1
|
Aborziza M, Amalia R, Zuhrotun A, Ikram NKK, Novitasari D, Muchtaridi M. Coffee Bean and Its Chemical Constituent Caffeine and Chlorogenic Acid as Promising Chemoprevention Agents: Updated Biological Studies against Cancer Cells. Molecules 2024; 29:3302. [PMID: 39064880 PMCID: PMC11279625 DOI: 10.3390/molecules29143302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a complicated and ever-evolving disease that remains a significant global cause of disease and mortality. Its complexity, which is evident at the genetic and phenotypic levels, contributes to its diversity and resistance to treatment. Numerous scientific investigations on human and animal models demonstrate the potential of phytochemicals in cancer prevention. Coffee has been shown to possess potent anti-carcinogenic properties, and studies have documented the consumption of coffee as a beverage reduces the risk of cancer occurrence. The major secondary metabolites of coffee, named caffeine and chlorogenic acid, have been linked to anti-inflammatory and antineoplastic effects through various signaling. In light of this, this review article provides a comprehensive analysis based on studies in anticancer effects of coffee, chlorogenic acid, and caffeine published between 2010 and 2023, sourced from Scopus, Pubmed, and Google Scholar databases. We summarize recent advances and scientific evidence on the association of phytochemicals found in coffee with a special emphasis on their biological activities against cancer and their molecular mechanism deemed potential to be used as a novel therapeutic target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Mohamed Aborziza
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (M.A.); (D.N.)
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Ade Zuhrotun
- Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Dhania Novitasari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (M.A.); (D.N.)
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (M.A.); (D.N.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jln. Raya Bandung Sumedang Km. 21, Sumedang 45363, Indonesia
| |
Collapse
|
2
|
Song R, Stopsack KH, Ren J, Mucci LA, Clinton SK, Loda M, Wang M, Giovannucci EL, Wilson KM, Smith-Warner SA. Coffee, Phosphoinositide 3-Kinase Signaling Pathway, and Prostate Cancer: A Prospective Study in the Health Professionals Follow-Up Study. J Acad Nutr Diet 2024:S2212-2672(24)00537-9. [PMID: 38971221 DOI: 10.1016/j.jand.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Higher coffee intake has been associated with reduced risk of prostate cancer, particularly aggressive forms. The activation of the phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in prostate carcinogenesis. OBJECTIVE To evaluate associations between prediagnostic coffee intake and a PI3K activation score, the expression/presence of PI3K regulators, and downstream effectors in tumor tissue from men with prostate cancer in the Health Professionals Follow-Up Study, a prospective cohort study conducted in the United States. DESIGN A case-only study design was applied. Coffee intake was assessed using validated food frequency questionnaires completed in 1986 and every 4 years thereafter until prostate cancer diagnosis. PARTICIPANTS SETTING Study participants comprised 1242 men diagnosed with prostate cancer from 1986 to 2009 and with tumor markers assessed from tissue microarrays constructed from tumor specimens. MAIN OUTCOME MEASURES The outcomes include the PI3K activation score; expression of insulin receptor and insulin-like growth factor 1 receptor; angiogenesis markers; and presence of the tumor suppressor phosphatase and tensin homolog, chronic and acute inflammation, simple atrophy, and post-atrophic hyperplasia. STATISTICAL ANALYSES PERFORMED Multivariable linear or logistic regression was conducted to estimate associations between coffee intake and tumor marker expression/presence. RESULTS Among coffee drinkers (86.6% of the population), median (25th, 75th percentile) coffee intake was 2 c/day (1, 3 c/day). The associations between coffee consumption and the tumor markers of interest were generally weak with modest precision. When comparing men who drank >3 c/day coffee with nondrinkers, the absolute percent difference in the PI3K activation score and angiogenesis markers ranged from 0.6% to 3.6%. The odds ratios for phosphatase and tensin homolog loss, insulin-like growth factor 1 receptor and insulin receptor expression, and presence of chronic and acute inflammation, simple atrophy, and postatrophic hyperplasia also were not statistically significant, were imprecise, and ranged from 0.82 to 1.58. CONCLUSIONS Coffee intake was not observed to be associated with PI3K activation, related regulators, and several effectors in prostate tumor tissue. Studies exploring alternative pathways or earlier steps in carcinogenesis are needed to investigate the underlying mechanisms of the coffee and prostate cancer association.
Collapse
Affiliation(s)
- Rui Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Analysis Group, Boston, Massachusetts
| | - Konrad H Stopsack
- Clinical and Translational Epidemiology Unit, Massachusetts General, Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Junkun Ren
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts; Biology Department, Woods Hole Oceanographic Institution, Falmouth, Massachusetts
| | | | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio; Genitourinary Oncology, The Arthur G. James Cancer Hospital, The Ohio State University, Columbus, Ohio; Molecular Carcinogenesis and Chemoprevention, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Molin Wang
- Clinical and Translational Epidemiology Unit, Massachusetts General, Hospital and Harvard Medical School, Boston, Massachusetts; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kathryn M Wilson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Navitas Data Sciences, Pottstown, Pennsylvania
| | - Stephanie A Smith-Warner
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
3
|
Feng Y, Yang J, Wang Y, Wang X, Ma Q, Li Y, Zhang X, Wang S, Zhang Q, Mi F, Wang Y, Zhong D, Yin J. Cafestol inhibits colon cancer cell proliferation and tumor growth in xenograft mice by activating LKB1/AMPK/ULK1-dependent autophagy. J Nutr Biochem 2024; 129:109623. [PMID: 38492819 DOI: 10.1016/j.jnutbio.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Chemotherapy failure in colorectal cancer patients is the major cause of recurrence and poor prognosis. As a result, there is an urgent need to develop drugs that have a good chemotherapy effect while also being extremely safe. In this study, we found cafestol inhibited colon cancer growth and HCT116 proliferation in vivo and in vitro, and improved the composition of intestinal flora. Further metabolomic data showed that autophagy and AMPK pathways were involved in the process of cafestol's anti-colon cancer effects. The functional validation studies revealed that cafestol increased autophagy vesicles and LC3B-II levels. The autophagic flux induced by cafestol was prevented by using BafA1. The autophagy inhibitor 3-MA blocked the cafestol-induced increase in LC3B-II and cell proliferation inhibition. Then we found that cafestol induced the increased expressions of LKB1, AMPK, ULK1, p-LKB1, p-AMPK, and p-ULK1 proteins in vivo and in vitro. Using the siRNA targeted to the Lkb1 gene, the levels of AMPK, ULK1, and LC3B-II were suppressed under cafestol treatment. These results indicated that the effect of cafestol is through regulating LKB1/AMPK/ULK1 pathway-mediated autophagic death. Finally, a correlation matrix of the microbiome and autophagy-related proteins was conducted. We found that cafestol-induced autophagic protein expression was positively correlated with the beneficial intestinal bacteria (Muribaculaceae, Bacteroides, Prevotellacece, and Alloprevotella) and negatively correlated with the hazardous bacteria. Conclusions: This study found that cafestol inhibited colon cancer in vitro and in vivo by the mechanism that may be related to LKB1/AMPK/ULK1 pathway-mediated autophagic cell death and improved intestinal microenvironment.
Collapse
Affiliation(s)
- Yuemei Feng
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, China; Key Laboratory of Public Health & Disease Prevention and Control of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China.
| | - JiZhuo Yang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Department of prevention and health care, Guiyang Second People's Hospital, Guiyang, China
| | - Yihan Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Department of Nutrition, Weifang Second People's Hospital, Weifang, China
| | - Xue Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Qian Ma
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Yalin Li
- Department of Gastroenterology, Yunnan First People's Hospital, Kunming, China
| | - Xuehui Zhang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Songmei Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Fei Mi
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Yanjiao Wang
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China
| | - Dubo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming, China.
| | - Jianzhong Yin
- Key Laboratory of Nutrition and Food Safety of Yunnan Provincial Education Department, Kunming Medical University, Kunming, China; Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, China; Baoshan College of Traditional Chinese Medicine, Baoshan, China.
| |
Collapse
|
4
|
Grigolon G, Nowak K, Poigny S, Hubert J, Kotland A, Waldschütz L, Wandrey F. From Coffee Waste to Active Ingredient for Cosmetic Applications. Int J Mol Sci 2023; 24:ijms24108516. [PMID: 37239862 DOI: 10.3390/ijms24108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Coffee silverskin (CS) is the thin epidermis covering and protecting the coffee bean and it represents the main by-product of the coffee roasting process. CS has recently gained attention due to its high content in bioactive molecules and the growing interest in valuable reutilization of waste products. Drawing inspiration from its biological function, here its potential in cosmetic applications was investigated. CS was recovered from one of the largest coffee roasters located in Switzerland and processed through supercritical CO2 extraction, thereby generating coffee silverskin extract. Chemical profiling of this extract revealed the presence of potent molecules, among which cafestol and kahweol fatty acid esters, as well as acylglycerols, β-sitosterol and caffeine. The CS extract was then dissolved in organic shea butter, yielding the cosmetic active ingredient SLVR'Coffee™. In vitro gene expression studies performed on keratinocytes showed an upregulation of genes involved in oxidative stress responses and skin-barrier functionality upon treatment with the coffee silverskin extract. In vivo, our active protected the skin against Sodium Lauryl Sulfate (SLS)-induced irritation and accelerated its recovery. Furthermore, this active extract improved measured as well as perceived skin hydration in female volunteers, making it an innovative, bioinspired ingredient that comforts the skin and benefits the environment.
Collapse
Affiliation(s)
| | - Kathrin Nowak
- Mibelle Group Biochemistry, Mibelle AG, 5033 Buchs, Switzerland
| | - Stéphane Poigny
- Mibelle Group Biochemistry, Mibelle AG, 5033 Buchs, Switzerland
| | | | | | - Laura Waldschütz
- NATECO2-Hopfenveredlung St. Johann GmbH, 85283 Wolnzach, Germany
| | | |
Collapse
|
5
|
Gligor O, Clichici S, Moldovan R, Decea N, Vlase AM, Fizeșan I, Pop A, Virag P, Filip GA, Vlase L, Crișan G. An In Vitro and In Vivo Assessment of Antitumor Activity of Extracts Derived from Three Well-Known Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091840. [PMID: 37176897 PMCID: PMC10180766 DOI: 10.3390/plants12091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
One of the objectives of this study consists of the assessment of the antitumor activity of several extracts from three selected plant species: Xanthium spinosum L., Trifolium pratense L., and Coffea arabica L. and also a comparative study of this biological activity, with the aim of establishing a superior herbal extract for antitumor benefits. The phytochemical profile of the extracts was established by HPLC-MS analysis. Further, the selected extracts were screened in vitro for their antitumor activity and antioxidant potential on two cancer cell lines: A549-human lung adenocarcinoma and T47D-KBluc-human breast carcinoma and on normal cells. One extract per plant was selected for in vivo assessment of antitumor activity in an Ehrlich ascites mouse model. The extracts presented high content of antitumor compounds such as caffeoylquinic acids in the case of X. spinosum L. (7.22 µg/mL-xanthatin, 4.611 µg/mL-4-O-caffeoylquinic acid) and green coffee beans (10.008 µg/mL-cafestol, 265.507 µg/mL-4-O-caffeoylquinic acid), as well as isoflavones in the case of T. pratense L. (6806.60 ng/mL-ononin, 102.78 µg/mL-biochanin A). Concerning the in vitro results, the X. spinosum L. extracts presented the strongest anticancerous and antioxidant effects. In vivo, ascites cell viability decreased after T. pratense L. and green coffee bean extracts administration, whereas the oxidative stress reduction potential was important in tumor samples after T. pratense L. Cell viability was also decreased after administration of cyclophosphamide associated with X. spinosum L. and T. pratense L. extracts, respectively. These results suggested that T. pratense L. or X. spinosum L. extracts in combination with chemotherapy can induce lipid peroxidation in tumor cells and decrease the tumor viability especially, T. pratense L. extract.
Collapse
Affiliation(s)
- Octavia Gligor
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Piroska Virag
- Department of Radiobiology and Tumor Biology, Oncology Institute "Prof. Dr. Ion Chiricuță", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Deng Y, Huang J, Wong MCS. Associations of alcohol and coffee with colorectal cancer risk in East Asian populations: a Mendelian randomization study. Eur J Nutr 2023; 62:749-756. [PMID: 36239790 DOI: 10.1007/s00394-022-03002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Previous observational studies have shown that alcohol and coffee were associated with colorectal cancer (CRC) risk, but the causal relationships have not been adequately explored. This study aimed to assess the potential causal associations of alcohol and coffee with CRC risk using Mendelian randomization (MR) analyses in an East Asian population. METHODS Publicly available summary-level genome-wide association studies data on ever/never alcohol drinker (n = 165,084), alcohol consumption (n = 58,610), coffee consumption (n = 152,634), and CRC (7062 cases and 195,745 controls) were obtained from the BioBank Japan (BBJ). Single-nucleotide polymorphisms (SNPs) that were significantly related to the exposures were identified as instrumental variables. Five, two, and six SNPs were used for ever/never alcohol drinkers, alcohol consumption, and coffee consumption, respectively. The inverse variance weighted method was used as the main MR method to calculate the odds ratios (ORs) and 95% confidence intervals (95% CIs) of CRC risk per one-unit change in exposures. RESULTS Genetically predicted ever/never alcohol drinkers (OR: 1.08; 95% CI 1.06, 1.11; P < 0.001) and alcohol consumption (OR: 1.39; 95% CI 1.21, 1.60; P < 0.001) were positively associated with CRC risk. Conversely, genetically predicted coffee consumption was inversely related to CRC risk, with an OR (95% CI) of 0.80 (0.64, 0.99) (P = 0.037). CONCLUSION Genetically predicted alcohol use and consumption were risk factors for CRC while genetically predicted coffee consumption was a protective factor. Our findings highlight the effectiveness of keeping healthy dietary habits to prevent CRC. Further studies with more valid SNPs and CRC cases are needed. Validation of our findings is also recommended.
Collapse
Affiliation(s)
- Yunyang Deng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Junjie Huang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Martin Chi Sang Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- School of Public Health, The Chinese Academy of Medical Sciences and the Peking Union Medical College, Beijing, 100000, China.
- School of Public Health, Peking University, Beijing, 100000, China.
| |
Collapse
|
7
|
Silva M, Brand A, Novaes F, Rezende C. Cafestol, Kahweol and Their Acylated Derivatives: Antitumor Potential, Pharmacokinetics, and Chemopreventive Profile. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2141776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- M.A.E. Silva
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A.L.M. Brand
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F.J.M. Novaes
- Chemistry Department, Federal University of Viçosa, Viçosa, Brazil
| | - C.M Rezende
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Eldesouki S, Qadri R, Abu Helwa R, Barqawi H, Bustanji Y, Abu-Gharbieh E, El-Huneidi W. Recent Updates on the Functional Impact of Kahweol and Cafestol on Cancer. Molecules 2022; 27:molecules27217332. [PMID: 36364160 PMCID: PMC9654648 DOI: 10.3390/molecules27217332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Kahweol and cafestol are two diterpenes extracted from Coffea arabica beans that have distinct biological activities. Recent research describes their potential activities, which include anti-inflammatory, anti-diabetic, and anti-cancer properties, among others. The two diterpenes have been shown to have anticancer effects in various in vitro and in vivo cancer models. This review aims to shed light on the recent developments regarding the potential effects of kahweol and cafestol on various cancers. A systematic literature search through Google Scholar and PubMed was performed between February and May 2022 to collect updates about the potential effects of cafestol and kahweol on different cancers in in vitro and in vivo models. The search terms “Kahweol and Cancer” and “Cafestol and Cancer” were used in this literature review as keywords; the findings demonstrated that kahweol and cafestol exhibit diverse effects on different cancers in in vitro and in vivo models, showing pro-apoptotic, cytotoxic, anti-proliferative, and anti-migratory properties. In conclusion, the diterpenes kahweol and cafestol display significant anticancer effects, while remarkably unaffecting normal cells. Our results show that both kahweol and cafestol exert their actions on various cancers via inducing apoptosis and inhibiting cell growth. Additionally, kahweol acts by inhibiting cell migration.
Collapse
Affiliation(s)
- Salma Eldesouki
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rama Qadri
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rashid Abu Helwa
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hiba Barqawi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (E.A.-G.); (W.E.-H.); Tel.: +971-65057289 (E.A.-G.); +971-65057222 (W.E.-H.)
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (E.A.-G.); (W.E.-H.); Tel.: +971-65057289 (E.A.-G.); +971-65057222 (W.E.-H.)
| |
Collapse
|
9
|
Deng Y, Huang J, Wong MCS. Associations between six dietary habits and risk of hepatocellular carcinoma: A Mendelian randomization study. Hepatol Commun 2022; 6:2147-2154. [PMID: 35670026 PMCID: PMC9315115 DOI: 10.1002/hep4.1960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 11/08/2022] Open
Abstract
Diet is reported to be associated with hepatocellular carcinoma (HCC), but whether there is a causal relationship remains unclear. This study aimed to explore the potential causal associations between dietary habits and HCC risk using Mendelian randomization in an East Asian population. From the BioBank Japan, we obtained summary-level genome-wide association studies data for the following six dietary habits: ever/never drinker (n = 165,084), alcohol consumption (n = 58,610), coffee consumption (n = 152,634), tea consumption (n = 152,653), milk consumption (n = 152,965), and yoghurt consumption (n = 152,097). We also obtained data on HCC (1866 cases and 195,745 controls). Single-nucleotide polymorphisms (SNPs) that were associated with exposures (p < 5 × 10-8 ) were selected as instrumental variables (IVs). Five, two, and six SNPs were identified for ever/never drinkers, alcohol consumption, and coffee consumption. One SNP was used for consumption of tea, milk, and yoghurt. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by inverse variance weighted (for an IV with more than one SNP) or Wald ratio (for an IV with one SNP). Ever/never drinkers (OR, 1.11; 95% CI, 1.05-1.18; p < 0.001) and alcohol consumption (OR, 1.57; 95% CI, 1.32-1.86; p < 0.001) were positively associated with HCC risk. Conversely, coffee consumption was inversely related to HCC risk (OR, 0.69; 95% CI, 0.53-0.90; p = 0.007). Similar inverse associations were observed for consumption of tea, milk, and yoghurt, with ORs (95% CIs) of 0.11 (0.05-0.26), 0.18 (0.09-0.34), and 0.18 (0.09-0.34), respectively (all p < 0.001). Conclusion: There are potential causal associations between six dietary habits and HCC risk. Our findings inform clinical practice by providing evidence on the impact of dietary habits on HCC.
Collapse
Affiliation(s)
- Yunyang Deng
- The Jockey Club School of Public Health and Primary CareFaculty of MedicineChinese University of Hong KongHong Kong SARChina
| | - Junjie Huang
- The Jockey Club School of Public Health and Primary CareFaculty of MedicineChinese University of Hong KongHong Kong SARChina
| | - Martin C S Wong
- The Jockey Club School of Public Health and Primary CareFaculty of MedicineChinese University of Hong KongHong Kong SARChina.,School of Public HealthChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina.,School of Public HealthPeking UniversityBeijingChina
| |
Collapse
|
10
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
11
|
Rhee J, Lim RK, Purdue MP. Coffee consumption and risk of renal cancer: a meta-analysis of cohort evidence. Cancer Causes Control 2022; 33:101-108. [PMID: 34677742 PMCID: PMC8738141 DOI: 10.1007/s10552-021-01506-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE There is increasing evidence that coffee consumption is related to reduced risks for some cancers, but the evidence for renal cancer is inconclusive. Therefore, we conducted a meta-analysis to summarize the cohort evidence of this relationship. METHODS A literature search was performed in PubMed and Embase through February 2021. Meta-analyses using a random effects model were conducted for reported relative risk estimates (RRs) relating coffee intake and renal cancer incidence or mortality. We also performed a two-stage random effects exposure-response meta-analysis. Between-study heterogeneity was assessed. RESULTS In a meta-analysis of the ten identified cohort studies, we found a summary RR of 0.88 [95% confidence interval (CI) 0.78-0.99] relating the highest vs. the lowest category of coffee intake and renal cancer, with no significant between-study heterogeneity observed (I2 = 35%, p = 0.13). This inverse association remained among studies of incident cancers (RR 0.85, 95% CI 0.76-0.96) and studies adjusting for smoking and body mass index (RR 0.87, 95% CI 0.77-0.99). CONCLUSIONS Our findings from this meta-analysis of the published cohort evidence are suggestive of an inverse association between coffee consumption and renal cancer risk.
Collapse
Affiliation(s)
- Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Mark P. Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
12
|
Montis A, Souard F, Delporte C, Stoffelen P, Stévigny C, Van Antwerpen P. Coffee Leaves: An Upcoming Novel Food? PLANTA MEDICA 2021; 87:949-963. [PMID: 34560791 DOI: 10.1055/a-1533-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unlike those of coffee beans, the healthy properties of coffee leaves have been overlooked for a long time, even if they are consumed as a beverage by local communities of several African countries. Due to the presence of xanthines, diterpenes, xanthones, and several other polyphenol derivatives as main secondary metabolites, coffee leaves might be useful to prevent many daily disorders. At the same time, as for all bioactive molecules, careless use of coffee leaf infusions may be unsafe due to their adverse effects, such as the excessive stimulant effects on the central nervous system or their interactions with other concomitantly administered drugs. Moreover, the presence of some toxic diterpene derivatives requires careful analytical controls on manufactured products made with coffee leaves. Accordingly, knowledge about the properties of coffee leaves needs to be increased to know if they might be considered a good source for producing new supplements. The purpose of the present review is to highlight the biosynthesis, metabolism, and distribution of the 4 main classes of secondary metabolites present in coffee leaves, their main pharmacological and toxicological aspects, and their main roles in planta. Differences in coffee leaf chemical composition depending on the coffee species will also be carefully considered.
Collapse
Affiliation(s)
- Andrea Montis
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- APFP Analytical platform of the faculty of pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Florence Souard
- Département de Pharmacochimie Moléculaire, UMR 5063 CNRS, Université Grenoble Alpes, Saint-Martin d'Hères, France
- DPP Department - Unit of Pharmacology, Pharmacotherapy and Pharmaceutical care, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- APFP Analytical platform of the faculty of pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Piet Stoffelen
- Meise Botanic Garden, Domein van Bouchout, Meise, Belgium
| | - Caroline Stévigny
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
- APFP Analytical platform of the faculty of pharmacy, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
13
|
Anti-proliferative and anti-migratory properties of coffee diterpenes kahweol acetate and cafestol in human renal cancer cells. Sci Rep 2021; 11:675. [PMID: 33436830 PMCID: PMC7804192 DOI: 10.1038/s41598-020-80302-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Despite improvements in systemic therapy options for renal cancer, it remains one of the most drug-resistant malignancies. Interestingly, reports have shown that kahweol and cafestol, natural diterpenes extracted from coffee beans, exhibit anti-cancer activity. However, the multiple potential pharmacological actions of both have yet to be fully understood. This study therefore investigated the effects of kahweol acetate and cafestol on human renal cancer ACHN and Caki-1 cells. Accordingly, the combination of kahweol acetate and cafestol administration synergistically inhibited cell proliferation and migration by inducing apoptosis and inhibiting epithelial-mesenchymal transition. Mechanistic dissection revealed that kahweol acetate and cafestol inhibited Akt and ERK phosphorylation. Moreover, kahweol acetate and cafestol downregulated the expression of not only C-C chemokine receptors 2, 5, and 6 but also programmed death-ligand 1, indicating their effects on the tumor microenvironment. Thus, kahweol acetate and cafestol may be novel therapeutic candidates for renal cancer considering that they exert multiple pharmacological effects.
Collapse
|
14
|
Ismail T, Donati-Zeppa S, Akhtar S, Turrini E, Layla A, Sestili P, Fimognari C. Coffee in cancer chemoprevention: an updated review. Expert Opin Drug Metab Toxicol 2020; 17:69-85. [PMID: 33074040 DOI: 10.1080/17425255.2021.1839412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chemoprevention of cancer refers to the use of natural or synthetic compounds to abolish or perturb a variety of steps in tumor initiation, promotion, and progression. This can be realized through different mechanisms, including activation of free radical scavenging enzymes, control of chronic inflammation, and downregulation of specific signaling pathways. AREAS COVERED The goal of this article is to critically review recent evidence on association between coffee and prevention of different types of cancer, with particular emphasis on the molecular mechanisms and the bioactive compounds involved in its anticancer activity. EXPERT OPINION Coffee is a mixture of different compounds able to decrease the risk of many types of cancer. However, its potential anticancer activity is not completely understood. Hundreds of biologically active components such as caffeine, chlorogenic acid, diterpenes are contained in coffee. Further research is needed to fully elucidate the molecular mechanisms underlying the anticancer effects of coffee and fully understand the role of different confounding factors playing a role in its reported anticancer activity.
Collapse
Affiliation(s)
- Tariq Ismail
- Institute of Food Science & Nutrition, Bahauddin Zakariya University , Multan, Pakistan
| | - Sabrina Donati-Zeppa
- Department of Biomolecular Sciences (DISB), Università Degli Studi Di Urbino Carlo Bo , Urbino, Italy
| | - Saeed Akhtar
- Institute of Food Science & Nutrition, Bahauddin Zakariya University , Multan, Pakistan
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum - Università Di Bologna , Rimini, Italy
| | - Anam Layla
- National Institute of Food Science & Technology, University of Agriculture Faisalabad , Faisalabad, Pakistan
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università Degli Studi Di Urbino Carlo Bo , Urbino, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum - Università Di Bologna , Rimini, Italy
| |
Collapse
|
15
|
Colombo R, Papetti A. Decaffeinated coffee and its benefits on health: focus on systemic disorders. Crit Rev Food Sci Nutr 2020; 61:2506-2522. [PMID: 32551832 DOI: 10.1080/10408398.2020.1779175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The current literature has mainly focused on benefits and risks deriving from the consumption of caffeinated coffee and its implications for inflammation, cardiovascular diseases, neurodegenerative disorders, and cancer. Today, data about the role of caffeine in many disorders are controversial and the attention has increasingly focused on decaffeinated coffee and its non-caffeine compounds, which could have mainly beneficial effects. In fact, coffee phenolic compounds not only exhibit well-known antioxidant properties, but they can also antagonize some negative effects of caffeine, for example in inflammatory pathway and in glucose metabolism and homeostasis. In this review, we consider the literature of the last two decades and critically discuss the effects of decaffeinated coffee compounds on systemic disorders, mainly inflammation, cardiovascular diseases, hepatic dysfunctions, and cancer.
Collapse
Affiliation(s)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Investigation of the potential anticancer effects of napelline and talatisamine dirterpenes on experimental brain tumor models. Cytotechnology 2020; 72:569-578. [PMID: 32529352 DOI: 10.1007/s10616-020-00405-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/31/2020] [Indexed: 10/24/2022] Open
Abstract
Brain cancers are one of the most aggressive tumours in humans. Especially, gliomas are among the deadliest of human cancers and show high resistance to chemotherapeutic agents. On the other hand, discovery of biologically effective non-synthetic biomaterials in treatments of different diseases, especially cancer, has continued to be one of the most popular research topics today. Therefore, we aimed to investigate biochemical, cytological and molecular genetic effects of napelline and talatisamine diterpenes in human U-87 MG glioma cells by using total antioxidant status and total oxidative status, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxphenyl)-2-(4-sulfophenyl)-2H-tetrozolium, inner salt and lactate dehydrogenase release assay and RT2 Prolifer PCR Arrays. Our results revealed that napelline and talatisamine exhibited cytotoxic effects at high doses. Napelline and talatisamine diterpenes increased apoptosis compared to control in U-87 MG cells. While napelline induced up-regulation of 50 and down-regulation of 13 genes, talatisamine induced up-regulation of 32 and down-regulation of 18 genes in U-87 MG cells. Napelline was shown to have a higher anticancer activity than talatisamine. We think that, napelline and talatisamine might be evaluated as potential chemotherapeutic agents for treatment of glioblastoma.
Collapse
|
17
|
Ji J, Wu L, Feng J, Mo W, Wu J, Yu Q, Li S, Zhang J, Dai W, Xu X, Mao Y, Xu S, Chen K, Li J, Guo C. Cafestol preconditioning attenuates apoptosis and autophagy during hepatic ischemia-reperfusion injury by inhibiting ERK/PPARγ pathway. Int Immunopharmacol 2020; 84:106529. [PMID: 32344356 DOI: 10.1016/j.intimp.2020.106529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The study was aimed to explore the hepatocellular protective functions of cafestol during hepatic ischemia-reperfusion injury and the possible mechanisms. METHODS Ninety male Balb/c mice were randomly divided into seven groups, including normal control group, L-cafestol(20mg/kg) group, H-cafestol(40mg/kg) group, sham group, IR group, L-cafestol(20mg/kg) + IR group, H-cafestol(40mg/kg) + IR group. Serum liver enzymes (ALT, AST), inflammation mediators, proteins associated with apoptosis and autophagy, indicators linked with ERK/PPARγ pathway, and liver histopathology were measured using ELISA, qRT-PCR, immunohistochemical staining, and western blotting at 2, 8, and 24 hours after reperfusion. RESULTS Our findings confirmed that cafestol preconditioning groups could reduce the levels of ALT and AST, alleviate liver pathological damage, suppress the release of inflammation mediators, inhibit the production of pro-apoptosis protein including caspase-3, caspase-9 and Bax, decrease the expression of autophagy-linked protein including Beclin-1 and LC3, increase anti-apoptosis protein Bcl-2, and restrain the activation of ERK and PPARγ. CONCLUSION Cafestol preconditioning could attenuate inflammatory response, apoptosis and autophagy on hepatic ischemia reperfusion injury by suppressing ERK/PPARγ pathway.
Collapse
Affiliation(s)
- Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenhui Mo
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai 200433, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China; Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai 200433, China
| | - Yuqing Mao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Shizan Xu
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
18
|
Ren Y, Wang C, Xu J, Wang S. Cafestol and Kahweol: A Review on Their Bioactivities and Pharmacological Properties. Int J Mol Sci 2019; 20:ijms20174238. [PMID: 31480213 PMCID: PMC6747192 DOI: 10.3390/ijms20174238] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 12/16/2022] Open
Abstract
Cafestol and kahweol are natural diterpenes extracted from coffee beans. In addition to the effect of raising serum lipid, in vitro and in vivo experimental results have revealed that the two diterpenes demonstrate multiple potential pharmacological actions such as anti-inflammation, hepatoprotective, anti-cancer, anti-diabetic, and anti-osteoclastogenesis activities. The most relevant mechanisms involved are down-regulating inflammation mediators, increasing glutathione (GSH), inducing apoptosis of tumor cells and anti-angiogenesis. Cafestol and kahweol show similar biological activities but not exactly the same, which might due to the presence of one conjugated double bond on the furan ring of the latter. This review aims to summarize the pharmacological properties and the underlying mechanisms of cafestol-type diterpenoids, which show their potential as functional food and multi-target alternative medicine.
Collapse
Affiliation(s)
- Yaqi Ren
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chunlan Wang
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Drugs and Byproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Jiakun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Drugs and Byproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Yoon CS, Kim MK, Kim YS, Lee SK. In vitro protein expression changes in RAW 264.7 cells and HUVECs treated with dialyzed coffee extract by immunoprecipitation high performance liquid chromatography. Sci Rep 2018; 8:13841. [PMID: 30218035 PMCID: PMC6138699 DOI: 10.1038/s41598-018-32014-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
RAW 264.7 cells and HUVECs were compared to evaluate the effects of dialyzed coffee extract (DCE) and artificial coffee (AC). Immunoprecipitation high performance liquid chromatography (IP-HPLC) showed DCE-2.5- (equivalent to 2.5 cups of coffee a day) and DCE-5-induced protein expression that was beneficial to human health, i.e., they led to significant increases in proliferation-, immunity-, cellular protection-, antioxidant signaling-, and osteogenesis-related proteins but decreases in inflammation-, NFkB signaling-, cellular apoptosis-, and oncogenic signaling-related proteins in RAW 264.7 cells, and slight decreases in angiogenesis-related proteins in HUVECs. These protein expression changes were less frequently observed for DCE-10 treatment, while AC treatment induced very different changes in protein expression. We suggest that the favorable cellular effects of DCE were derived from minor coffee elements that were absent in AC, and that the reduced effects of DCE-10 compared with those of DCE-2.5 or DCE-5 might have been caused by greater adverse reactions to caffeine and chlorogenic acid in DCE-10 than DCE-2.5 or DCE-5. IP-HPLC results suggested that minor coffee elements in DCE might play beneficial roles in the global protein expression of proliferation-, immunity-, anti-inflammation-, cell protection-, antioxidant-, anti-apoptosis-, anti-oncogenesis-, and osteogenesis-related proteins in RAW 264.7 cells and enhance anti-angiogenic signaling in HUVECs.
Collapse
Affiliation(s)
- Cheol Soo Yoon
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, and Institute of Oral Science, Gangneung, Korea
| | - Min Keun Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, and Institute of Oral Science, Gangneung, Korea
| | - Yeon Sook Kim
- Department of Dental Hygiene, College of Health Sciences, Cheongju University, Cheongju, Korea
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, and Institute of Oral Science, Gangneung, Korea.
| |
Collapse
|
20
|
Jabir NR, Islam MT, Tabrez S, Shakil S, Zaidi SK, Khan FR, Araújo LDS, de Meneses AAPM, Santos JVDO, Melo-Cavalcante AADC. An insight towards anticancer potential of major coffee constituents. Biofactors 2018. [DOI: 10.1002/biof.1437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nasimudeen R. Jabir
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah Saudi Arabia
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City Vietnam
| | - Shams Tabrez
- King Fahd Medical Research Center; King Abdulaziz University; Jeddah Saudi Arabia
| | - Shazi Shakil
- Center of Innovation in Personalized Medicine; King Abdulaziz University; Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences; King Abdulaziz University; Jeddah Saudi Arabia
- Center of Excellence in Genomic Medicine Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - Fayaz Rahman Khan
- Department of Physical Therapy, Faculty of Applied Medical Sciences; King Abdulaziz University; Jeddah Saudi Arabia
| | - Lidiane da Silva Araújo
- Post-Graduate Program in Pharmaceutical Science; Federal University of Piauí; Teresina Brazil
| | | | | | | |
Collapse
|
21
|
Lima CS, Spindola DG, Bechara A, Garcia DM, Palmeira-Dos-Santos C, Peixoto-da-Silva J, Erustes AG, Michelin LFG, Pereira GJS, Smaili SS, Paredes-Gamero E, Calgarotto AK, Oliveira CR, Bincoletto C. Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomed Pharmacother 2017; 92:1045-1054. [PMID: 28618649 DOI: 10.1016/j.biopha.2017.05.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023] Open
Abstract
To evaluate the antitumor properties of Cafestol four leukemia cell lines were used (NB4, K562, HL60 and KG1). Cafestol exhibited the highest cytotoxicity against HL60 and KG1 cells, as evidenced by the accumulation of cells in the sub-G1 fraction, mitochondrial membrane potential reduction, accumulation of cleaved caspase-3 and phosphatidylserine externalization. An increase in CD11b and CD15 differentiation markers with attenuated ROS generation was also observed in Cafestol-treated HL60 cells. These results were similar to those obtained following exposure of the same cell line to cytarabine (Ara-C), an antileukemic drug. Cafestol and Ara-C reduced the clonogenic potential of HL60 cells by 100%, but Cafestol spared murine colony forming unit- granulocyte/macrophage (CFU-GM), which retained their clonogenicity. The co-treatment of Cafestol and Ara-C reduced HL60 cell viability compared with both drugs administered alone. In conclusion, despite the distinct molecular mechanisms involved in the activity of Cafestol and Ara-C, a similar cytotoxicity towards leukemia cells was observed, which suggests a need for prophylactic-therapeutic pre-clinical studies regarding the anticancer properties of Cafestol.
Collapse
Affiliation(s)
- Cauê S Lima
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniel G Spindola
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre Bechara
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniel M Garcia
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Palmeira-Dos-Santos
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Janaina Peixoto-da-Silva
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adolfo G Erustes
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luis F G Michelin
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gustavo J S Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Soraya S Smaili
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edgar Paredes-Gamero
- Departamento de Bioquímica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo/SP, Brazil
| | - Andrana K Calgarotto
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos R Oliveira
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil; Grupo de Fitocomplexos e Sinalização Celular, Escola de Ciências da Saúde, Universidade Anhembi Morumbi, São Paulo/SP, Brazil
| | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Moeenfard M, Cortez A, Machado V, Costa R, Luís C, Coelho P, Soares R, Alves A, Borges N, Santos A. Anti-Angiogenic Properties of Cafestol and Kahweol Palmitate Diterpene Esters. J Cell Biochem 2016; 117:2748-2756. [PMID: 27129115 DOI: 10.1002/jcb.25573] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
Epidemiological studies support the association of coffee-specific diterpenes, with various beneficial health effects. Although anti-antiangiogenic properties of free cafestol and kahweol have been recently described, available data regarding their esterified form, in particular palmitate esters as the main diterpene esters present in coffee, are still rare. Given that angiogenesis plays an important role in many pathological conditions, including cancer growth and metastasis, this study aimed to assess and compare the potential anti-angiogenic effects of cafestol palmitate (CP) and kahweol palmitate (KP) in an in vitro angiogenesis model. According to our findings, both compounds inhibited angiogenesis steps on human microvascular endothelial cells (HMVECs), although a more significant effect was observed for KP. Compared to control, HMVECs viability decreased in a dose-dependent manner upon incubation either with CP or KP. Concentrations of 75 and 100 μM of each compound were cytotoxic. Cell proliferation was also dramatically reduced by both diterpene esters at 50 μM, although KP had a stronger inhibitory effect. However, CP and KP did not induce apoptosis on HMVECs. Both compounds reduced cell migration, but this effect was only statistically significant after KP incubation. Inhibition of VEGFR2 expression and its downstream effector Akt, but not Erk, was also observed in CP- and KP-treated HMVECs. These findings were confirmed using ELISA assay for phosphorylated (active) VEGFR-2. Taken together, these data indicate that both CP and KP can be considered potent compounds against angiogenesis-dependent disorders. Our findings further indicate that KP exerts more potent anti-angiogenic effects than CP, in most of assays. J. Cell. Biochem. 117: 2748-2756, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marzieh Moeenfard
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Alice Cortez
- Faculty of Medicine, Department of Biochemistry, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Vera Machado
- Faculty of Medicine, Department of Biochemistry, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Raquel Costa
- Faculty of Medicine, Department of Biochemistry, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carla Luís
- Faculty of Medicine, Department of Biochemistry, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Pedro Coelho
- Faculty of Medicine, Department of Biochemistry, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Ciências Químicas e Biomoléculas, Escola Superior de Tecnologias da Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Raquel Soares
- Faculty of Medicine, Department of Biochemistry, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. .,I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| | - Arminda Alves
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno Borges
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Alejandro Santos
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
23
|
Wagemaker TAL, Campos PMBGM, Fernandes AS, Rijo P, Nicolai M, Roberto A, Rosado C, Reis C, Rodrigues LM, Carvalho CRL, Maia NB, Guerreiro Filho O. Unsaponifiable matter from oil of green coffee beans: cosmetic properties and safety evaluation. Drug Dev Ind Pharm 2016; 42:1695-9. [DOI: 10.3109/03639045.2016.1165692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Song L, Chang J, Li Z. A serine protease extracted from Trichosanthes kirilowii induces apoptosis via the PI3K/AKT-mediated mitochondrial pathway in human colorectal adenocarcinoma cells. Food Funct 2016; 7:843-54. [DOI: 10.1039/c5fo00760g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel protein TKP extracted from T. kirilowii fruit exerted potential anti-colorectal cancer activity by inducing apoptosis, which was regulated by the PI3K/AKT-mediated mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Li Song
- Institute of Biotechnology
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Shanxi University
- Taiyuan 030006
- China
| | - Jiao Chang
- Institute of Biotechnology
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Shanxi University
- Taiyuan 030006
- China
| | - Zhuoyu Li
- Institute of Biotechnology
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
25
|
Pal I, Dey KK, Chaurasia M, Parida S, Das S, Rajesh Y, Sharma K, Chowdhury T, Mandal M. Cooperative effect of BI-69A11 and celecoxib enhances radiosensitization by modulating DNA damage repair in colon carcinoma. Tumour Biol 2015; 37:6389-402. [DOI: 10.1007/s13277-015-4399-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/05/2015] [Indexed: 12/16/2022] Open
|
26
|
Coffee provides a natural multitarget pharmacopeia against the hallmarks of cancer. GENES AND NUTRITION 2015; 10:51. [PMID: 26577824 DOI: 10.1007/s12263-015-0501-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Coffee is the second most popular beverage in the world after water with a consumption of approximately two billion cups per day. Due to its low cost and ease of preparation, it is consumed in almost all countries and by all social classes of the population through different modes of preparation. Despites its simple appearance, a cup of coffee is in fact a complex mixture that contains hundreds of molecules, the composition and concentration of which vary widely and depend on factors including the origin of the coffee tree or its metabolism. Although an excessive consumption of coffee can be harmful, many molecules that are present in this black decoction exert anticancer properties. This review aims to describe the different primary coffee-containing substances that exert chemopreventive and bioactive activities against the different hallmarks and enabling characteristics of cancer, thus explaining the anticancer health benefit of black coffee.
Collapse
|
27
|
Kotowski U, Heiduschka G, Seemann R, Eckl-Dorna J, Schmid R, Kranebitter V, Stanisz I, Brunner M, Lill C, Thurnher D. Effect of the coffee ingredient cafestol on head and neck squamous cell carcinoma cell lines. Strahlenther Onkol 2015; 191:511-7. [PMID: 25575980 DOI: 10.1007/s00066-014-0807-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Cafestol is a diterpene molecule found in coffee beans and has anticarcinogenic properties. The aim of the study was to examine the effects of cafestol in head and neck squamous cell carcinoma (HNSCC) cells. MATERIALS AND METHODS Three HNSCC cell lines (SCC25, CAL27 and FaDu) were treated with increasing doses of cafestol. Then combination experiments with cisplatin and irradiation were carried out. Drug interactions and possible synergy were calculated using the combination index analysis. Clonogenic assays were performed after irradiation with 2, 4, 6 and 8 Gy, respectively, and the rate of apoptosis was measured with flow cytometry. RESULTS Treatment of HNSCC cells with cafestol leads to a dose-dependent reduction of cell viability and to induction of apoptosis. Combination with irradiation shows a reduction of clonogenic survival compared to each treatment method alone. In two of the cell lines a significant additive effect was observed. CONCLUSION Cafestol is a naturally occurring effective compound with growth-inhibiting properties in head and neck cancer cells. Moreover, it leads to a significant inhibition of colony formation.
Collapse
Affiliation(s)
- Ulana Kotowski
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Woo SM, Min KJ, Seo BR, Nam JO, Choi KS, Yoo YH, Kwon TK. Cafestol overcomes ABT-737 resistance in Mcl-1-overexpressed renal carcinoma Caki cells through downregulation of Mcl-1 expression and upregulation of Bim expression. Cell Death Dis 2014; 5:e1514. [PMID: 25375379 PMCID: PMC4260730 DOI: 10.1038/cddis.2014.472] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 12/25/2022]
Abstract
Although ABT-737, a small-molecule Bcl-2/Bcl-xL inhibitor, has recently emerged as a novel cancer therapeutic agent, ABT-737-induced apoptosis is often blocked in several types of cancer cells with elevated expression of Mcl-1. Cafestol, one of the major compounds in coffee beans, has been reported to have anti-carcinogenic activity and tumor cell growth-inhibitory activity, and we examined whether cafestol could overcome resistance against ABT-737 in Mcl-1-overexpressed human renal carcinoma Caki cells. ABT-737 alone had no effect on apoptosis, but cafestol markedly enhanced ABT-737-mediated apoptosis in Mcl-1-overexpressed Caki cells, human glioma U251MG cells, and human breast carcinoma MDA-MB231 cells. By contrast, co-treatment with ABT-737 and cafestol did not induce apoptosis in normal human skin fibroblast. Furthermore, combined treatment with cafestol and ABT-737 markedly reduced tumor growth compared with either drug alone in xenograft models. We found that cafestol inhibited Mcl-1 protein expression, which is important for ABT-737 resistance, through promotion of protein degradation. Moreover, cafestol increased Bim expression, and siRNA-mediated suppression of Bim expression reduced the apoptosis induced by cafestol plus ABT-737. Taken together, cafestol may be effectively used to enhance ABT-737 sensitivity in cancer therapy via downregulation of Mcl-1 expression and upregulation of Bim expression.
Collapse
Affiliation(s)
- S M Woo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - K-J Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - B R Seo
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - J-O Nam
- Department of Ecological Environment Conservation, Kyungpook National University, Sangju-si, Gyeongsangbuk-do 742-711, South Korea
| | - K S Choi
- Department of Biochemistry, Ajou University School of Medicine, 5 Woncheon-Dong, Paldal-Gu, Suwon 442-749, South Korea
| | - Y H Yoo
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan 602-714, South Korea
| | - T K Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| |
Collapse
|
29
|
Guo Y, Niu K, Okazaki T, Wu H, Yoshikawa T, Ohrui T, Furukawa K, Ichinose M, Yanai K, Arai H, Huang G, Nagatomi R. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro. Exp Gerontol 2014; 50:1-8. [DOI: 10.1016/j.exger.2013.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/08/2013] [Accepted: 11/15/2013] [Indexed: 12/25/2022]
|
30
|
Bøhn SK, Blomhoff R, Paur I. Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. Mol Nutr Food Res 2013; 58:915-30. [DOI: 10.1002/mnfr.201300526] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Siv Kjølsrud Bøhn
- Department of Nutrition; Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo; Norway
| | - Rune Blomhoff
- Department of Nutrition; Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo; Norway
- Division of Cancer Medicine; Surgery and Transplantation, Oslo University Hospital; Oslo Norway
| | - Ingvild Paur
- Department of Nutrition; Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo; Norway
| |
Collapse
|
31
|
Badaboina S, Bai HW, Park CH, Jang DM, Choi BY, Chung BY. Molecular mechanism of apoptosis induction in skin cancer cells by the centipedegrass extract. Altern Ther Health Med 2013; 13:350. [PMID: 24325618 PMCID: PMC3880216 DOI: 10.1186/1472-6882-13-350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/29/2013] [Indexed: 01/07/2023]
Abstract
Background Centipedegrass extract (CGE) is mainly composed of maysin and its derivatives, which are recognized internationally as natural compounds. Compared to other flavonoids, maysin has a unique structure in that mannose is bound to the flavonoid backbone. CGE exhibits some biological properties in that it can function as an anti-oxidant, anti-inflammatory, anti-adipogenic, and insecticidal. Whether CGE has other biological functions, such as anti-cancer activity, is unknown. Methods B16F1 (mouse) and SKMEL-5 (human) cells were treated with CGE, and their subsequent survival was determined using MTT assay. We performed a cell cycle analysis using propidium iodide (PI), and detected apoptosis using double staining with annexin V-FITC/PI. In addition, we examined mitochondrial membrane potentials using flow cytometry, as well as signaling mechanisms with an immunoblotting analysis. Results CGE inhibited skin cancer cell growth by arresting the cell cycle in the G2/M phase, and increased both early and late apoptotic cell populations without affecting normal cells. Furthermore, we observed mitochondrial transmembrane depolarization, increased cytochrome-c release, caspase-3 and caspase-7 activation, and increased poly ADP-ribose polymerase degradation. CGE also downregulated activation of p-AKT, p-glycogen synthase kinase-3β (GSK-3β), and p-BAD in a time-dependent manner. LY294002 inhibition of phosphoinositide 3-kinase (PI3K) significantly sensitized skin cancer cells, which led to an increase in CGE-induced apoptosis. Conclusions CGE controlled skin cancer cell growth by inhibiting the PI3K/AKT/GSK-3β signaling pathway and activating the effector caspases. This study is the first to demonstrate anti-cancer properties for CGE, and that CGE may be an effective therapeutic agent for treating skin cancer.
Collapse
|
32
|
Cardin R, Piciocchi M, Martines D, Scribano L, Petracco M, Farinati F. Effects of coffee consumption in chronic hepatitis C: a randomized controlled trial. Dig Liver Dis 2013; 45:499-504. [PMID: 23238034 DOI: 10.1016/j.dld.2012.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 10/24/2012] [Accepted: 10/30/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Coffee is associated with a reduced risk of hepatocellular carcinoma in patients with chronic C hepatitis. This prospective trial was aimed at assessing the mechanisms underlying coffee-related protective effects. METHODS Forty patients with chronic hepatitis C were randomized into two groups: the first consumed 4 cups of coffee/day for 30 days, while the second remained coffee "abstinent". At day 30, the groups were switched over for a second month. RESULTS At baseline, aspartate aminotransferase and alanine aminotransferase were lower in patients drinking 3-5 (Group B) than 0-2 cups/day (Group A) (56 ± 6 vs 74 ± 11/60 ± 3 vs 73 ± 7 U/L p=0.05/p=0.04, respectively). HCV-RNA levels were significantly higher in Group B [(6.2 ± 1.5) × 10(5)vs (3.9 ± 1.0) × 10(5)UI/mL, p=0.05]. During coffee intake, 8-hydroxydeoxyguanosine and collagen levels were significantly lower than during abstinence (15 ± 3 vs 44 ± 16 8-hydroxydeoxyguanosine/10(5)deoxyguanosine, p=0.05 and 56 ± 9 vs 86 ± 21 ng/mL, p=0.04). Telomere length was significantly higher in patients during coffee intake (0.68 ± 0.06 vs 0.48 ± 0.04 Arbitrary Units, p=0.006). Telomere length and 8-hydroxydeoxyguanosine were inversely correlated. CONCLUSION In chronic hepatitis C coffee consumption induces a reduction in oxidative damage, correlated with increased telomere length and apoptosis, with lower collagen synthesis, factors that probably mediate the protection exerted by coffee with respect to disease progression.
Collapse
Affiliation(s)
- Romilda Cardin
- Department of Surgical, Oncological and Gastroenterological Sciences, Section of Gastroenterology, Padua University, Padua, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Xiao H, Wang J, Yuan L, Xiao C, Wang Y, Liu X. Chicoric acid induces apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1509-1520. [PMID: 23363008 DOI: 10.1021/jf3050268] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chicoric acid has been reported to possess various bioactivities. However, the antiobesity effects of chicoric acid remain poorly understood. In this study, we investigated the effects of chicoric acid on 3T3-L1 preadipocytes and its molecular mechanisms of apoptosis. Chicoric acid inhibited cell viability and induced apoptosis in 3T3-L1 preadipocytes which was characterized by chromatin condensation and poly ADP-ribose-polymerase (PARP) cleavage. Mitochondrial membrane potential (MMP) loss, Bax/Bcl-2 dysregulation, cytochrome c release, and caspase-3 activation were observed, indicating mitochondria-dependent apoptosis induced by chicoric acid. Furthermore, PI3K/Akt and MAPK (p38 MAPK, JNK, and ERK1/2) signaling pathways were involved in chicoric acid-induced apoptosis. The employment of protein kinase inhibitors LY294002, SB203580, SP600125, and U0126 revealed that PI3K/Akt signaling pathway interplayed with MAPK signaling pathways. Moreover, chicoric acid induced reactive oxygen species (ROS) generation. Pretreatment with the antioxidant N-acetylcysteine (NAC) significantly blocked cell death and changes of Akt and MAPK signalings induced by chicoric acid. In addition, chicoric acid down regulated HO-1 and COX-2 via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Haifang Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Hildebrand JS, Patel AV, McCullough ML, Gaudet MM, Chen AY, Hayes RB, Gapstur SM. Coffee, tea, and fatal oral/pharyngeal cancer in a large prospective US cohort. Am J Epidemiol 2013; 177:50-8. [PMID: 23230042 DOI: 10.1093/aje/kws222] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epidemiologic studies suggest that coffee intake is associated with reduced risk of oral/pharyngeal cancer. The authors examined associations of caffeinated coffee, decaffeinated coffee, and tea intake with fatal oral/pharyngeal cancer in the Cancer Prevention Study II, a prospective US cohort study begun in 1982 by the American Cancer Society. Among 968,432 men and women who were cancer free at enrollment, 868 deaths due to oral/pharyngeal cancer occurred during 26 years of follow-up. Cox proportional hazards regression was used to estimate multivariable-adjusted relative risk. Intake of >4 cups/day of caffeinated coffee was associated with a 49% lower risk of oral/pharyngeal cancer death relative to no/occasional coffee intake (relative risk = 0.51, 95% confidence interval: 0.40, 0.64) (1 cup/day = 237 ml). A dose-related decline in relative risk was observed with each single cup/day consumed (P(trend) < 0.001). The association was not modified by sex, smoking status, or alcohol use. An inverse association for >2 cups/day of decaffeinated coffee intake was suggested (relative risk = 0.61, 95% confidence interval: 0.37, 1.01). No association was found for tea drinking. In this large prospective study, caffeinated coffee intake was inversely associated with oral/pharyngeal cancer mortality. Research is needed to elucidate biologic mechanisms whereby coffee might help to protect against these often fatal cancers.
Collapse
Affiliation(s)
- Janet S Hildebrand
- Epidemiology Research Program, American Cancer Society, 250 Williams Street NW, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | |
Collapse
|