries which involve different modes of action. An increasing body of scientific reports has recently focused on the acaricidal activities of plant essential oils attributed to their monoterpene components, but information about their underlying molecular mechanism of action is scarce. Here, after the chemical analysis of lemongrass oil, a proteomic analysis of the ovary, salivary gland, and midgut of Haemaphysalis longicornis exposed to Cymbopogon citratus (lemongrass) essential oil was performed via data-independent acquisition mass spectrometry (DIA-MS) technology to further elucidate the molecular mechanisms involved. Pathway analysis reveals the activation of metabolic pathways mediated by oxidoreductases and transferases. Furthermore, the upregulation of various calcium-associated proteins and the upregulation of cytochrome c1, cytochrome c oxidase polypeptide IV, and programmed cell death protein 6-like isoform X1 suggest a cytotoxic mode of action via the formation of reactive oxygen species (ROS), mitochondrial Ca2+ overload, mitochondrial uncoupling, and depolarization, and ATP depletion leading to either apoptotic or necrotic death. Morphological alterations observed after the RNAi of a major detoxification enzyme (glutathione S-transferase) merit further investigation. Hence, the cytotoxic mode of action exhibited by C. citratus oil could be vital for the development of eco-friendly acaricide.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mengxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Guomin Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojing Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaomin Xue
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
12
|
Snyder NW, O'Brien J, Singh B, Buchan G, Arroyo AD, Liu X, Bostwick A, Varner EL, Angajala A, Sobol RW, Blair IA, Mesaros C, Wendell SG. Primary saturation of α, β-unsaturated carbonyl containing fatty acids does not abolish electrophilicity. Chem Biol Interact 2021; 350:109689. [PMID: 34634267 PMCID: PMC8574066 DOI: 10.1016/j.cbi.2021.109689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Metabolism of polyunsaturated fatty acids results in the formation of hydroxylated fatty acids that can be further oxidized by dehydrogenases, often resulting in the formation of electrophilic, α,β-unsaturated ketone containing fatty acids. As electrophiles are associated with redox signaling, we sought to investigate the metabolism of the oxo-fatty acid products in relation to their double bond architecture. Using an untargeted liquid chromatography mass spectrometry approach, we identified mono- and di-saturated products of the arachidonic acid-derived 11-oxoeicosatetraenoic acid (11-oxoETE) and mono-saturated metabolites of 15-oxoETE and docosahexaenoic acid-derived 17-oxodocosahexaenoinc acid (17-oxoDHA) in both human A549 lung carcinoma and umbilical vein endothelial cells. Notably, mono-saturated oxo-fatty acids maintained their electrophilicity as determined by nucleophilic conjugation to glutathione while a second saturation of 11-oxoETE resulted in a loss of electrophilicity. These results would suggest that prostaglandin reductase 1 (PTGR1), known only for its reduction of the α,β-unsaturated double bond, was not responsible for the saturation of oxo-fatty acids at alternative double bonds. Surprisingly, knockdown of PTGR1 expression by shRNA confirmed its participation in the formation of 15-oxoETE and 17-oxoDHA mono-saturated metabolites. Furthermore, overexpression of PTGR1 in A549 cells increased the rate and total amount of oxo-fatty acid saturation. These findings will further facilitate the study of electrophilic fatty acid metabolism and signaling in the context of inflammatory diseases and cancer where they have been shown to have anti-inflammatory and anti-proliferative signaling properties.
Collapse
Affiliation(s)
- Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - James O'Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bhupinder Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gregory Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alejandro D Arroyo
- Department of Systems Pharmacology and Translational Therapeutics, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27695, USA
| | - Anna Bostwick
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Erika L Varner
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Anusha Angajala
- Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36688, USA
| | - Robert W Sobol
- Department of Pharmacology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36688, USA
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
13
|
DHRS2 is a potential marker of breast cancer metastasis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Fukami T, Yokoi T, Nakajima M. Non-P450 Drug-Metabolizing Enzymes: Contribution to Drug Disposition, Toxicity, and Development. Annu Rev Pharmacol Toxicol 2021; 62:405-425. [PMID: 34499522 DOI: 10.1146/annurev-pharmtox-052220-105907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most clinically used drugs are metabolized in the body via oxidation, reduction, or hydrolysis reactions, which are considered phase I reactions. Cytochrome P450 (P450) enzymes, which primarily catalyze oxidation reactions, contribute to the metabolism of over 50% of clinically used drugs. In the last few decades, the function and regulation of P450s have been extensively studied, whereas the characterization of non-P450 phase I enzymes is still incomplete. Recent studies suggest that approximately 30% of drug metabolism is carried out by non-P450 enzymes. This review summarizes current knowledge of non-P450 phase I enzymes, focusing on their roles in controlling drug efficacy and adverse reactions as an important aspect of drug development. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
15
|
Zhang S, Xie L, Zheng S, Lu B, Tao W, Wang X, Kocher TD, Zhou L, Wang D. Identification, Expression and Evolution of Short-Chain Dehydrogenases/Reductases in Nile Tilapia ( Oreochromis niloticus). Int J Mol Sci 2021; 22:ijms22084201. [PMID: 33919636 PMCID: PMC8073704 DOI: 10.3390/ijms22084201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/31/2023] Open
Abstract
The short-chain dehydrogenases/reductases (SDR) superfamily is involved in multiple physiological processes. In this study, genome-wide identification and comprehensive analysis of SDR superfamily were carried out in 29 animal species based on the latest genome databases. Overall, the number of SDR genes in animals increased with whole genome duplication (WGD), suggesting the expansion of SDRs during evolution, especially in 3R-WGD and polyploidization of teleosts. Phylogenetic analysis indicated that vertebrates SDRs were clustered into five categories: classical, extended, undefined, atypical, and complex. Moreover, tandem duplication of hpgd-a, rdh8b and dhrs13 was observed in teleosts analyzed. Additionally, tandem duplications of dhrs11-a, dhrs7a, hsd11b1b, and cbr1-a were observed in all cichlids analyzed, and tandem duplication of rdh10-b was observed in tilapiines. Transcriptome analysis of adult fish revealed that 93 SDRs were expressed in more than one tissue and 5 in one tissue only. Transcriptome analysis of gonads from different developmental stages showed that expression of 17 SDRs were sexually dimorphic with 11 higher in ovary and 6 higher in testis. The sexually dimorphic expressions of these SDRs were confirmed by in situ hybridization (ISH) and qPCR, indicating their possible roles in steroidogenesis and gonadal differentiation. Taken together, the identification and the expression data obtained in this study contribute to a better understanding of SDR superfamily evolution and functions in teleosts.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Lang Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Shuqing Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Xiaoshuang Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
- Correspondence: (L.Z.); (D.W.); Tel.: +86-23-68253702 (D.W.)
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China; (S.Z.); (L.X.); (S.Z.); (B.L.); (W.T.); (X.W.)
- Correspondence: (L.Z.); (D.W.); Tel.: +86-23-68253702 (D.W.)
| |
Collapse
|
16
|
Chen N, Liu Y, Li Y, Wang C. Chemical Proteomic Profiling of Protein 4′‐Phosphopantetheinylation in Mammalian Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuan Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuanpei Li
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University China
| |
Collapse
|
17
|
Chen N, Liu Y, Li Y, Wang C. Chemical Proteomic Profiling of Protein 4′‐Phosphopantetheinylation in Mammalian Cells. Angew Chem Int Ed Engl 2020; 59:16069-16075. [DOI: 10.1002/anie.202004105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuan Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuanpei Li
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University China
| |
Collapse
|
18
|
Chamchoy K, Pumirat P, Reamtong O, Pakotiprapha D, Leartsakulpanich U, Boonyuen U. Functional analysis of BPSS2242 reveals its detoxification role in Burkholderia pseudomallei under salt stress. Sci Rep 2020; 10:10453. [PMID: 32591552 PMCID: PMC7320009 DOI: 10.1038/s41598-020-67382-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023] Open
Abstract
A bpss2242 gene, encoding a putative short-chain dehydrogenase/oxidoreductase (SDR) in Burkholderia pseudomallei, was identified and its expression was up-regulated by ten-fold when B. pseudomallei was cultured under high salt concentration. Previous study suggested that BPSS2242 plays important roles in adaptation to salt stress and pathogenesis; however, its biological functions are still unknown. Herein, we report the biochemical properties and functional characterization of BPSS2242 from B. pseudomallei. BPSS2242 exhibited NADPH-dependent reductase activity toward diacetyl and methylglyoxal, toxic electrophilic dicarbonyls. The conserved catalytic triad was identified and found to play critical roles in catalysis and cofactor binding. Tyr162 and Lys166 are involved in NADPH binding and mutation of Lys166 causes a conformational change, altering protein structure. Overexpression of BPSS2242 in Escherichia coli increased bacterial survival upon exposure to diacetyl and methylglyoxal. Importantly, the viability of B. pseudomallei encountered dicarbonyl toxicity was enhanced when cultured under high salt concentration as a result of BPSS2242 overexpression. This is the first study demonstrating that BPSS2242 is responsible for detoxification of toxic metabolites, constituting a protective system against reactive carbonyl compounds in B. pseudomallei..
Collapse
Affiliation(s)
- Kamonwan Chamchoy
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Danaya Pakotiprapha
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
19
|
Zhu YH, Li JB, Wu RY, Yu Y, Li X, Li ZL, Zhang HL, Feng GK, Deng R, Zhu XF. Clinical significance and function of RDH16 as a tumor-suppressing gene in hepatocellular carcinoma. Hepatol Res 2020; 50:110-120. [PMID: 31661588 DOI: 10.1111/hepr.13432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
AIM Our previous transcriptome sequencing analysis detected that retinol dehydrogenase 16 (RDH16) was dramatically downregulated in hepatocellular carcinoma (HCC). RDH16 belongs to the short-chain dehydrogenases/reductases super family, and its role in HCC remains unknown. This study aimed to investigate the expression and function of RDH16 in HCC. METHODS The mRNA and protein level of RDH16 in HCC samples were detected by quantitative real-time polymerase chain reaction and immunohistochemistry analyses, respectively. The role of RDH16 in HCC was determined by in vitro and in vivo functional studies. RESULTS Downregulation of RDH16 has been detected in approximately 90% of primary HCCs, which was significantly associated with high serum alpha-fetoprotein level, tumor size, microsatellite formation, thrombus, and poor overall survival of HCC patients. Compared with non-tumor tissues, higher density of methylation was identified in HCC samples. In addition, RDH16 increases the level of retinoic acid and blocks the de novo synthesis of fatty acid in HCC cells. Functional study shows that ectopic expression of RDH16 in HCC cells suppresses cell growth, clonogenicity, and cell motility. CONCLUSIONS RDH16 might be a prognostic biomarker and intervention point for new therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Ying-Hui Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Biao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,BGI-Shenzhen, Shenzhen, China.,China National Gene Bank, BGI-Shenzhen, Shenzhen, China
| | - Rui-Yan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
20
|
Dehydrogenase/reductase SDR family member 2 silencing sensitizes an oxaliplatin‑resistant cell line to oxaliplatin by inhibiting excision repair cross‑complementing group 1 protein expression. Oncol Rep 2019; 42:1725-1734. [PMID: 31436301 PMCID: PMC6775812 DOI: 10.3892/or.2019.7291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Oxaliplatin (Oxa)-based chemotherapy is widely used as the first-line treatment for colorectal cancer (CRC). However, Oxa-resistance is common for many postoperative CRC patients. To explore drug resistance in CRC, an Oxa-resistant cell line, HCT116/Oxa, was established from parental HCT116 cells. These Oxa-resistant cells exhibited characteristics of epithelial-mesenchymal transition (EMT) and a higher migratory capacity than parental cells. Protein profiles of HCT116/Oxa and HCT116 cells were compared using a tandem mass tag-based quantitative proteomics technique. The protein dehydrogenase/reductase SDR family member 2 (DHRS2) was revealed to be highly expressed in HCT116/Oxa cells. Silencing of DHRS2 in HCT116/Oxa cells effectively restored Oxa-sensitivity by suppressing the expression of excision repair cross-complementing group 1 protein via a p53-dependent pathway, and reversed the EMT phenotype. Overall, the suppression of DHRS2 expression may be a promising strategy for the prevention of Oxa-resistance in CRC.
Collapse
|
21
|
Structural characterization of a short-chain dehydrogenase/reductase from multi-drug resistant Acinetobacter baumannii. Biochem Biophys Res Commun 2019; 518:465-471. [PMID: 31443964 DOI: 10.1016/j.bbrc.2019.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is a clinically relevant, highly drug-resistant pathogen of global concern. An attractive approach to drug design is to specifically target the type II fatty acid synthesis (FASII) pathway which is critical in Gram negative bacteria and is significantly different to the type I fatty acid synthesis (FASI) pathway found in mammals. Enzymes involved in FASII include members of the short-chain dehydrogenase/reductase (SDR) superfamily. SDRs are capable of performing a diverse range of biochemical reactions against a broad spectrum of substrates whilst maintaining conserved structural features and sequence motifs. Here, we use X-ray crystallography to describe the structure of an SDR from the multi-drug resistant bacteria A. baumannii, previously annotated as a putative FASII FabG enzyme. The protein was recombinantly expressed, purified, and crystallized. The protein crystals diffracted to 2.0 Å and the structure revealed a FabG-like fold. Functional assays revealed, however, that the protein was not active against the FabG substrate, acetoacetyl-CoA. This study highlights that database annotations may show the necessary structural hallmarks of such proteins, however, they may not be able to cleave substrates that are typical of FabG enzymes. These results are important for the selection of target enzymes in future drug development.
Collapse
|
22
|
Liu Z, Singh SB, Zheng Y, Lindblom P, Tice C, Dong C, Zhuang L, Zhao Y, Kruk BA, Lala D, Claremon DA, McGeehan GM, Gregg RD, Cain R. Discovery of Potent Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 Using a Novel Growth-Based Protocol of in Silico Screening and Optimization in CONTOUR. J Chem Inf Model 2019; 59:3422-3436. [PMID: 31355641 DOI: 10.1021/acs.jcim.9b00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhijie Liu
- Allergan Plc, 2525 Dupont Drive, Irvine, California 92612, United States
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Suresh B. Singh
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Yajun Zheng
- Allergan Plc, 2525 Dupont Drive, Irvine, California 92612, United States
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Peter Lindblom
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Colin Tice
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Chengguo Dong
- Allergan Plc, 2525 Dupont Drive, Irvine, California 92612, United States
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Linghang Zhuang
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Yi Zhao
- Allergan Plc, 2525 Dupont Drive, Irvine, California 92612, United States
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Barbara A. Kruk
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Deepak Lala
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - David A. Claremon
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Gerard M. McGeehan
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Richard D. Gregg
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Robert Cain
- Allergan Plc, 2525 Dupont Drive, Irvine, California 92612, United States
| |
Collapse
|
23
|
Penning TM. AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Mol Cell Endocrinol 2019; 489:82-91. [PMID: 30012349 PMCID: PMC6422768 DOI: 10.1016/j.mce.2018.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/12/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022]
Abstract
Aldo-Keto-Reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase (HSD)/prostaglandin (PG) F2α synthase) is the only 17β-HSD that is not a short-chain dehydrogenase/reductase. By acting as a 17-ketosteroid reductase, AKR1C3 produces potent androgens in peripheral tissues which activate the androgen receptor (AR) or act as substrates for aromatase. AKR1C3 is implicated in the production of androgens in castration-resistant prostate cancer (CRPC) and polycystic ovarian syndrome; and is implicated in the production of aromatase substrates in breast cancer. By acting as an 11-ketoprostaglandin reductase, AKR1C3 generates 11β-PGF2α to activate the FP receptor and deprives peroxisome proliferator activator receptorγ of its putative PGJ2 ligands. These growth stimulatory signals implicate AKR1C3 in non-hormonal dependent malignancies e.g. acute myeloid leukemia (AML). AKR1C3 moonlights by acting as a co-activator of the AR and stabilizes ubiquitin ligases. AKR1C3 inhibitors have been used clinically for CRPC and AML and can be used to probe its pluripotency.
Collapse
Affiliation(s)
- Trevor M Penning
- Department of Systems Pharmacology and Translational Therapeutics and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 1315 BRBII/III 421 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Ahmed Laskar A, Younus H. Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev 2019; 51:42-64. [DOI: 10.1080/03602532.2018.1555587] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amaj Ahmed Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
25
|
Zemanová L, Navrátilová H, Andrýs R, Šperková K, Andrejs J, Kozáková K, Meier M, Möller G, Novotná E, Šafr M, Adamski J, Wsól V. Initial characterization of human DHRS1 (SDR19C1), a member of the short-chain dehydrogenase/reductase superfamily. J Steroid Biochem Mol Biol 2019; 185:80-89. [PMID: 30031147 DOI: 10.1016/j.jsbmb.2018.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 11/28/2022]
Abstract
Many enzymes from the short-chain dehydrogenase/reductase superfamily (SDR) have already been well characterized, particularly those that participate in crucial biochemical reactions in the human body (e.g. 11β-hydroxysteroid dehydrogenase 1, 17β-hydroxysteroid dehydrogenase 1 or carbonyl reductase 1). Several other SDR enzymes are completely or almost completely uncharacterized, such as DHRS1 (also known as SDR19C1). Based on our in silico and experimental approaches, DHRS1 is described as a likely monotopic protein that interacts with the membrane of the endoplasmic reticulum. The highest expression level of DHRS1 protein was observed in human liver and adrenals. The recombinant form of DHRS1 was purified using the detergent n-dodecyl-β-D-maltoside, and DHRS1 was proven to be an NADPH-dependent reductase that is able to catalyse the in vitro reductive conversion of some steroids (estrone, androstene-3,17-dione and cortisone), as well as other endogenous substances and xenobiotics. The expression pattern and enzyme activities fit to a role in steroid and/or xenobiotic metabolism; however, more research is needed to fully clarify the exact biological function of DHRS1.
Collapse
Affiliation(s)
- Lucie Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Hana Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Rudolf Andrýs
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kristýna Šperková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Andrejs
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Klára Kozáková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Marc Meier
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Eva Novotná
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Miroslav Šafr
- Institute of Legal Medicine, Faculty of Medicine in Hradec Králové, Charles University and University Hospital in Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Vladimír Wsól
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
26
|
Snoeck S, Wybouw N, Van Leeuwen T, Dermauw W. Transcriptomic Plasticity in the Arthropod Generalist Tetranychus urticae Upon Long-Term Acclimation to Different Host Plants. G3 (BETHESDA, MD.) 2018; 8:3865-3879. [PMID: 30333191 PMCID: PMC6288829 DOI: 10.1534/g3.118.200585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
The two-spotted spider mite Tetranychus urticae is an important pest with an exceptionally broad host plant range. This generalist rapidly acclimatizes and adapts to a new host, hereby overcoming nutritional challenges and a novel pallet of constitutive and induced plant defenses. Although recent studies reveal that a broad transcriptomic response upon host plant transfer is associated with a generalist life style in arthropod herbivores, it remains uncertain to what extent these transcriptional changes are general stress responses or host-specific. In the present study, we analyzed and compared the transcriptomic changes that occur in a single T. urticae population upon long-term transfer from Phaseolus vulgaris to a similar, but chemically defended, host (cyanogenic Phaseolus lunatus) and to multiple economically important crops (Glycine max, Gossypium hirsutum, Solanum lycopersicum and Zea mays). These long-term host plant transfers were associated with distinct transcriptomic responses with only a limited overlap in both specificity and directionality, suggestive of a fine-tuned transcriptional plasticity. Nonetheless, analysis at the gene family level uncovered overlapping functional processes, recruiting genes from both well-known and newly discovered detoxification families. Of note, our analyses highlighted a possible detoxification role for Tetranychus-specific short-chain dehydrogenases and single PLAT domain proteins, and manual genome annotation showed that both families are expanded in T. urticae Our results shed new light on the molecular mechanisms underlying the remarkable adaptive potential for host plant use of generalist arthropods and set the stage for functional validation of important players in T. urticae detoxification of plant secondary metabolites.
Collapse
Affiliation(s)
- Simon Snoeck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 Amsterdam, Noord-Holland, the Netherlands
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| |
Collapse
|
27
|
Liu Y, Yang Y, Li W, Zhang Y, Yang Y, Li H, Geng Z, Ao H, Zhou R, Li K. NRDR inhibits estradiol synthesis and is associated with changes in reproductive traits in pigs. Mol Reprod Dev 2018; 86:63-74. [PMID: 30372551 PMCID: PMC6587779 DOI: 10.1002/mrd.23080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023]
Abstract
Cumulus cells secreting steroid hormones have important functions in oocyte development. Several members of the short-chain dehydrogenase/reductase (SDR) family are critical to the biosynthesis of steroid hormones. NADPH-dependent retinol dehydrogenase/reductase ( NRDR), a member of the SDR superfamily, is overexpressed in pig breeds that also show high levels of androstenone. However, the potential functions and regulatory mechanisms of NRDR in pig ovaries have not been reported to date. The present study demonstrated that NRDR is highly expressed in pig ovaries and is specifically located in cumulus granulosa cells. Functional studies showed that NRDR inhibition increased estradiol synthesis. Both pregnant mare serum gonadotropin and human chorionic gonadotropin downregulated the expression of NRDR in pig cumulus granulosa cells. When the relationship between reproductive traits and single-nucleotide polymorphisms (SNPs) of the NRDR gene was examined, we found that two SNPs affected reproductive traits. SNP rs701332503 was significantly associated with a decrease in the total number of piglets born during multiparity, and rs326982309 was significantly associated with an increase in the average birth weight during primiparity. Thus, NRDR has an important role in steroid hormone biosynthesis in cumulus granulosa cells, and NRDR SNPs are associated with changes in porcine reproduction traits.
Collapse
Affiliation(s)
- Ying Liu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Wentong Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yanmin Zhang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanzhao Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hua Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Hong Ao
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhou
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Kalsbeek A, Veenstra J, Westra J, Disselkoen C, Koch K, McKenzie KA, O’Bott J, Vander Woude J, Fischer K, Shearer GC, Harris WS, Tintle NL. A genome-wide association study of red-blood cell fatty acids and ratios incorporating dietary covariates: Framingham Heart Study Offspring Cohort. PLoS One 2018; 13:e0194882. [PMID: 29652918 PMCID: PMC5898718 DOI: 10.1371/journal.pone.0194882] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Recent analyses have suggested a strong heritable component to circulating fatty acid (FA) levels; however, only a limited number of genes have been identified which associate with FA levels. In order to expand upon a previous genome wide association study done on participants in the Framingham Heart Study Offspring Cohort and FA levels, we used data from 2,400 of these individuals for whom red blood cell FA profiles, dietary information and genotypes are available, and then conducted a genome-wide evaluation of potential genetic variants associated with 22 FAs and 15 FA ratios, after adjusting for relevant dietary covariates. Our analysis found nine previously identified loci associated with FA levels (FADS, ELOVL2, PCOLCE2, LPCAT3, AGPAT4, NTAN1/PDXDC1, PKD2L1, HBS1L/MYB and RAB3GAP1/MCM6), while identifying four novel loci. The latter include an association between variants in CALN1 (Chromosome 7) and eicosapentaenoic acid (EPA), DHRS4L2 (Chromosome 14) and a FA ratio measuring delta-9-desaturase activity, as well as two loci associated with less well understood proteins. Thus, the inclusion of dietary covariates had a modest impact, helping to uncover four additional loci. While genome-wide association studies continue to uncover additional genes associated with circulating FA levels, much of the heritable risk is yet to be explained, suggesting the potential role of rare genetic variation, epistasis and gene-environment interactions on FA levels as well. Further studies are needed to continue to understand the complex genetic picture of FA metabolism and synthesis.
Collapse
Affiliation(s)
- Anya Kalsbeek
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Jenna Veenstra
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Jason Westra
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Craig Disselkoen
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Kristin Koch
- Department of Statistics, Baylor University, Waco, TX, United States of America
| | - Katelyn A. McKenzie
- Department of Statistics, Duke University, Durham, NC, United States of America
| | - Jacob O’Bott
- Department of Mathematics and Statistics, University of Maryland- Baltimore County, Baltimore, MD, United States of America
| | - Jason Vander Woude
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Karen Fischer
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Greg C. Shearer
- Department of Nutritional Sciences, Penn State University, State College, PA, United States of America
| | | | - Nathan L. Tintle
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
- * E-mail:
| |
Collapse
|
29
|
Hotz A, Fagerberg C, Vahlquist A, Bygum A, Törmä H, Rauschendorf MA, Zhang H, Heinz L, Bourrat E, Hausser I, Vestergaard V, Dragomir A, Zimmer A, Fischer J. Identification of mutations in SDR9C7
in six families with autosomal recessive congenital ichthyosis. Br J Dermatol 2018; 178:e207-e209. [DOI: 10.1111/bjd.15994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Hotz
- Institute of Human Genetics; Medical Center - University of Freiburg; Faculty of Medicine; Freiburg Germany
| | - C. Fagerberg
- Department of Clinical Genetics; Odense University Hospital; Odense Denmark
| | - A. Vahlquist
- Department of Medical Sciences; Section of Dermatology; University Hospital; Uppsala Sweden
| | - A. Bygum
- Department of Dermatology and Allergy Centre; Odense University Hospital; Odense Denmark
| | - H. Törmä
- Department of Medical Sciences; Section of Dermatology; University Hospital; Uppsala Sweden
| | - M.-A. Rauschendorf
- Institute of Human Genetics; Medical Center - University of Freiburg; Faculty of Medicine; Freiburg Germany
| | - H. Zhang
- Department of Medical Sciences; Section of Dermatology; University Hospital; Uppsala Sweden
| | - L. Heinz
- Institute of Human Genetics; Medical Center - University of Freiburg; Faculty of Medicine; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
| | - E. Bourrat
- Centre de Reference des Genodermatoses; Hôpital Saint-Louis; Paris France
| | - I. Hausser
- Institute of Pathology; University Hospital Heidelberg; Heidelberg Germany
| | - V. Vestergaard
- Department of Clinical Pathology; Odense University Hospital; Odense Denmark
| | - A. Dragomir
- Department of Immunology, Genetics and Pathology; Uppsala University; Uppsala Sweden
| | - A.D. Zimmer
- Institute of Human Genetics; Medical Center - University of Freiburg; Faculty of Medicine; Freiburg Germany
| | - J. Fischer
- Institute of Human Genetics; Medical Center - University of Freiburg; Faculty of Medicine; Freiburg Germany
| |
Collapse
|
30
|
DHRS2 inhibits cell growth and motility in esophageal squamous cell carcinoma. Oncogene 2017; 37:1086-1094. [PMID: 29106393 PMCID: PMC5851108 DOI: 10.1038/onc.2017.383] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/19/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is highly prevailing in Asia and it is ranked in the most aggressive squamous cell carcinomas. High-frequency loss of heterozygosity occurred in chromosome 14q11.2 in many tumors including ESCC, suggesting that one or more tumor-suppressor genes might exist within this region. In this study, we identified the tumor-suppressing role of DHRS2 (short-chain dehydrogenase/reductase family, member 2) at 14q11.2 in ESCCs. Downregulation of DHRS2 occurred in 30.8% of primary ESCC tumor tissues vs paired non-tumorous tissues. DHRS2 downregulation was associated significantly with ESCC invasion, lymph nodes metastasis and clinical staging (P<0.001). Survival analysis revealed that DHRS2 downregulation was significantly associated with worse outcome of patients with ESCC. In vitro and in vivo studies indicated that both DHRS2 variants could suppress cell proliferation and cell motility. Moreover, we demonstrated that DHRS2 could reduce reactive oxygen species and decrease nicotinamide adenine dinucleotide phosphate (oxidized/reduced), increase p53 stability and decrease Rb phosphorylation; it also decreased p38 mitogen-activated protein kinase phosphorylation and matrix metalloproteinase 2. In summary, these findings demonstrated that DHRS2 had an important part in ESCC development and progression.
Collapse
|
31
|
Zemanová L, Kirubakaran P, Pato IH, Štambergová H, Vondrášek J. The identification of new substrates of human DHRS7 by molecular modeling and in vitro testing. Int J Biol Macromol 2017; 105:171-182. [PMID: 28687384 DOI: 10.1016/j.ijbiomac.2017.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022]
Abstract
Human DHRS7 (SDR34C1) is one of insufficiently described enzymes of the short-chain dehydrogenase/reductase superfamily. The members of this superfamily often play an important pato/physiological role in the human body, participating in the metabolism of diverse substrates (e.g. retinoids, steroids, xenobiotics). A systematic approach to the identification of novel, physiological substrates of DHRS7 based on a combination of homology modeling, structure-based virtual screening and experimental evaluation has been used. Three novel substrates of DHRS7 (dihydrotestosterone, benzil and 4,4'-dimetylbenzil) have been described.
Collapse
Affiliation(s)
- Lucie Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Czech Republic
| | - Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, Prague, Czech Republic
| | - Ignacio Hernando Pato
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Czech Republic
| | - Hana Štambergová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, Prague, Czech Republic.
| |
Collapse
|
32
|
Zhuang L, Tice CM, Xu Z, Zhao W, Cacatian S, Ye YJ, Singh SB, Lindblom P, McKeever BM, Krosky PM, Zhao Y, Lala D, Kruk BA, Meng S, Howard L, Johnson JA, Bukhtiyarov Y, Panemangalore R, Guo J, Guo R, Himmelsbach F, Hamilton B, Schuler-Metz A, Schauerte H, Gregg R, McGeehan GM, Leftheris K, Claremon DA. Discovery of BI 135585, an in vivo efficacious oxazinanone-based 11β hydroxysteroid dehydrogenase type 1 inhibitor. Bioorg Med Chem 2017; 25:3649-3657. [DOI: 10.1016/j.bmc.2017.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
|
33
|
Araya S, Kratschmar DV, Tsachaki M, Stücheli S, Beck KR, Odermatt A. DHRS7 (SDR34C1) - A new player in the regulation of androgen receptor function by inactivation of 5α-dihydrotestosterone? J Steroid Biochem Mol Biol 2017; 171:288-295. [PMID: 28457967 DOI: 10.1016/j.jsbmb.2017.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 11/27/2022]
Abstract
DHRS7 (SDR34C1) has been associated with potential tumor suppressor effects in prostate cancer; however, its function remains largely unknown. Recent experiments using purified recombinant human DHRS7 suggested several potential substrates, including the steroids cortisone and Δ4-androstene-3,17-dione (androstenedione). However, the substrate and cofactor concentrations used in these experiments were very high and the physiological relevance of these observations needed to be further investigated. In the present study, recombinant human DHRS7 was expressed in intact HEK-293 cells in order to investigate whether glucocorticoids and androgens serve as substrates at sub-micromolar concentrations and at physiological cofactor concentrations. Furthermore, the membrane topology of DHRS7 was revisited using redox-sensitive green-fluorescent protein fusions in living cells. The results revealed that (1) cortisone is a substrate of DHRS7; however, it is not reduced to cortisol but to 20β-dihydrocortisone, (2) androstenedione is not a relevant substrate of DHRS7, (3) DHRS7 catalyzes the oxoreduction of 5α-dihydrotestosterone (5αDHT) to 3α-androstanediol (3αAdiol), with a suppressive effect on androgen receptor (AR) transcriptional activity, and (4) DHRS7 is anchored in the endoplasmic reticulum membrane with a cytoplasmic orientation. Together, the results show that DHRS7 is a cytoplasmic oriented enzyme exhibiting 3α/20β-hydroxysteroid dehydrogenase activity, with a possible role in the modulation of AR function. Further research needs to address the physiological relevance of DHRS7 in the inactivation of 5αDHT and AR regulation.
Collapse
Affiliation(s)
- Selene Araya
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Maria Tsachaki
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Katharina R Beck
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
34
|
Hwang JH, An SM, Kwon SG, Park DH, Kim TW, Kang DG, Yu GE, Kim IS, Park HC, Ha J, Kim CW. Associations of the Polymorphisms in DHRS4, SERPING1, and APOR Genes with Postmortem pH in Berkshire Pigs. Anim Biotechnol 2017; 28:288-293. [PMID: 28489967 DOI: 10.1080/10495398.2017.1279171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Postmortem pH is a main factor influencing the meat quality in pigs. This study investigated the association of postmortem pH with single-nucleotide polymorphisms (SNPs) in the fourth member of the short-chain dehydrogenase/reductase family (DHRS4), the first member of serpin peptidase inhibitor, clade G (complement inhibitor) (SERPING1), and the apolipoprotein R precursor (APOR) genes in Berkshire pigs. The study included 437 pigs, and genotyping was conducted using the GoldenGate Assay (Illumina, San Diego, CA, USA). DHRS4, SERPING1, and APOR polymorphisms were significantly associated with pH45 or pH24 (p < 0.05). SERPING1 was also statistically significantly associated with water holding capacity (p < 0.05), which is closely associated with postmortem pH. These results suggest that SNPs in the DHRS4, SERPING1, and APOR genes have potential for use as genetic markers for the meat quality in pigs.
Collapse
Affiliation(s)
- Jung Hye Hwang
- a Swine Science and Technology Center, Gyeongnam National University of Science & Technology , Jinju , South Korea
| | - Sang Mi An
- a Swine Science and Technology Center, Gyeongnam National University of Science & Technology , Jinju , South Korea
| | - Seul Gi Kwon
- a Swine Science and Technology Center, Gyeongnam National University of Science & Technology , Jinju , South Korea
| | - Da Hye Park
- a Swine Science and Technology Center, Gyeongnam National University of Science & Technology , Jinju , South Korea
| | - Tae Wan Kim
- b Department of Animal Resource Technology, Gyeongnam National University of Science and Technology , Jinju , South Korea
| | - Deok Gyung Kang
- a Swine Science and Technology Center, Gyeongnam National University of Science & Technology , Jinju , South Korea
| | - Go Eun Yu
- a Swine Science and Technology Center, Gyeongnam National University of Science & Technology , Jinju , South Korea
| | - Il-Suk Kim
- b Department of Animal Resource Technology, Gyeongnam National University of Science and Technology , Jinju , South Korea
| | | | - Jeongim Ha
- a Swine Science and Technology Center, Gyeongnam National University of Science & Technology , Jinju , South Korea
| | - Chul Wook Kim
- a Swine Science and Technology Center, Gyeongnam National University of Science & Technology , Jinju , South Korea
| |
Collapse
|
35
|
Alencar VC, Jabes DL, Menegidio FB, Sassaki GL, de Souza LR, Puzer L, Meneghetti MCZ, Lima MA, Tersariol ILDS, de Oliveira RC, Nunes LR. Functional and Evolutionary Characterization of a UDP-Xylose Synthase Gene from the Plant Pathogen Xylella fastidiosa, Involved in the Synthesis of Bacterial Lipopolysaccharide. Biochemistry 2017; 56:779-792. [PMID: 28125217 DOI: 10.1021/acs.biochem.6b00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylella fastidiosa is a plant-infecting bacillus, responsible for many important crop diseases, such as Pierce's disease of vineyards, citrus variegated chlorosis, and coffee leaf scorch (CLS), among others. Recent genomic comparisons involving two CLS-related strains, belonging to X. fastidiosa subsp. pauca, revealed that one of them carries a frameshift mutation that inactivates a gene encoding an oxidoreductase of the short-chain dehydrogenase/reductase (SDR) superfamily, which may play important roles in determining structural variations in bacterial glycans and glycoconjugates. However, the exact nature of this SDR has been a matter of controversy, as different annotations of X. fastidiosa genomes have implicated it in distinct reactions. To confirm the nature of this mutated SDR, a comparative analysis was initially performed, suggesting that it belongs to a subgroup of SDR decarboxylases, representing a UDP-xylose synthase (Uxs). Functional assays, using a recombinant derivative of this enzyme, confirmed its nature as XfUxs, and carbohydrate composition analyses, performed with lipopolysaccharide (LPS) molecules obtained from different strains, indicate that inactivation of the X. fastidiosa uxs gene affects the LPS structure among CLS-related X. fastidiosa strains. Finally, a comparative sequence analysis suggests that this mutation is likely to result in a morphological and evolutionary hallmark that differentiates two subgroups of CLS-related strains, which may influence interactions between these bacteria and their plant and/or insect hosts.
Collapse
Affiliation(s)
- Valquíria Campos Alencar
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Daniela Leite Jabes
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Fabiano Bezerra Menegidio
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Guilherme Lanzi Sassaki
- Setor de Ciências Biológicas-Departamento de Bioquímica e Biologia Molecular Laboratório de Química de Carboidratos, Universidade Federal do Paraná (UFPR) , Rua Cel. Francisco H. dos Santos, 100, Curitiba, Paraná CEP 81531-980, Brazil
| | - Lucas Rodrigo de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| | - Luciano Puzer
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| | - Maria Cecília Zorél Meneghetti
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Marcelo Andrade Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Ivarne Luis Dos Santos Tersariol
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Regina Costa de Oliveira
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Luiz R Nunes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| |
Collapse
|
36
|
Arai S, Ikeda M, Ide T, Matsuo Y, Fujino T, Hirano K, Sunagawa K, Tsutsui H. Functional loss of DHRS7C induces intracellular Ca2+ overload and myotube enlargement in C2C12 cells via calpain activation. Am J Physiol Cell Physiol 2017; 312:C29-C39. [DOI: 10.1152/ajpcell.00090.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/17/2016] [Indexed: 02/03/2023]
Abstract
Dehydrogenase/reductase member 7C (DHRS7C) is a newly identified NAD/NADH-dependent dehydrogenase that is expressed in cardiac and skeletal muscle and localized in the endoplasmic/sarcoplasmic reticulum (ER/SR). However, its functional role in muscle cells remains to be fully elucidated. Here, we investigated the role of DHRS7C by analyzing mouse C2C12 myoblasts deficient in DHRS7C (DHRS7C-KO cells), overexpressing wild-type DHRS7C (DHRS7C-WT cells), or expressing mutant DHRS7C [DHRS7C-Y191F or DHRS7C-K195Q cells, harboring point mutations in the NAD/NADH-dependent dehydrogenase catalytic core domain (YXXXK)]. DHRS7C expression was induced as C2C12 myoblasts differentiated into mature myotubes, whereas DHRS7C-KO myotubes exhibited enlarged cellular morphology after differentiation. Notably, both DHRS7C-Y191F and DHRS7C-K195Q cells also showed similar enlarged cellular morphology, suggesting that the NAD/NADH-dependent dehydrogenase catalytic core domain is pivotal for DHRS7C function. In DHRS7C-KO, DHRS7C-Y191F, and DHRS7C-K195Q cells, the resting level of cytosolic Ca2+ and total amount of Ca2+ storage in the ER/SR were significantly higher than those in control C2C12 and DHRS7C-WT cells after differentiation. Additionally, Ca2+ release from the ER/SR induced by thapsigargin and 4-chloro-m-cresol was augmented in these cells and calpain, a calcium-dependent protease, was significantly activated in DHRS7C-KO, DHRS7C-Y191F, and DHRS7C-K195Q myotubes, consistent with the higher resting level of cytosolic Ca2+ concentration and enlarged morphology after differentiation. Furthermore, treatment with a calpain inhibitor abolished the enlarged cellular morphology. Taken together, our findings suggested that DHRS7C maintains intracellular Ca2+ homeostasis involving the ER/SR and that functional loss of DHRS7C leads to Ca2+ overload in the cytosol and ER/SR, resulting in enlarged cellular morphology via calpain activation.
Collapse
Affiliation(s)
- Shinobu Arai
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Matsuo
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology Faculty of Medicine, Kagawa University, Kagawa, Japan; and
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Menon BRK, Hardman SJO, Scrutton NS, Heyes DJ. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:236-43. [PMID: 27285815 PMCID: PMC4970445 DOI: 10.1016/j.jphotobiol.2016.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
Abstract
Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth. Identified several active site residues that can interact with coenzyme/substrate Multiple residues are important in excited state POR–protochlorophyllide interactions. New structural model for T. elongatus POR to rationalize mutagenesis outcomes POR active site geometry is finely-tuned to support photochemistry.
Collapse
Affiliation(s)
- Binuraj R K Menon
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Samantha J O Hardman
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| | - Derren J Heyes
- Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
38
|
Prokai L, Nguyen V, Szarka S, Garg P, Sabnis G, Bimonte-Nelson HA, McLaughlin KJ, Talboom JS, Conrad CD, Shughrue PJ, Gould TD, Brodie A, Merchenthaler I, Koulen P, Prokai-Tatrai K. The prodrug DHED selectively delivers 17β-estradiol to the brain for treating estrogen-responsive disorders. Sci Transl Med 2016. [PMID: 26203081 DOI: 10.1126/scitranslmed.aab1290] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many neurological and psychiatric maladies originate from the deprivation of the human brain from estrogens. However, current hormone therapies cannot be used safely to treat these conditions commonly associated with menopause because of detrimental side effects in the periphery. The latter also prevents the use of the hormone for neuroprotection. We show that a small-molecule bioprecursor prodrug, 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED), converts to 17β-estradiol in the brain after systemic administration but remains inert in the rest of the body. The localized and rapid formation of estrogen from the prodrug was revealed by a series of in vivo bioanalytical assays and through in vivo imaging in rodents. DHED treatment efficiently alleviated symptoms that originated from brain estrogen deficiency in animal models of surgical menopause and provided neuroprotection in a rat stroke model. Concomitantly, we determined that 17β-estradiol formed in the brain from DHED elicited changes in gene expression and neuronal morphology identical to those obtained after direct 17β-estradiol treatment. Together, complementary functional and mechanistic data show that our approach is highly relevant therapeutically, because administration of the prodrug selectively produces estrogen in the brain independently from the route of administration and treatment regimen. Therefore, peripheral responses associated with the use of systemic estrogens, such as stimulation of the uterus and estrogen-responsive tumor growth, were absent. Collectively, our brain-selective prodrug approach may safely provide estrogen neuroprotection and medicate neurological and psychiatric symptoms developing from estrogen deficiency, particularly those encountered after surgical menopause, without the adverse side effects of current hormone therapies.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA. AgyPharma LLC, Mansfield, TX 76063, USA.
| | - Vien Nguyen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Szabolcs Szarka
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Puja Garg
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA. Vision Research Center and Departments of Ophthalmology and Basic Medical Science, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
| | - Gauri Sabnis
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA. Arizona Alzheimer's Consortium, Tempe, AZ 85014, USA
| | - Katie J McLaughlin
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua S Talboom
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA. Arizona Alzheimer's Consortium, Tempe, AZ 85014, USA
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Paul J Shughrue
- Department of Pharmacology, Elan Pharmaceuticals Inc., South San Francisco, CA 94080, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Angela Brodie
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Istvan Merchenthaler
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Koulen
- Vision Research Center and Departments of Ophthalmology and Basic Medical Science, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA. AgyPharma LLC, Mansfield, TX 76063, USA
| |
Collapse
|
39
|
Štambergová H, Zemanová L, Lundová T, Malčeková B, Skarka A, Šafr M, Wsól V. Human DHRS7, promising enzyme in metabolism of steroids and retinoids? J Steroid Biochem Mol Biol 2016; 155:112-9. [PMID: 26466768 DOI: 10.1016/j.jsbmb.2015.09.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/25/2023]
Abstract
The metabolism of steroids and retinoids has been studied in detail for a long time, as these compounds are involved in a broad spectrum of physiological processes. Many enzymes participating in the conversion of such compounds are members of the short-chain dehydrogenase/reductase (SDR) superfamily. Despite great effort, there still remain a number of poorly characterized SDR proteins. According to various bioinformatics predictions, many of these proteins may play a role in the metabolism of steroids and retinoids. Dehydrogenase/reductase (SDR family) member 7 (DHRS7) is one such protein. In a previous study, we determined DHRS7 to be an integral membrane protein of the endoplasmic reticulum facing the lumen which has shown at least in vitro NADPH-dependent reducing activity toward several eobiotics and xenobiotics bearing a carbonyl moiety. In the present paper pure DHRS7 was used for a more detailed study of both substrate screening and an analysis of kinetics parameters of the physiologically important substrates androstene-3,17-dione, cortisone and all-trans-retinal. Expression patterns of DHRS7 at the mRNA as well as protein level were determined in a panel of various human tissue samples, a procedure that has enabled the first estimation of the possible biological function of this enzyme. DHRS7 is expressed in tissues such as prostate, adrenal glands, liver or intestine, where its activity could be well exploited. Preliminary indications show that DHRS7 exhibits dual substrate specificity recognizing not only steroids but also retinoids as potential substrates and could be important in the metabolism of these signalling molecules.
Collapse
Affiliation(s)
- Hana Štambergová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | - Lucie Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | - Tereza Lundová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | - Beata Malčeková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | - Adam Skarka
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| | - Miroslav Šafr
- Institute of Legal Medicine, Faculty of Medicine in Hradec Králové, Charles University in Prague and University Hospital in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - Vladimír Wsól
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, CZ-50005 Hradec Králové, Czech Republic.
| |
Collapse
|
40
|
Structural insights on mouse L-threonine dehydrogenase: A regulatory role of Arg180 in catalysis. J Struct Biol 2015; 192:510-518. [PMID: 26492815 DOI: 10.1016/j.jsb.2015.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/01/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022]
Abstract
Mouse L-threonine dehydrogenase (mTDH), which belongs to the short-chain dehydrogenase/reductase (SDR) superfamily and mediates threonine catabolism, plays pivotal roles in both powerful biosynthesis and signaling in mouse stem cells and has a regulatory residue Arg180. Here we determined three crystal structures of mTDH: wild-type (WT) in the apo form; in complex with NAD(+) and a substrate analog, glycerol, or with only NAD(+); as well as the R180K variant with NAD(+). This is the first description of a structure for mammalian SDR-type TDH. Structural comparison revealed the structural basis for SDR-type TDH catalysis remains strictly conserved in bacteria and mammals. Kinetic enzyme assays, and isothermal titration calorimetry (ITC) measurements indicated the R180K mutation has little effect on NAD(+) binding affinity, whereas affects the substrate's affinity for the enzyme. The crystal structure of R180K with NAD(+), biochemical and spectroscopic studies suggested that the R180K mutant should bind NAD(+) in a similar way and have a similar folding to the WT. However, the R180K variant may have difficulty adopting the closed form due to reduced interaction of residue 180 with a loop which connects a key position for mTDH switching between the closed and open forms in mTDH catalysis, and thereby exhibited a significantly decreased kcat/Km value toward the substrate, L-Thr. In sum, our results suggest that activity of GalE-like TDH can be regulated by remote interaction, such as hydrogen bonding and hydrophobic interaction around the Arg180 of mTDH.
Collapse
|
41
|
Human dehydrogenase/reductase (SDR family) member 8 (DHRS8): a description and evaluation of its biochemical properties. Mol Cell Biochem 2015; 411:35-42. [DOI: 10.1007/s11010-015-2566-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/03/2015] [Indexed: 01/22/2023]
|
42
|
Beilstein F, Carrière V, Leturque A, Demignot S. Characteristics and functions of lipid droplets and associated proteins in enterocytes. Exp Cell Res 2015; 340:172-9. [PMID: 26431584 DOI: 10.1016/j.yexcr.2015.09.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/26/2015] [Indexed: 01/23/2023]
Abstract
Cytosolic lipid droplets (LDs) are observed in enterocytes of jejunum during lipid absorption. One important function of the intestine is to secrete chylomicrons, which provide dietary lipids throughout the body, from digested lipids in meals. The current hypothesis is that cytosolic LDs in enterocytes constitute a transient pool of stored lipids that provides lipids during interprandial period while lowering chylomicron production during the post-prandial phase. This smoothens the magnitude of peaks of hypertriglyceridemia. Here, we review the composition and functions of lipids and associated proteins of enterocyte LDs, the known physiological functions of LDs as well as the role of LDs in pathological processes in the context of the intestine.
Collapse
Affiliation(s)
- Frauke Beilstein
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France; EPHE, Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, F-75014 Paris, France
| | - Véronique Carrière
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France
| | - Armelle Leturque
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France
| | - Sylvie Demignot
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de recherche des Cordeliers, F-75006 Paris, France; EPHE, Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, F-75014 Paris, France.
| |
Collapse
|
43
|
Farooq A. Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor. Exp Biol Med (Maywood) 2015; 240:361-74. [PMID: 25662954 DOI: 10.1177/1535370214561586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent work on WW domain-containing oxidoreductase (WWOX) tumor suppressor is beginning to shed new light on both the molecular mechanism of action of its WW domains as well as the contiguous catalytic domain. Herein, the structural basis underlying the ability of WW1 domain to bind to various physiological ligands and how the orphan WW2 tandem partner synergizes its ligand binding in the context of WW1-WW2 tandem module of WWOX is discussed. Notably, the WW domains within the WW1-WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. In this manner, the association of WW2 domain with WW1 hinders ligand binding to the latter. Consequently, ligand binding to WW1 domain not only results in the displacement of WW2 lid but also disrupts the fixed orientation of WW domains in the liganded conformation. Equally importantly, structure-guided functional approach suggests that the catalytic domain of WWOX likely serves as a retinal oxidoreductase that catalyzes the reversible oxidation and reduction of all-trans-retinal. Collectively, this review provides structural insights into the functional versatility of a key signaling protein with important implications on its biology.
Collapse
Affiliation(s)
- Amjad Farooq
- Department of Biochemistry & Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
44
|
Bhatia C, Oerum S, Bray J, Kavanagh KL, Shafqat N, Yue W, Oppermann U. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships. Chem Biol Interact 2014; 234:114-25. [PMID: 25526675 DOI: 10.1016/j.cbi.2014.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/15/2014] [Accepted: 12/04/2014] [Indexed: 01/26/2023]
Abstract
Short-chain dehydrogenases/reductases (SDRs) constitute a large, functionally diverse branch of enzymes within the class of NAD(P)(H) dependent oxidoreductases. In humans, over 80 genes have been identified with distinct metabolic roles in carbohydrate, amino acid, lipid, retinoid and steroid hormone metabolism, frequently associated with inherited genetic defects. Besides metabolic functions, a subset of atypical SDR proteins appears to play critical roles in adapting to redox status or RNA processing, and thereby controlling metabolic pathways. Here we present an update on the human SDR superfamily and a ligand identification strategy using differential scanning fluorimetry (DSF) with a focused library of oxidoreductase and metabolic ligands to identify substrate classes and inhibitor chemotypes. This method is applicable to investigate structure-activity relationships of oxidoreductases and ultimately to better understand their physiological roles.
Collapse
Affiliation(s)
- Chitra Bhatia
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephanie Oerum
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - James Bray
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Kathryn L Kavanagh
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Naeem Shafqat
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Wyatt Yue
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK; Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
45
|
Liu SY, Chiang MF, Chen YJ. Role of WW domain proteins WWOX in development, prognosis, and treatment response of glioma. Exp Biol Med (Maywood) 2014; 240:315-23. [PMID: 25432984 DOI: 10.1177/1535370214561588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and malignant brain tumor. Delicate microenvironment and lineage heterogeneity of GBM cells including infiltration, hypoxia, angiogenesis, and stemness make them highly resistant to current conventional therapies, with an average life expectancy for GBM patients of less than 15 months. Poor response to cytotoxic agents of GBM cells remains the major challenge of GBM treatment. Resistance of GBM to clinical treatment is a result of genomic alternation and deregulated signaling pathways, such as p53 mutation and apoptosis signaling blockage, providing cancer cells more opportunities for survival rather than cell death. WW domain-containing oxidoreductase (WWOX) is a tumor suppressor gene, commonly downregulated in various types of tumors, including GBM. It has been found that the reintroduction of WWOX induced p53-mutant GBM cells to undergo apoptosis, but not in p53 wild-type GBM cells, indicating WWOX is likely to reopen apoptosis pathways in a p53-independent manner in GBM. Identifying the crucial target modulated by WWOX deficiency provides a potential therapeutic target for GBM treatment. Here, we have reviewed the literatures about the role of WWOX in development, signaling pathway, prognosis, and treatment response in malignant glioma.
Collapse
Affiliation(s)
- Shin-Yi Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 104, Taiwan Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei 104, Taiwan Graduate Institute of Pharmacology, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
46
|
Snyder NW, Golin-Bisello F, Gao Y, Blair IA, Freeman BA, Wendell SG. 15-Oxoeicosatetraenoic acid is a 15-hydroxyprostaglandin dehydrogenase-derived electrophilic mediator of inflammatory signaling pathways. Chem Biol Interact 2014; 234:144-53. [PMID: 25450232 DOI: 10.1016/j.cbi.2014.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023]
Abstract
Bioactive lipids govern cellular homeostasis and pathogenic inflammatory processes. Current dogma holds that bioactive lipids, such as prostaglandins and lipoxins, are inactivated by 15-hydroxyprostaglandin dehydrogenase (15PGDH). In contrast, the present results reveal that catabolic "inactivation" of hydroxylated polyunsaturated fatty acids (PUFAs) yields electrophilic α,β-unsaturated ketone derivatives. These endogenously produced species are chemically reactive signaling mediators that induce tissue protective events. Electrophilic fatty acids diversify the proteome through post-translational alkylation of nucleophilic cysteines in key transcriptional regulatory proteins and enzymes that govern cellular metabolic and inflammatory homeostasis. 15PGDH regulates these processes as it is responsible for the formation of numerous electrophilic fatty acids including the arachidonic acid metabolite, 15-oxoeicosatetraenoic acid (15-oxoETE). Herein, the role of 15-oxoETE in regulating signaling responses is reported. In cell cultures, 15-oxoETE activates Nrf2-regulated antioxidant responses (AR) and inhibits NF-κB-mediated pro-inflammatory responses via IKKβ inhibition. Inhibition of glutathione S-transferases using ethacrynic acid incrementally increased the signaling capacity of 15-oxoETE by decreasing 15-oxoETE-GSH adduct formation. This work demonstrates that 15PGDH plays a role in the regulation of cell and tissue homeostasis via the production of electrophilic fatty acid signaling mediators.
Collapse
Affiliation(s)
- Nathaniel W Snyder
- University of Pennsylvania, Department of Pharmacology and Center of Excellence in Environmental Toxicology, Philadelphia, PA 19104, USA
| | - Franca Golin-Bisello
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA
| | - Yang Gao
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA
| | - Ian A Blair
- University of Pennsylvania, Department of Pharmacology and Center of Excellence in Environmental Toxicology, Philadelphia, PA 19104, USA
| | - Bruce A Freeman
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA
| | - Stacy Gelhaus Wendell
- University of Pittsburgh, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15261, USA.
| |
Collapse
|
47
|
Lundová T, Zemanová L, Malčeková B, Skarka A, Štambergová H, Havránková J, Šafr M, Wsól V. Molecular and biochemical characterisation of human short-chain dehydrogenase/reductase member 3 (DHRS3). Chem Biol Interact 2014; 234:178-87. [PMID: 25451588 DOI: 10.1016/j.cbi.2014.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/11/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
Dehydrogenase/reductase (SDR family) member 3 (DHRS3), also known as retinal short-chain dehydrogenase/reductase (retSDR1) is a member of SDR16C family. This family is thought to be NADP(H) dependent and to have multiple substrates; however, to date, only all-trans-retinal has been identified as a DHRS3 substrate. The reductive reaction catalysed by DHRS3 seems to be physiological, and recent studies proved the importance of DHRS3 for maintaining suitable retinoic acid levels during embryonic development in vivo. Although it seems that DHRS3 is an important protein, knowledge of the protein and its properties is quite limited, with the majority of information being more than 15 years old. This study aimed to generate a more comprehensive characterisation of the DHRS3 protein. Recombinant enzyme was prepared and demonstrated to be a microsomal, integral-membrane protein with the C-terminus oriented towards the cytosol, consistent with its preference of NADPH as a cofactor. It was determined that DHRS3 also participates in the metabolism of other endogenous compounds, such as androstenedione, estrone, and DL-glyceraldehyde, and in the biotransformation of xenobiotics (e.g., NNK and acetohexamide) in addition to all-trans-retinal. Purified and reconstituted enzyme was prepared for the first time and will be used for further studies. Expression of DHRS3 was shown at the level of both mRNA and protein in the human liver, testis and small intestine. This new information could open other areas of DHRS3 protein research.
Collapse
Affiliation(s)
- Tereza Lundová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Lucie Zemanová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Beata Malčeková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Adam Skarka
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Hana Štambergová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Jana Havránková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Miroslav Šafr
- Institute of Legal Medicine, Faculty of Medicine, Charles University and University Hospital in Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Vladimír Wsól
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
48
|
Lhor M, Salesse C. Retinol dehydrogenases: membrane-bound enzymes for the visual function. Biochem Cell Biol 2014; 92:510-23. [PMID: 25357265 DOI: 10.1139/bcb-2014-0082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinoid metabolism is important for many physiological functions, such as differenciation, growth, and vision. In the visual context, after the absorption of light in rod photoreceptors by the visual pigment rhodopsin, 11-cis retinal is isomerized to all-trans retinal. This retinoid subsequently undergoes a series of modifications during the visual cycle through a cascade of reactions occurring in photoreceptors and in the retinal pigment epithelium. Retinol dehydrogenases (RDHs) are enzymes responsible for crucial steps of this visual cycle. They belong to a large family of proteins designated as short-chain dehydrogenases/reductases. The structure of these RDHs has been predicted using modern bioinformatics tools, which allowed to propose models with similar structures including a common Rossman fold. These enzymes undergo oxidoreduction reactions, whose direction is dictated by the preference and concentration of their individual cofactor (NAD(H)/NADP(H)). This review presents the current state of knowledge on functional and structural features of RDHs involved in the visual cycle as well as knockout models. RDHs are described as integral or peripheral enzymes. A topology model of the membrane binding of these RDHs via their N- and (or) C-terminal domain has been proposed on the basis of their individual properties. Membrane binding is a crucial issue for these enzymes because of the high hydrophobicity of their retinoid substrates.
Collapse
Affiliation(s)
- Mustapha Lhor
- a CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint Sacrement, Département d'ophtalmologie, Faculté de médicine, Université Laval, Québec, QC G1S 4L8, Canada
| | | |
Collapse
|
49
|
Abstract
Our previous studies have described the purification and characterization of a novel plant NAD(P)-reductase like protein (RL) from the thermogenic appendix of the Sauromatum guttatum inflorescence. RL is mainly located in cytoplasm of thermogenic plants and it can act like a bistable switch. It adopts a compact conformation during heat-production and a more expanded conformation when heat is not generated. Addition of salicylic acid, a natural thermogenic inducer, at picomolar concentration to a solution of purified RL induced a discontinuous volume phase transition in which the volume of RL in the oligomeric form expanded and shrunk repeatedly every 4-5 min. In the present study using ESI-MS analysis we have demonstrated the existence of RL in the human SK-N-SH cell line and in mouse brain tissue. The molecular mass of human RL is in the same range as of its plant counterpart, 34,140 ± 34 Da. The charge state distribution of the human RL is identical to its plant counterpart from the Sauromatum appendix during heat-production. Human RL was present in the compact state when it was purified from the SK-N-SH cell line When these cells were treated with salicylic acid (10 μM) a shift to a much more compact conformation was observed. It seems that the potential of RL to respond to salicylic acid was conserved. These results may reveal the existence of a thermoregulation system that is evolutionarily conserved and is operating by conformational changes. This discovery may also represent an opportunity for a better understanding of some of the diverse functions of salicylic acid and aspirin in plants and humans.
Collapse
|
50
|
Nolte H, Konzer A, Ruhs A, Jungblut B, Braun T, Krüger M. Global Protein Expression Profiling of Zebrafish Organs Based on in Vivo Incorporation of Stable Isotopes. J Proteome Res 2014; 13:2162-74. [DOI: 10.1021/pr5000335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hendrik Nolte
- Max Planck Institute for
Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Anne Konzer
- Max Planck Institute for
Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Aaron Ruhs
- Max Planck Institute for
Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Benno Jungblut
- Max Planck Institute for
Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Max Planck Institute for
Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Marcus Krüger
- Max Planck Institute for
Heart and Lung Research, Parkstr. 1, 61231 Bad Nauheim, Germany
| |
Collapse
|