1
|
Sun S, Homer JA, Smedley CJ, Cheng QQ, Sharpless KB, Moses JE. Phosphorus fluoride exchange: Multidimensional catalytic click chemistry from phosphorus connective hubs. Chem 2023; 9:2128-2143. [PMID: 38882554 PMCID: PMC11172371 DOI: 10.1016/j.chempr.2023.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Phosphorus Fluoride Exchange (PFEx) represents a cutting-edge advancement in catalytic click-reaction technology. Drawing inspiration from Nature's phosphate connectors, PFEx facilitates the reliable coupling of P(V)-F loaded hubs with aryl alcohols, alkyl alcohols, and amines to produce stable, multidimensional P(V)-O and P(V)-N linked products. The rate of P-F exchange is significantly enhanced by Lewis amine base catalysis, such as 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD). PFEx substrates containing multiple P-F bonds are capable of selective, serial exchange reactions via judicious catalyst selection. In fewer than four synthetic steps, controlled projections can be deliberately incorporated along three of the four tetrahedral axes departing from the P(V) central hub, thus taking full advantage of the potential for generating three-dimensional diversity. Furthermore, late-stage functionalization of drugs and drug fragments can be achieved with the polyvalent PFEx hub, hexafluorocyclotriphosphazene (HFP), as has been demonstrated in prior research.
Collapse
Affiliation(s)
- Shoujun Sun
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- These authors contributed equally
| | - Christopher J. Smedley
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
- These authors contributed equally
| | - Qing-Qing Cheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Lead contact
| |
Collapse
|
2
|
Elhaj R, Reynolds JM. Chemical exposures and suspected impact on Gulf War Veterans. Mil Med Res 2023; 10:11. [PMID: 36882803 PMCID: PMC9993698 DOI: 10.1186/s40779-023-00449-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Gulf War Illness (GWI) encompass a spectrum of maladies specific to troops deployed during the Persian Gulf War (1990-1991). There are several hypothesized factors believed to contribute to GWI, including (but not limited to) exposures to chemical agents and a foreign environment (e.g., dust, pollens, insects, and microbes). Moreover, the inherent stress associated with deployment and combat has been associated with GWI. While the etiology of GWI remains uncertain, several studies have provided strong evidence that chemical exposures, especially neurotoxicants, may be underlying factors for the development of GWI. This mini style perspective article will focus on some of the major evidence linking chemical exposures to GWI development and persistence decades after exposure.
Collapse
Affiliation(s)
- Rami Elhaj
- Center for Cancer Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Joseph M Reynolds
- Center for Cancer Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
3
|
Muñoz-Torrero D, Schopfer LM, Lockridge O. Chlorpyrifos Oxon Activates Glutamate and Lysine for Protein Cross-linking. Chem Res Toxicol 2023; 36:112-121. [PMID: 36598934 PMCID: PMC9846825 DOI: 10.1021/acs.chemrestox.2c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic low-dose exposure to organophosphorus (OP) toxicants is correlated with an increase in the risk of impaired cognition and neurodegenerative diseases. A mechanism to explain this relationship is needed. We suggest that the formation of organophosphate-induced high-molecular-weight protein aggregates that disrupt cell function may be the missing link. It has been demonstrated that such aggregation can be promoted by OP-labeled lysine. Alternatively, OP-labeled glutamate may be the initiator. To test this hypothesis, we treated MAP-rich tubulin Sus scrofa and human transglutaminase with chlorpyrifos oxon. Trypsin-digested proteins were subjected to liquid chromatography-tandem mass spectrometry followed by Protein Prospector searches to identify diethyl phosphate adducts and cross-linked peptides. We report the presence of diethyl phosphate adducts on the side chains of glutamate, lysine, and tyrosine, as well as cross-links between glutamate and lysine. Glutamate-lysine cross-linking could be initiated either by diethyl phosphate-activated glutamate or by diethyl phosphate-activated lysine to form stable isopeptide bonds between and within proteins. It was concluded that organophosphate-induced high-molecular-weight protein aggregates could promote brain dysfunction.
Collapse
Affiliation(s)
- Diego Muñoz-Torrero
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona 08028, Spain
| | | | - Oksana Lockridge
- University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States,. Phone +1-402-559-6032.
Fax: +1 402-559-4651
| |
Collapse
|
4
|
Onder S, van Grol M, Fidder A, Xiao G, Noort D, Yerramalla U, Tacal O, Schopfer LM, Lockridge O. Rabbit Antidiethoxyphosphotyrosine Antibody, Made by Single B Cell Cloning, Detects Chlorpyrifos Oxon-Modified Proteins in Cultured Cells and Immunopurifies Modified Peptides for Mass Spectrometry. J Proteome Res 2021; 20:4728-4745. [PMID: 34469172 PMCID: PMC8491160 DOI: 10.1021/acs.jproteome.1c00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Chronic low-dose
exposure to organophosphorus pesticides is associated
with the risk of neurodegenerative disease. The mechanism of neurotoxicity
is independent of acetylcholinesterase inhibition. Adducts on tyrosine,
lysine, threonine, and serine can occur after exposure to organophosphorus
pesticides, the most stable being adducts on tyrosine. Rabbit monoclonal
1C6 to diethoxyphosphate-modified tyrosine (depY) was created by single
B cell cloning. The amino acid sequence and binding constant (Kd 3.2 × 10–8 M) were
determined. Cultured human neuroblastoma SH-SY5Y and mouse neuroblastoma
N2a cells incubated with a subcytotoxic dose of 10 μM chlorpyrifos
oxon contained depY-modified proteins detected by monoclonal 1C6 on
Western blots. depY-labeled peptides from tryptic digests of cell
lysates were immunopurified by binding to immobilized 1C6. Peptides
released with 50% acetonitrile and 1% formic acid were analyzed by
liquid chromatography tandem mass spectrometry (LC-MS/MS) on an Orbitrap
Fusion Lumos mass spectrometer. Protein Prospector database searches
identified 51 peptides modified on tyrosine by diethoxyphosphate in
SH-SY5Y cell lysate and 73 diethoxyphosphate-modified peptides in
N2a cell lysate. Adducts appeared most frequently on the cytoskeleton
proteins tubulin, actin, and vimentin. It was concluded that rabbit
monoclonal 1C6 can be useful for studies that aim to understand the
mechanism of neurotoxicity resulting from low-dose exposure to organophosphorus
pesticides.
Collapse
Affiliation(s)
- Seda Onder
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Marco van Grol
- TNO Organisation for Applied Scientific Research, 2280 AA Rijswijk, The Netherlands
| | - Alex Fidder
- TNO Organisation for Applied Scientific Research, 2280 AA Rijswijk, The Netherlands
| | - Gaoping Xiao
- Syd Labs, Inc., Hopkinton, Massachusetts 01748, United States
| | - Daan Noort
- TNO Organisation for Applied Scientific Research, 2280 AA Rijswijk, The Netherlands
| | | | - Ozden Tacal
- Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
5
|
Hernandez-Toledano D, Vega L. The cytoskeleton as a non-cholinergic target of organophosphate compounds. Chem Biol Interact 2021; 346:109578. [PMID: 34265256 DOI: 10.1016/j.cbi.2021.109578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022]
Abstract
Current organophosphate (OP) toxicity research now considers potential non-cholinergic mechanisms for these compounds, since the inhibition of acetylcholinesterase (AChE) cannot completely explain all the adverse biological effects of OP. Thanks to the development of new strategies for OP detection, some potential molecular targets have been identified. Among these molecules are several cytoskeletal proteins, including actin, tubulin, intermediate filament proteins, and associated proteins, such as motor proteins, microtubule-associated proteins (MAPs), and cofilin. in vitro, ex vivo, and some in vivo reports have identified alterations in the cytoskeleton following OP exposure, including cell morphology defects, cells detachments, intracellular transport disruption, aberrant mitotic spindle formation, modification of cell motility, and reduced phagocytic capability, which implicate the cytoskeleton in OP toxicity. Here, we reviewed the evidence indicating the cytoskeletal targets of OP compounds, including their strategies, the potential effects of their alterations, and their possible participation in neurotoxicity, embryonic development, cell division, and immunotoxicity related to OP compounds exposure.
Collapse
Affiliation(s)
- David Hernandez-Toledano
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Av. IPN 2508, San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico
| | - Libia Vega
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Av. IPN 2508, San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico.
| |
Collapse
|
6
|
Michalovicz LT, Kelly KA, Sullivan K, O'Callaghan JP. Acetylcholinesterase inhibitor exposures as an initiating factor in the development of Gulf War Illness, a chronic neuroimmune disorder in deployed veterans. Neuropharmacology 2020; 171:108073. [PMID: 32247728 PMCID: PMC7398580 DOI: 10.1016/j.neuropharm.2020.108073] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom disorder, characterized by symptoms such as fatigue, pain, cognitive and memory impairment, respiratory, skin and gastrointestinal problems, that is experienced by approximately one-third of 1991 Gulf War veterans. Over the nearly three decades since the end of the war, investigators have worked to elucidate the initiating factors and underlying causes of GWI. A significant portion of this research has indicated a strong correlation between GWI and exposure to a number of different acetycholinesterase inhibitors (AChEIs) in theater, such as sarin and cyclosarin nerve agents, chlorpyrifos and dichlorvos pesticides, and the anti-nerve agent prophylactic pyridostigmine bromide. Through studying these exposures and their relationship to the symptoms presented by ill veterans, it has become increasingly apparent that GWI is the likely result of an underlying neuroimmune disorder. While evidence indicates that AChEIs are a key exposure in the development of GWI, particularly organophosphate AChEIs, the mechanism(s) by which these chemicals instigate illness appears to be related to "off-target", non-cholinergic effects. In this review, we will discuss the role of AChEI exposure in the development and persistence of GWI; in particular, how these chemicals, combined with other exposures, have led to a chronic neuroimmune disorder. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Lindsay T Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
7
|
Brown KA, Filipov NM, Wagner JJ. Dorsoventral-Specific Effects of Nerve Agent Surrogate Diisopropylfluorophosphate on Synaptic Transmission in the Mouse Hippocampus. J Pharmacol Exp Ther 2020; 373:10-23. [DOI: 10.1124/jpet.119.263053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022] Open
|
8
|
Joshi U, Pearson A, Evans JE, Langlois H, Saltiel N, Ojo J, Klimas N, Sullivan K, Keegan AP, Oberlin S, Darcey T, Cseresznye A, Raya B, Paris D, Hammock B, Vasylieva N, Hongsibsong S, Stern LJ, Crawford F, Mullan M, Abdullah L. A permethrin metabolite is associated with adaptive immune responses in Gulf War Illness. Brain Behav Immun 2019; 81:545-559. [PMID: 31325531 PMCID: PMC7155744 DOI: 10.1016/j.bbi.2019.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 07/11/2019] [Indexed: 10/31/2022] Open
Abstract
Gulf War Illness (GWI), affecting 30% of veterans from the 1991 Gulf War (GW), is a multi-symptom illness with features similar to those of patients with autoimmune diseases. The objective of the current work is to determine if exposure to GW-related pesticides, such as permethrin (PER), activates peripheral and central nervous system (CNS) adaptive immune responses. In the current study, we focused on a PER metabolite, 3-phenoxybenzoic acid (3-PBA), as this is a common metabolite previously shown to form adducts with endogenous proteins. We observed the presence of 3-PBA and 3-PBA modified lysine of protein peptides in the brain, blood and liver of pyridostigmine bromide (PB) and PER (PB+PER) exposed mice at acute and chronic post-exposure timepoints. We tested whether 3-PBA-haptenated albumin (3-PBA-albumin) can activate immune cells since it is known that chemically haptenated proteins can stimulate immune responses. We detected autoantibodies against 3-PBA-albumin in plasma from PB + PER exposed mice and veterans with GWI at chronic post-exposure timepoints. We also observed that in vitro treatment of blood with 3-PBA-albumin resulted in the activation of B- and T-helper lymphocytes and that these immune cells were also increased in blood of PB + PER exposed mice and veterans with GWI. These immune changes corresponded with elevated levels of infiltrating monocytes in the brain and blood of PB + PER exposed mice which coincided with alterations in the markers of blood-brain barrier disruption, brain macrophages and neuroinflammation. These studies suggest that pesticide exposure associated with GWI may have resulted in the activation of the peripheral and CNS adaptive immune responses, possibly contributing to an autoimmune-type phenotype in veterans with GWI.
Collapse
Affiliation(s)
- Utsav Joshi
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Andrew Pearson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - James E. Evans
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Heather Langlois
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Nicole Saltiel
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Joseph Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Nancy Klimas
- NOVA Southeastern University, Ft. Lauderdale, FL, USA,Miami VAMC, Miami, FL, USA
| | | | | | - Sarah Oberlin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Teresa Darcey
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Adam Cseresznye
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Balaram Raya
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,James A. Haley VA Hospital, Tampa, FL, USA
| | - Daniel Paris
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Bruce Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Natalia Vasylieva
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Surat Hongsibsong
- Environment and Health Research Unit, Research Institute for Health Science, Chiang Mai University, Chiang, Thailand
| | - Lawrence J. Stern
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA,Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA,Open University, Milton Keynes, UK,James A. Haley VA Hospital, Tampa, FL, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; Open University, Milton Keynes, UK; James A. Haley VA Hospital, Tampa, FL, USA.
| |
Collapse
|
9
|
Vasudevan A, Argiriadi MA, Baranczak A, Friedman MM, Gavrilyuk J, Hobson AD, Hulce JJ, Osman S, Wilson NS. Covalent binders in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:1-62. [PMID: 30879472 DOI: 10.1016/bs.pmch.2018.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent modulation of protein function can have multiple utilities including therapeutics, and probes to interrogate biology. While this field is still viewed with scepticism due to the potential for (idiosyncratic) toxicities, significant strides have been made in terms of understanding how to tune electrophilicity to selectively target specific residues. Progress has also been made in harnessing the potential of covalent binders to uncover novel biology and to provide an enhanced utility as payloads for Antibody Drug Conjugates. This perspective covers the tenets and applications of covalent binders.
Collapse
Affiliation(s)
| | | | | | | | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC, South San Francisco, CA, United States
| | | | | | - Sami Osman
- AbbVie Bioresearch Center, Worcester, MA, United States
| | | |
Collapse
|
10
|
Fu F, Sun F, Lu X, Song T, Ding J, Gao R, Wang H, Pei C. A Novel Potential Biomarker on Y263 Site in Human Serum Albumin Poisoned by Six Nerve Agents. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:168-175. [DOI: 10.1016/j.jchromb.2018.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
|
11
|
Ortega-Olvera JM, Winkler R, Quintanilla-Vega B, Shibayama M, Chávez-Munguía B, Martín-Tapia D, Alarcón L, González-Mariscal L. The organophosphate pesticide methamidophos opens the blood-testis barrier and covalently binds to ZO-2 in mice. Toxicol Appl Pharmacol 2018; 360:257-272. [PMID: 30291936 DOI: 10.1016/j.taap.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Methamidophos (MET) is an organophosphate (OP) pesticide widely used in agriculture in developing countries. MET causes adverse effects in male reproductive function in humans and experimental animals, but the underlying mechanisms remain largely unknown. We explored the effect of MET on mice testes (5 mg/kg/day/4 days), finding that this pesticide opens the blood-testis barrier and perturbs spermatogenesis, generating the appearance of immature germ cells in the epididymis. In the seminiferous tubules, MET treatment changed the level of expression or modified the stage-specific localization of tight junction (TJ) proteins ZO-1, ZO-2, occludin, and claudin-3. In contrast, claudin-11 was barely altered. MET also modified the shape of claudin-11, and ZO-2 at the cell border, from a zigzag to a more linear pattern. In addition, MET diminished the expression of ZO-2 in spermatids present in seminiferous tubules, induced the phosphorylation of ZO-2 and occludin in testes and reduced the interaction between these proteins assessed by co-immunoprecipitation. MET formed covalent bonds with ZO-2 in serine, tyrosine and lysine residues. The covalent modifications formed on ZO-2 at putative phosphorylation sites might interfere with ZO-2 interaction with regulatory molecules and other TJ proteins. MET bonds formed at ZO-2 ubiquitination sites likely interfere with ZO-2 degradation and TJ sealing, based on results obtained in cultured epithelial cells transfected with ZO-2 mutated at a MET target lysine residue. Our results shed light on MET male reproductive toxicity and are important to improve regulations regarding the use of OP pesticides and to protect the health of agricultural workers.
Collapse
Affiliation(s)
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav, Irapuato 36824, Mexico; Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav, Mexico City 07360, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Cinvestav, Mexico City 07360, Mexico
| | - Dolores Martín-Tapia
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, Mexico City 07360, Mexico
| | | |
Collapse
|
12
|
Naughton SX, Terry AV. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018; 408:101-112. [PMID: 30144465 DOI: 10.1016/j.tox.2018.08.011] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
Abstract
The term organophosphate (OP) refers to a diverse group of chemicals that are found in hundreds of products worldwide. As pesticides, their most common use, OPs are clearly beneficial for agricultural productivity and the control of deadly vector-borne illnesses. However, as a consequence of their widespread use, OPs are now among the most common synthetic chemicals detected in the environment as well as in animal and human tissues. This is an increasing environmental concern because many OPs are highly toxic and both accidental and intentional exposures to OPs resulting in deleterious health effects have been documented for decades. Some of these deleterious health effects include a variety of long-term neurological and psychiatric disturbances including impairments in attention, memory, and other domains of cognition. Moreover, some chronic illnesses that manifest these symptoms such as Gulf War Illness and Aerotoxic Syndrome have (at least in part) been attributed to OP exposure. In addition to acute acetylcholinesterase inhibition, OPs may affect a number of additional targets that lead to oxidative stress, axonal transport deficits, neuroinflammation, and autoimmunity. Some of these targets could be exploited for therapeutic purposes. The purpose of this review is thus to: 1) describe the important uses of organophosphate (OP)-based compounds worldwide, 2) provide an overview of the various risks and toxicology associated with OP exposure, particularly long-term neurologic and psychiatric symptoms, 3) discuss mechanisms of OP toxicity beyond cholinesterase inhibition, 4) review potential therapeutic strategies to reverse the acute toxicity and long term deleterious effects of OPs.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
13
|
Chu S, Baker MR, Leong G, Letcher RJ, Li QX. Covalent binding of the organophosphate insecticide profenofos to tyrosine on α- and β-tubulin proteins. CHEMOSPHERE 2018; 199:154-159. [PMID: 29433029 PMCID: PMC5847477 DOI: 10.1016/j.chemosphere.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus (OP) compounds can bind covalently to many types of proteins and form protein adducts. These protein adducts can indicate the exposure to and neurotoxicity of OPs. In the present work, we studied adduction of tubulin with the OP insecticide profenofos in vitro and optimized the method for detection of adducted peptides. Porcine tubulin was incubated with profenofos and was then digested with trypsin, followed by mass spectrometric identification of the profenofos-modified tubulin and binding sites. With solvent-assisted digestion (80% acetonitrile in digestion solution), the protein was digested for peptide identification, especially for some peptides with low mass. The MALDI-TOF-MS and LC-ESI-TOF-MS analysis results showed that profenofos bound covalently to Tyr83 in porcine α-tubulin (TGTY*83R) and to Tyr281 in porcine β-tubulin (GSQQY*281R) with a mass increase of 166.02 Da from the original peptide fragments of porcine tubulin proteins. Tyrosine adduct sites were also confirmed by MALDI-TOF/TOF-MS analysis. This result may partially explain the neurotoxicity of profenofos at low doses and prolonged periods of exposure.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Dr., Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Margaret R Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Gladys Leong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Dr., Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
14
|
Sullivan K, Krengel M, Bradford W, Stone C, Thompson TA, Heeren T, White RF. Neuropsychological functioning in military pesticide applicators from the Gulf War: Effects on information processing speed, attention and visual memory. Neurotoxicol Teratol 2018; 65:1-13. [DOI: 10.1016/j.ntt.2017.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/25/2022]
|
15
|
Gao J, Naughton SX, Beck WD, Hernandez CM, Wu G, Wei Z, Yang X, Bartlett MG, Terry AV. Chlorpyrifos and chlorpyrifos oxon impair the transport of membrane bound organelles in rat cortical axons. Neurotoxicology 2017; 62:111-123. [PMID: 28600141 DOI: 10.1016/j.neuro.2017.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/13/2023]
Abstract
Chlorpyrifos (CPF) is an extensively used organophosphorus pesticide that has recently come under increasing scrutiny due to environmental health concerns particularly its association with neurodevelopmental defects. While the insecticidal actions and acute toxicity of CPF are attributed to its oxon metabolite (CPO) which potently inhibits the cholinergic enzyme acetylcholinesterase (AChE), there is significant evidence that CPF, CPO, and other organophosphates may affect a variety of neuronal targets and processes that are not directly related to AChE. Previously, in adult rat sciatic nerves ex vivo and postnatal neurons from rats in vitro we observed that CPF and CPO impaired the movements of vesicles and mitochondria in axons. Here, in embryonic neurons from rats in culture, we evaluated 24h exposures to CPF and CPO across picomolar to micromolar concentrations for effects on fast axonal transport of membrane bound organelles (MBOs) that contained the amyloid precursor protein (APP) tagged with the fluorescent marker, Dendra2 (APPDendra2). The most notable observations of this study were concentration-dependent decreases in the velocity and percentage of MBOs moving in the anterograde direction, an increase in the number of stationary MBOs, and an increased frequency of pauses associated with both CPF and CPO. These effects occurred at concentrations that did not significantly inhibit AChE activity, they were not blocked by cholinergic receptor antagonists, and they were not associated with compromised cell viability. These effects of CPF and CPO may be significant given the importance of axonal transport to neuronal development as well the function of fully developed neurons.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 W. Green Street, Athens, 30602, Georgia
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 W. Green Street, Athens, 30602, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
16
|
Relationships of human α/β hydrolase fold proteins and other organophosphate-interacting proteins. Chem Biol Interact 2016; 259:343-351. [PMID: 27109753 DOI: 10.1016/j.cbi.2016.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Organophosphates (OPs) are either found in nature or synthetized for use as pesticides, flame retardants, neurotoxic warfare agents or drugs (cholinergic enhancers in Alzheimer's disease and myasthenia gravis, or inhibitors of lipases in metabolic diseases). Because of the central role of acetylcholinesterase cholinergic neurotransmission in humans, one of the main purposes for using OPs is inactivation of the enzyme by phosphorylation of the nucleophilic serine residue in the active center. However, hundreds of serine hydrolases are expressed in the human proteome, and many of them are potential targets for OP adduction. In this review, we first situate the α/β hydrolase fold proteins among the distinctively folded proteins known to interact with OPs, in particular the different lipases, peptidases, and enzymes hydrolyzing OPs. Second, we compile the human α/β hydrolases and review those that have been experimentally shown to interact with OPs. Among the 120 human α/β hydrolase fold proteins, 102 have a serine in the consensus GXSXG pentapeptide compatible with an active site, 6 have an aspartate or a cysteine as the active site nucleophile residue, and 12 evidently lack an active site. 76 of the 120 have been experimentally shown to bind an OP.
Collapse
|
17
|
Gao J, Naughton SX, Wulff H, Singh V, Beck WD, Magrane J, Thomas B, Kaidery NA, Hernandez CM, Terry AV. Diisopropylfluorophosphate Impairs the Transport of Membrane-Bound Organelles in Rat Cortical Axons. J Pharmacol Exp Ther 2015; 356:645-55. [PMID: 26718240 DOI: 10.1124/jpet.115.230839] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022] Open
Abstract
The extensive use of organophosphates (OPs) is an ongoing environmental health concern due to multiple reports of OP-related neurologic abnormalities. The mechanism of the acute toxicity of OPs has been attributed to inhibition of acetylcholinesterase (AChE), but there is growing evidence that this may not account for all the long-term neurotoxic effects of OPs. In previous experiments (using ex vivo and in vitro model systems) we observed that the insecticide OP chlorpyrifos impaired the movements of vesicles and mitochondria in axons. Here, using a time-lapse imaging technique, we evaluated the OP-nerve agent diisopropylfluorophosphate (DFP) across a wide range of concentrations (subnanomolar to micromolar) for effects on fast axonal transport of membrane-bound organelles (MBOs) that contain the amyloid precursor protein (APP) tagged with the fluorescent marker Dendra2 (APPDendra2). Both 1 and 24 hours of exposure to DFP and a positive control compound, colchicine, resulted in a decrease in the velocity of anterograde and retrograde movements of MBOs and an increase in the number of stationary MBOs. These effects occurred at picomolar (100 pM) to low nanomolar (0.1 nM) concentrations that were not associated with compromised cell viability or cytoskeletal damage. Moreover, the effects of DFP on axonal transport occurred at concentrations that did not inhibit AChE activity, and they were not blocked by cholinergic receptor antagonists. Given the fundamental importance of axonal transport to neuronal function, these observations may explain some of the long-term neurologic deficits that have been observed in humans who have been exposed to OPs.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Heike Wulff
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Vikrant Singh
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Jordi Magrane
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Bobby Thomas
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Navneet Ammal Kaidery
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia (J.G., V.S., S.X.N., W.D.B., B.T., N.A.K., C.M.H., A.V.T.); Department of Pharmacology, University of California-Davis, Davis, California (H.W.); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York (J.M.)
| |
Collapse
|
18
|
White RF, Steele L, O'Callaghan JP, Sullivan K, Binns JH, Golomb BA, Bloom FE, Bunker JA, Crawford F, Graves JC, Hardie A, Klimas N, Knox M, Meggs WJ, Melling J, Philbert MA, Grashow R. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex 2015; 74:449-75. [PMID: 26493934 PMCID: PMC4724528 DOI: 10.1016/j.cortex.2015.08.022] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 11/01/2022]
Abstract
Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses.
Collapse
Affiliation(s)
- Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States.
| | - Lea Steele
- Baylor University Institute of Biomedical Studies, Waco, TX, United States.
| | - James P O'Callaghan
- Molecular Neurotoxicology, Toxicology & Molecular Biology Branch (MS-3014), Health Effects Laboratory Division, Centers for Disease Control and Prevention - NIOSH, Morgantown, WV, United States.
| | - Kimberly Sullivan
- Boston University School of Public Health, Department of Environmental Health, Boston, MA, United States.
| | - James H Binns
- Research Advisory Committee on Gulf War Veterans' Illnesses, Phoenix, AZ, United States.
| | | | - Floyd E Bloom
- Molecular & Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA, United States.
| | - James A Bunker
- National Gulf War Resource Center, Topeka, KS, United States.
| | - Fiona Crawford
- Director, TBI Research Program, Roskamp Institute, Sarasota, FL, United States.
| | - Joel C Graves
- Captain, U.S. Army, Retired, Crestview, FL, United States.
| | - Anthony Hardie
- Veterans for Common Sense, Bradenton, FL, United States.
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Miami, FL, United States.
| | - Marguerite Knox
- McEntire Joint National Guard Base, Eastover, SC, United States.
| | - William J Meggs
- Department of Emergency Medicine, 3ED311, The Brody School of Medicine, East Carolina University School of Medicine, Greenville, NC, United States.
| | - Jack Melling
- U.S. Government Accountability Office, Salisbury, Wiltshire, UK.
| | | | - Rachel Grashow
- Northeastern University, Department of Civil and Environmental Engineering, Boston, MA, United States.
| |
Collapse
|
19
|
Bui-Nguyen TM, Dennis WE, Jackson DA, Stallings JD, Lewis JA. Detection of Dichlorvos Adducts in a Hepatocyte Cell Line. J Proteome Res 2014; 13:3583-95. [DOI: 10.1021/pr5000076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tri M. Bui-Nguyen
- Oak Ridge Institute
for Science and Education (ORISE) Postdoctoral Researcher, U.S. Army
Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, Maryland 21702, United States
| | - William E. Dennis
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort
Detrick, Maryland 21702, United States
| | - David A. Jackson
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort
Detrick, Maryland 21702, United States
| | - Jonathan D. Stallings
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort
Detrick, Maryland 21702, United States
| | - John A. Lewis
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort
Detrick, Maryland 21702, United States
| |
Collapse
|
20
|
V-type nerve agents phosphonylate ubiquitin at biologically relevant lysine residues and induce intramolecular cyclization by an isopeptide bond. Anal Bioanal Chem 2014; 406:5171-85. [DOI: 10.1007/s00216-014-7706-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 12/13/2022]
|
21
|
Li B, Duysen EG, Froment MT, Masson P, Nachon F, Jiang W, Schopfer LM, Thiele GM, Klassen LW, Cashman J, Williams GR, Lockridge O. Polyclonal antibody to soman-tyrosine. Chem Res Toxicol 2013; 26:584-92. [PMID: 23469927 DOI: 10.1021/tx400027n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Soman forms a stable, covalent bond with tyrosine 411 of human albumin, with tyrosines 257 and 593 in human transferrin, and with tyrosine in many other proteins. The pinacolyl group of soman is retained, suggesting that pinacolyl methylphosphonate bound to tyrosine could generate specific antibodies. Tyrosine in the pentapeptide RYGRK was covalently modified with soman simply by adding soman to the peptide. The phosphonylated-peptide was linked to keyhole limpet hemocyanin, and the conjugate was injected into rabbits. The polyclonal antiserum recognized soman-labeled human albumin, soman-mouse albumin, and soman human transferrin but not nonphosphonylated control proteins. The soman-labeled tyrosines in these proteins are surrounded by different amino acid sequences, suggesting that the polyclonal recognizes soman-tyrosine independent of the amino acid sequence. Antiserum obtained after 4 antigen injections over a period of 18 weeks was tested in a competition ELISA where it had an IC50 of 10(-11) M. The limit of detection on Western blots was 0.01 μg (15 picomoles) of soman-labeled albumin. In conclusion, a high-affinity, polyclonal antibody that specifically recognizes soman adducts on tyrosine in a variety of proteins has been produced. Such an antibody could be useful for identifying secondary targets of soman toxicity.
Collapse
Affiliation(s)
- Bin Li
- Eppley Institute, University of Nebraska Medical Center , Omaha, Nebraska 68198-5950, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Black RM, Read RW. Biological markers of exposure to organophosphorus nerve agents. Arch Toxicol 2013; 87:421-37. [DOI: 10.1007/s00204-012-1005-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/18/2012] [Indexed: 11/28/2022]
|
23
|
Liyasova MS, Schopfer LM, Lockridge O. Cresyl saligenin phosphate, an organophosphorus toxicant, makes covalent adducts with histidine, lysine, and tyrosine residues of human serum albumin. Chem Res Toxicol 2012; 25:1752-61. [PMID: 22793878 DOI: 10.1021/tx300215g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CBDP [2-(2-cresyl)-4H-1-3-2-benzodioxaphosphorin-2-oxide] is a toxic organophosphorus compound. It is generated in vivo from tri-ortho-cresyl phosphate (TOCP), a component of jet engine oil and hydraulic fluids. Exposure to TOCP was proven to occur on board aircraft by finding CBDP-derived phospho-butyrylcholinesterase in the blood of passengers. Adducts on BChE, however, do not explain the toxicity of CBDP. Critical target proteins of CBDP are yet to be identified. Our goal was to facilitate the search for the critical targets of CBDP by determining the range of amino acid residues capable of reacting with CBDP and characterizing the types of adducts formed. We used human albumin as a model protein. Mass spectral analysis of the tryptic digest of CBDP-treated human albumin revealed adducts on His-67, His-146, His-242, His-247, His-338, Tyr-138, Tyr-140, Lys-199, Lys-351, Lys-414, Lys-432, and Lys-525. Adducts formed on tyrosine residues were different from those formed on histidines and lysines. Tyrosines were organophosphorylated by CBDP, while histidine and lysine residues were alkylated. This is the first report of an organophosphorus compound with both phosphorylating and alkylating properties. The o-hydroxybenzyl adduct on histidine is novel. The ability of CBDP to form stable adducts on histidine, tyrosine, and lysine allows one to consider new mechanisms of toxicity from TOCP exposure.
Collapse
Affiliation(s)
- Mariya S Liyasova
- Department of Environmental, Agricultural & Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | | | |
Collapse
|
24
|
Verstappen DRW, Hulst AG, Fidder A, Vermeulen NPE, Noort D. Interactions of organophosphates with keratins in the cornified epithelium of human skin. Chem Biol Interact 2012; 197:93-102. [PMID: 22521715 DOI: 10.1016/j.cbi.2012.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 11/25/2022]
Abstract
Methods to unequivocally assess and quantify exposure to organophosphate anti-cholinesterase agents are highly valuable, either from a biomonitoring or a forensic perspective. Since for both OP pesticides and various nerve agents the skin is a predominant route of entry, we hypothesized that proteins in the skin might represent an ideal source of unequivocal and persistent biomarkers for exposure to these compounds. In this exploratory study we show that keratin proteins in human skin are relevant binding sites for organophosphates. The thick cornified epithelium of human plantar skin (callus) was exposed to a selection of relevant organophosphorus compounds and keratin proteins were subsequently extracted. After carboxymethylation of cysteine residues, enzymatic digestion of the keratins with pronase and trypsin was performed and the resulting amino acid and peptides were analyzed to assess whether covalent adducts had formed. LC-tandem MS analysis of the pronase digests demonstrated that tyrosine and to a lesser extent serine residues were selectively modified by organophosphate pesticides (both phosphorothioates and the corresponding oxon forms) under physiological conditions. In addition, modification of tyrosine with the nerve agent VX was unequivocally assessed. In order to elucidate specific binding sites, LC-tandem MS analysis of trypsin digests showed two separate tryptic keratin fragments, i.e. LASY*LDK and SLY*GLGGSK, with Y* the modified tyrosine residues, originating from keratin 1/6 and keratin 10, respectively. These preliminary findings, revealing novel binding targets for anti-cholinesterase organophosphates, will form a firm basis for the development of novel (non-invasive) methods for assessment of exposure to organophosphates. Whether this binding will also have biological implications remains an issue for further investigations.
Collapse
Affiliation(s)
- Daan R W Verstappen
- TNO Earth, Environmental and Life Sciences, Department of CBRN Protection, P.O. Box 45, 2280 AA, Rijswijk, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Terry AV. Functional consequences of repeated organophosphate exposure: potential non-cholinergic mechanisms. Pharmacol Ther 2012; 134:355-65. [PMID: 22465060 DOI: 10.1016/j.pharmthera.2012.03.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022]
Abstract
The class of chemicals known as the "organophosphates" (OPs) comprises many of the most common agricultural and commercial pesticides that are used worldwide as well as the highly toxic chemical warfare agents. The mechanism of the acute toxicity of OPs in both target and non-target organisms is primarily attributed to inhibitory actions on various forms of cholinesterase leading to excessive peripheral and central cholinergic activity. However, there is now substantial evidence that this canonical (cholinesterase-based) mechanism cannot alone account for the wide-variety of adverse consequences of OP exposure that have been described, especially those associated with repeated exposures to levels that produce no overt signs of acute toxicity. This type of exposure has been associated with prolonged impairments in attention, memory, and other domains of cognition, as well as chronic illnesses where these symptoms are manifested (e.g., Gulf War Illness, Alzheimer's disease). Due to their highly reactive nature, it is not surprising that OPs might alter the function of a number of enzymes and proteins (in addition to cholinesterase). However, the wide variety of long-term neuropsychiatric symptoms that have been associated with OPs suggests that some basic or fundamental neuronal process was adversely affected during the exposure period. The purpose of this review is to discuss several non-cholinesterase targets of OPs that might affect such fundamental processes and includes cytoskeletal and motor proteins involved in axonal transport, neurotrophins and their receptors, and mitochondria (especially their morphology and movement in axons). Potential therapeutic implications of these OP interactions are also discussed.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, GA 30912, USA.
| |
Collapse
|
26
|
Changes of protein oxidation, calpain and cytoskeletal proteins (alpha tubulin and pNF-H) levels in rat brain after nerve agent poisoning. Toxicol Lett 2011; 203:227-36. [DOI: 10.1016/j.toxlet.2011.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022]
|
27
|
Lockridge O, Schopfer LM. Review of tyrosine and lysine as new motifs for organophosphate binding to proteins that have no active site serine. Chem Biol Interact 2010; 187:344-8. [PMID: 20211158 PMCID: PMC2905678 DOI: 10.1016/j.cbi.2010.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
The accepted target for organophosphorus agent (OP) binding to enzymes is the active site serine in the consensus sequence Gly X Ser X Gly. New motifs have been identified by using mass spectrometry to fragment OP-labeled peptides. It has been found that OP can make covalent bonds with tyrosine and lysine in proteins that have no active site serine. The OP-tyrosine bond is stable, and does not undergo the decay seen with OP-serine. Information on OP binding to tyrosine has been applied to diagnosis of OP exposure, through the use of mass spectrometry to detect OP-labeled albumin in human and animal plasma. It is expected that the new OP binding motif will aid in the search for a mechanism of low dose OP toxicity. It is hypothesized that proteins involved in axonal transport, especially proteins whose function depends on reversible phosphorylation, are prime candidates for a role in OP-induced neurodegeneration. Treatment of neurodegenerative disorders could be developed by identifying methods to reverse OP binding to tyrosine.
Collapse
Affiliation(s)
- Oksana Lockridge
- Eppley Institute, 985950 University of Nebraska Medical Center, Omaha, NE 68198-5950, United States.
| | | |
Collapse
|
28
|
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and identification of albumin phosphylation by organophosphorus pesticides and G- and V-type nerve agents. Anal Bioanal Chem 2010; 398:2677-91. [PMID: 20730528 DOI: 10.1007/s00216-010-4076-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/28/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
Toxic organophosphorus compounds (OPC), e.g., pesticides and nerve agents (NA), are known to phosphylate distinct endogenous proteins in vivo and in vitro. OPC adducts of butyrylcholinesterase and albumin are considered to be valuable biomarkers for retrospective verification of OPC exposure. Therefore, we have detected and identified novel adducts of human serum albumin (HSA) by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Pure albumin and plasma were incubated with numerous pesticides and NA of the V- and G-type in different molar ratios. Samples were prepared either by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by in-gel enzymatic cleavage using endoproteinase Glu-C (Glu-C) or by combining highly albumin-selective affinity extraction with ultrafiltration followed by reduction, carbamidomethylation, and enzymatic cleavage (Glu-C) prior to MALDI-TOF MS analysis. Characteristic mass shifts for phosphylation revealed tyrosine adducts at Y(411) (Y(401)KFQNALLVRY(411)TKKVPQVSTPTLVE(425)), Y(148) and Y(150) (I(142)ARRHPY(148)FY(150)APE(153), single and double labeled), and Y(161) (L(154)LFFAKRY(161)KAAFTE(167)) produced by original NA (tabun, sarin, soman, cyclosarin, VX, Chinese VX, and Russian VX) as well as by chlorpyrifos-oxon, diisopropyl fluorophosphate (DFP), paraoxon-ethyl (POE), and profenofos. MALDI-MS/MS of the single-labeled I(142)-E(153) peptide demonstrated that Y(150) was phosphylated with preference to Y(148). Aged albumin adducts were not detected. The procedure described was reproducible and feasible for detection of adducts at the most reactive Y(411)-residue (S/N ≥ 3) when at least 1% of total albumin was labeled. This was achieved by incubating plasma with molar HSA/OPC ratios ranging from approximately 1:0.03 (all G-type NA, DFP, and POE) to 1:3 (V-type NA, profenofos). Relative signal intensity of the Y(411) adduct correlated well with the spotted relative molar amount underlining the usefulness for quantitative adduct determination. In conclusion, the current analytical design exhibits potential as a verification tool for high-dose exposure.
Collapse
|
29
|
Schopfer LM, Grigoryan H, Li B, Nachon F, Masson P, Lockridge O. Mass spectral characterization of organophosphate-labeled, tyrosine-containing peptides: characteristic mass fragments and a new binding motif for organophosphates. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1297-311. [PMID: 19762289 PMCID: PMC2860652 DOI: 10.1016/j.jchromb.2009.07.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 07/11/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
We have identified organophosphorus agent (OP)-tyrosine adducts on 12 different proteins labeled with six different OP. Labeling was achieved by treating pure proteins with up to 40-fold molar excess of OP at pH 8-8.6. OP-treated proteins were digested with trypsin, and peptides were separated by HPLC. Fragmentation patterns for 100 OP-peptides labeled on tyrosine were determined in the mass spectrometer. The goals of the present work were (1) to determine the common features of the OP-reactive tyrosines, and (2) to describe non-sequence MSMS fragments characteristic of OP-tyrosine peptides. Characteristic ions at 272 and 244 amu for tyrosine-OP immonium ions were nearly always present in the MSMS spectrum of peptides labeled on tyrosine by chlorpyrifos-oxon. Characteristic fragments also appeared from the parent ions that had been labeled with diisopropylfluorophosphate (216 amu), sarin (214 amu), soman (214 amu) or FP-biotin (227, 312, 329, 691 and 708 amu). In contrast to OP-reactive serines, which lie in the consensus sequence GXSXG, the OP-reactive tyrosines have no consensus sequence. Their common feature is the presence of nearby positively charged residues that activate the phenolic hydroxyl group. The significance of these findings is the recognition of a new binding motif for OP to proteins that have no active site serine. Modified peptides are difficult to find when the OP bears no radiolabel and no tag. The characteristic MSMS fragment ions are valuable because they are identifiers for OP-tyrosine, independent of the peptide.
Collapse
Affiliation(s)
| | - Hasmik Grigoryan
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Bin Li
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Florian Nachon
- Centre de Recherches du Service de Santé des Armées, Toxicology Dept, BP87, 38702 La Tronche Cedex, France
| | - Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Toxicology Dept, BP87, 38702 La Tronche Cedex, France
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198
| |
Collapse
|
30
|
GC–MS and LC–MS analysis of nerve agents in body fluids: Intra-laboratory verification test using spiked plasma and urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1226-33. [DOI: 10.1016/j.jchromb.2009.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 11/16/2022]
|
31
|
Jiang W, Duysen EG, Hansen H, Shlyakhtenko L, Schopfer LM, Lockridge O. Mice treated with chlorpyrifos or chlorpyrifos oxon have organophosphorylated tubulin in the brain and disrupted microtubule structures, suggesting a role for tubulin in neurotoxicity associated with exposure to organophosphorus agents. Toxicol Sci 2010; 115:183-93. [PMID: 20142434 DOI: 10.1093/toxsci/kfq032] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Exposure to organophosphorus (OP) agents can lead to learning and memory deficits. Disruption of axonal transport has been proposed as a possible explanation. Microtubules are an essential component of axonal transport. In vitro studies have demonstrated that OP agents react with tubulin and disrupt the structure of microtubules. Our goal was to determine whether in vivo exposure affects microtubule structure. One group of mice was treated daily for 14 days with a dose of chlorpyrifos that did not significantly inhibit acetylcholinesterase. Beta-tubulin from the brains of these mice was diethoxyphosphorylated on tyrosine 281 in peptide GSQQY(281)RALTVPELTQQMFDSK. A second group of mice was treated with a single sublethal dose of chlorpyrifos oxon (CPO). Microtubules and cosedimenting proteins from the brains of these mice were visualized by atomic force microscopy nanoimaging and by Coomassie blue staining of polyacrylamide gel electrophoresis bands. Proteins in gel slices were identified by mass spectrometry. Nanoimaging showed that microtubules from control mice were decorated with many proteins, whereas microtubules from CPO-treated mice had fewer associated proteins, a result confirmed by mass spectrometry of proteins extracted from gel slices. The dimensions of microtubules from CPO-treated mice (height 8.7 +/- 3.1 nm and width 36.5 +/- 15.5 nm) were about 60% of those from control mice (height 13.6 +/- 3.6 nm and width 64.8 +/- 15.9 nm). A third group of mice was treated with six sublethal doses of CPO over 50.15 h. Mass spectrometry identified diethoxyphosphorylated serine 338 in peptide NS(338)NFVEWIPNNVK of beta-tubulin. In conclusion, microtubules from mice exposed to chlorpyrifos or to CPO have covalently modified amino acids and abnormal structure, suggesting disruption of microtubule function. Covalent binding of CPO to tubulin and to tubulin-associated proteins is a potential mechanism of neurotoxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | | | | | | | | | | |
Collapse
|
32
|
Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys 2009; 494:107-20. [PMID: 20004171 DOI: 10.1016/j.abb.2009.12.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/24/2009] [Accepted: 12/01/2009] [Indexed: 12/13/2022]
Abstract
Butyrylcholinesterase is a promiscuous enzyme that displays complex kinetic behavior. It is toxicologically important because it detoxifies organophosphorus poisons (OP) by making a covalent bond with the OP. The OP and the butyrylcholinesterase are both inactivated in the process. Inactivation of butyrylcholinesterase has no adverse effects. However, inactivation of acetylcholinesterase in nerve synapses can be lethal. OP-inhibited butyrylcholinesterase and acetylcholinesterase can be reactivated with oximes provided the OP has not aged. Strategies for preventing the toxicity of OP include (a) treatment with an OP scavenger, (b) reaction of non-aged enzyme with oximes, (c) reactivation of aged enzyme, (d) slowing down aging with peripheral site ligands, and (e) design of mutants that rapidly hydrolyze OP. Option (a) has progressed through phase I clinical trials with human butyrylcholinesterase. Option (b) is in routine clinical use. The others are at the basic research level. Butyrylcholinesterase displays complex kinetic behavior including activation by positively charged esters, ability to hydrolyze amides, and a lag time (hysteresis) preceding hydrolysis of benzoylcholine and N-methylindoxyl acetate. Mass spectrometry has identified new OP binding motifs on tyrosine and lysine in proteins that have no active site serine. It is proposed, but not yet proven, that low dose exposure involves OP modification of proteins that have no active site serine.
Collapse
|
33
|
Grigoryan H, Lockridge O. Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon: implications for neurotoxicity. Toxicol Appl Pharmacol 2009; 240:143-8. [PMID: 19631231 DOI: 10.1016/j.taap.2009.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purified bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNYR of alpha tubulin, and Tyr 281 in GSQQYR of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents.
Collapse
Affiliation(s)
- Hasmik Grigoryan
- University of Nebraska Medical Center, Eppley Institute for Cancer Research, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | |
Collapse
|
34
|
Grigoryan H, Li B, Xue W, Grigoryan M, Schopfer LM, Lockridge O. Mass spectral characterization of organophosphate-labeled lysine in peptides. Anal Biochem 2009; 394:92-100. [PMID: 19596251 DOI: 10.1016/j.ab.2009.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 12/13/2022]
Abstract
Organophosphate (OP) esters bind covalently to the active site serine of enzymes in the serine hydrolase family. Recently, mass spectrometry identified covalent binding of OPs to tyrosine in a wide variety of proteins when purified proteins were incubated with OPs. In the current work, manual inspection of tandem mass spectrometry (MS/MS) data led to the realization that lysines also make a covalent bond with OPs. OP-labeled lysine residues were found in seven proteins that had been treated with either chlorpyrifos oxon (CPO) or diisopropylfluorophosphate (DFP): human serum albumin (K212, K414, K199, and K351), human keratin 1 (K211 and K355), human keratin 10 (K163), bovine tubulin alpha (K60, K336, K163, K394, and K401), bovine tubulin beta (K58), bovine actin (K113, K291, K326, K315, and K328), and mouse transferrin (K296 and K626). These results suggest that OP binding to lysine is a general phenomenon. Characteristic fragments specific for CPO-labeled lysine appeared at 237.1, 220.0, 192.0, 163.9, 128.9, and 83.9amu. Characteristic fragments specific for DFP-labeled lysine appeared at 164.0, 181.2, and 83.8amu. This new OP-binding motif to lysine suggests new directions to search for mechanisms of long-term effects of OP exposure and in the search for biomarkers of OP exposure.
Collapse
Affiliation(s)
- Hasmik Grigoryan
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|