1
|
de Queiroz Eskuarek Melo NM, Comar JF, de Sá-Nakanishi AB, Peralta RM, Bracht L, Bracht A. Short-term effects of sodium arsenite (AsIII) and sodium arsenate (AsV) on carbohydrate metabolism in the perfused rat liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104397. [PMID: 38401815 DOI: 10.1016/j.etap.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
The actions of arsenite and arsenate on carbohydrate metabolism in the once-through perfused rat liver were investigated. The compound inhibited lactate gluconeogenesis with an IC50 of 25 µM. It also increased glycolysis and fructolysis at concentrations between 10 and 100 µM. This effect was paralleled by strong inhibition of pyruvate carboxylation (IC50 = 4.25 µM) and by a relatively moderate diminution in the ATP levels. The inhibitory action of arsenate on pyruvate carboxylation and lactate gluconeogenesis was 103 times less effective than that of arsenite. For realistic doses and concentrations («1 mM), impairment of metabolism by arsenate can be expected to occur solely after its reduction to arsenite. Arsenite, on the other hand, can be regarded as a strong short-term modifier of lactate gluconeogenesis and other pathways. The main cause of the former is inhibition of pyruvate carboxylation, a hitherto unknown effect of arsenic compounds.
Collapse
Affiliation(s)
| | | | | | | | - Lívia Bracht
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil.
| |
Collapse
|
2
|
Lee JS, Hong SH, Sun HY, Jin H, Yu BY, Cho YJ, Chang JY, Yoo BW. The efficacy and safety of tadalafil in the management of erectile dysfunction with diabetes and blood circulation issues. Aging Male 2023; 26:2176484. [PMID: 36779746 DOI: 10.1080/13685538.2023.2176484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Erectile dysfunction (ED) is a common diabetes-related complication. MATERIALS AND METHODS This study examined the effect of daily low-dose tadalafil (5 mg) on patients' quality of life (including that of sex life) and blood circulation. Erectile dysfunction questionnaires were administered to 20 patients with type 2 diabetes (T2DM) and ED. The safety and efficacy of tadalafil were evaluated using laboratory tests, and the effect on blood circulation was measured through nail fold capillaroscopy. RESULTS Daily tadalafil use by patients with T2DM and ED showed a statistically significant increase in the erectile reliability score from of 1.15 to 3.20 (p < .00012). Capillary blood circulation improvement tests showed a statistically significant increase in apical limb width from 13.1 to 14.64 µm (p = .04829) and flow from 9035 to 11946 μm3/s (p = .04405). Although not significant, increased capillary width and speed (rate of blood flow) confirmed improved blood circulation. There were no significant changes in the cardiac indicators (troponin, prostate-specific antigen, or electrocardiogram tests) before and after tadalafil administration, supporting the safety of its low-dose daily administration. CONCLUSIONS A small dose of daily tadalafil was shown to safely improve erectile dysfunction and peripheral blood flow in patients with T2DM, in which peripheral arterial diseases should not be considered separately but rather as complex entities.
Collapse
Affiliation(s)
- Jong Seung Lee
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Hong
- Department of Family Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| | - Hwa Yeon Sun
- Department of Interdisciplinary Program in Biomidical Science, Soonchunhyang University, Asan, Republic of Korea
| | - Hyungseung Jin
- Department of Pediatrics, Gangneung Asan Hospital, Gangneung, Republic of Korea
| | - Byung Yeon Yu
- Department of Family Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Yong-Jin Cho
- Department of Family Medicine, Soonchunghyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Jin Young Chang
- Department of Biological Science, Northwestern University, Ewanston, IL, USA
| | - Byung Wook Yoo
- Department of Family Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| |
Collapse
|
3
|
Silva LCL, de Souza GH, Pateis VDO, Ames-Sibin AP, Silva BP, Bracht L, Comar JF, Peralta RM, Bracht A, Sá-Nakanishi AB. Inhibition of Gluconeogenesis by Boldine in the Perfused Liver: Therapeutical Implication for Glycemic Control. Int J Hepatol 2023; 2023:1283716. [PMID: 37056327 PMCID: PMC10089784 DOI: 10.1155/2023/1283716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
The alkaloid boldine occurs in the Chilean boldo tree (Peumus boldus). It acts as a free radical scavenger and controls glycemia in diabetic rats. Various mechanisms have been proposed for this effect, including inhibited glucose absorption, stimulated insulin secretion, and increased expression of genes involved in glycemic control. Direct effects on glucose synthesis and degradation were not yet measured. To fill this gap, the present study is aimed at ensuring several metabolic pathways linked to glucose metabolism (e.g., gluconeogenesis) in the isolated perfused rat liver. In order to address mechanistic issues, energy transduction in isolated mitochondria and activities of gluconeogenic key enzymes in tissue preparations were also measured. Boldine diminished mitochondrial ROS generation, with no effect on energy transduction in isolated mitochondria. It inhibited, however, at least three enzymes of the gluconeogenic pathway, namely, phosphoenolpyruvate carboxykinase, fructose-bisphosphatase-1, and glucose 6-phosphatase, starting at concentrations below 50 μM. Consistently, in the perfused liver, boldine decreased lactate-, alanine-, and fructose-driven gluconeogenesis with IC50 values of 71.9, 85.2, and 83.6 μM, respectively. Conversely, the compound also increased glycolysis from glycogen-derived glucosyl units. The hepatic ATP content was not affected by boldine. It is proposed that the direct inhibition of hepatic gluconeogenesis by boldine, combined with the increase of glycolysis, could be an important event behind the diminished hyperglycemia observed in boldine-treated diabetic rats.
Collapse
Affiliation(s)
- Laís Cristina Lima Silva
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Gustavo Henrique de Souza
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Vanesa de Oliveira Pateis
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Ana Paula Ames-Sibin
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Beatriz Paes Silva
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Lívia Bracht
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Jurandir Fernando Comar
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Rosane Marina Peralta
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, Labor of Hepatic Metabolism, State University of Maringá, Maringá, PR, Brazil
| | | |
Collapse
|
4
|
Simões MS, Ames-Sibin AP, Lima EP, Pateis VO, Bersani-Amado CA, Mathias PCF, Peralta RM, Sá-Nakanishi AB, Bracht L, Bracht A, Comar JF. Resveratrol biotransformation and actions on the liver metabolism of healthy and arthritic rats. Life Sci 2022; 310:120991. [PMID: 36162485 DOI: 10.1016/j.lfs.2022.120991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
AIMS To investigate the effects of resveratrol on glycogen catabolism and gluconeogenesis in perfused livers of healthy and arthritic rats. The actions of resveratrol-3-O-glucuronide (R3G) and the biotransformation of resveratrol into R3G was further evaluated in the livers. MAIN METHODS arthritis was induced with Freund's adjuvant. Resveratrol at concentrations of 10, 25, 50, 100 and 200 μM and 200 μM R3G were introduced in perfused livers. Resveratrol and metabolites were measured in the outflowing perfusate. Respiration of isolated mitochondria and activity of gluconeogenic enzymes were also evaluated in the livers. KEY FINDINGS resveratrol inhibited glycogen catabolism when infused at concentrations above 50 μM and gluconeogenesis even at 10 μM in both healthy and arthritic rat livers, but more sensitive in these latter. Resveratrol above 100 μM inhibited ADP-stimulated respiration and the activities of NADH- and succinate-oxidases in mitochondria, which were partially responsible for gluconeogenesis inhibition. Pyruvate carboxylase activity was inhibited by 25 μM resveratrol and should inhibit gluconeogenesis already at low concentrations. Resveratrol was significantly metabolized to R3G in healthy rat livers, however, R3G formation was lower in arthritic rat livers. The latter must be in part a consequence of a lower glucose disposal for glucuronidation. When compared to resveratrol, R3G inhibited gluconeogenesis in a lower extension and glycogen catabolism in a higher extension. SIGNIFICANCE the effects of resveratrol and R3G tended to be transitory and existed only when the resveratrol is present in the organ, however, they should be considered because significant serum concentrations of both are found after oral ingestion of resveratrol.
Collapse
Affiliation(s)
- Mellina S Simões
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Emanuele P Lima
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Vanesa O Pateis
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Paulo C F Mathias
- Department of Cellular Biology, State University of Maringa, PR, Brazil
| | - Rosane M Peralta
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Lívia Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringa, PR, Brazil.
| |
Collapse
|
5
|
Itou da Silva FS, Veiga Bizerra PF, Mito MS, Constantin RP, Klosowski EM, Lima de Souza BT, Moreira da Costa Menezes PV, Alves Bueno PS, Nanami LF, Marchiosi R, Dantas Dos Santos W, Ferrarese-Filho O, Ishii-Iwamoto EL, Constantin RP. The metabolic and toxic acute effects of phloretin in the rat liver. Chem Biol Interact 2022; 364:110054. [PMID: 35872042 DOI: 10.1016/j.cbi.2022.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
The current study sought to evaluate the acute effects of phloretin (PH) on metabolic pathways involved in the maintenance of glycemia, specifically gluconeogenesis and glycogenolysis, in the perfused rat liver. The acute effects of PH on energy metabolism and toxicity parameters in isolated hepatocytes and mitochondria, as well as its effects on the activity of a few key enzymes, were also evaluated. PH inhibited gluconeogenesis from different substrates, stimulated glycogenolysis and glycolysis, and altered oxygen consumption. The citric acid cycle activity was inhibited by PH under gluconeogenic conditions. Similarly, PH reduced the cellular ATP/ADP and ATP/AMP ratios under gluconeogenic and glycogenolytic conditions. In isolated mitochondria, PH inhibited the electron transport chain and the FoF1-ATP synthase complex as well as acted as an uncoupler of oxidative phosphorylation, inhibiting the synthesis of ATP. PH also decreased the activities of malate dehydrogenase, glutamate dehydrogenase, glucose 6-phosphatase, and glucose 6-phosphate dehydrogenase. Part of the bioenergetic effects observed in isolated mitochondria was shown in isolated hepatocytes, in which PH inhibited mitochondrial respiration and decreased ATP levels. An aggravating aspect might be the finding that PH promotes the net oxidation of NADH, which contradicts the conventional belief that the compound operates as an antioxidant. Although trypan blue hepatocyte viability tests revealed substantial losses in cell viability over 120 min of incubation, PH did not promote extensive enzyme leakage from injured cells. In line with this effect, only after a lengthy period of infusion did PH considerably stimulate the release of enzymes into the effluent perfusate of livers. In conclusion, the increased glucose release caused by enhanced glycogenolysis, along with suppression of gluconeogenesis, is the opposite of what is predicted for antihyperglycemic agents. These effects were caused in part by disruption of mitochondrial bioenergetics, a result that should be considered when using PH for therapeutic purposes, particularly over long periods and in large doses.
Collapse
Affiliation(s)
- Fernanda Sayuri Itou da Silva
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Paulo Francisco Veiga Bizerra
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Márcio Shigueaki Mito
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Renato Polimeni Constantin
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Eduardo Makiyama Klosowski
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Byanca Thais Lima de Souza
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | | | | | - Letícia Fernanda Nanami
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Wanderley Dantas Dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Emy Luiza Ishii-Iwamoto
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| | - Rodrigo Polimeni Constantin
- Department of Biochemistry, Laboratory of Biological Oxidations, State University of Maringá, Maringá, 87020-900, Paraná, Brazil; Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
6
|
Sá-Nakanishi AB, de Oliveira MC, O Pateis V, P Silva LA, Pereira-Maróstica HV, Gonçalves GA, S Oliveira MA, Godinho J, Bracht L, Milani H, Bracht A, Comar JF. Glycemic homeostasis and hepatic metabolism are modified in rats with global cerebral ischemia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165934. [PMID: 32827650 DOI: 10.1016/j.bbadis.2020.165934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/11/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia-induced hyperglycemia has been reported to accentuate neurological damage following focal or global cerebral ischemia. Hyperglycemia found in rats following focal brain ischemia occurs in the first 24 h and has been claimed to be caused by increased liver gluconeogenesis and insulin resistance. However, liver gluconeogenesis and the mechanisms leading to hyperglycemia after global cerebral ischemia remain uncertain. This study investigated the glycemic homeostasis and hepatic metabolism in rats after transient four-vessel occlusion (4-VO)-induced global cerebral ischemia, an event that mimics to a certain degree the situation during cardiac arrest. Several metabolic fluxes were measured in perfused livers. Activities and mRNA expressions of hepatic glycolysis and glyconeogenesis rate-limiting enzymes were assessed as well as respiratory activity of hepatic isolated mitochondria. Global cerebral ischemia was associated with hyperglycemia and hyperinsulinemia 24 h after ischemia. Insulin resistance developed later and was prominent after the 5th day. Hepatic anabolism and catabolism were both modified in a complex and time-dependent way. Gluconeogenesis, β-oxidation, ketogenesis and glycolysis were diminished at 24 h after ischemia. At 5 days after ischemia glycolysis had normalized, but gluconeogenesis, ketogenesis and β-oxidation were accelerated. The overall metabolic modifications suggest that a condition of depressed metabolism was established in response to the new conditions generated by the cerebral global ischemia. Whether the modifications in the liver metabolism found in rats after the ischemic insult can be translated to individuals following global brain ischemia remains uncertain, but the results of this study are hoped to encourage further investigations.
Collapse
Affiliation(s)
| | | | - Vanesa O Pateis
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | | | | | | | | | - Jacqueline Godinho
- Department of Pharmacology and Therapeutics, State University of Maringá, PR, Brazil
| | - Lívia Bracht
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringá, PR, Brazil.
| |
Collapse
|
7
|
Methyl Jasmonate Reduces Inflammation and Oxidative Stress in the Brain of Arthritic Rats. Antioxidants (Basel) 2019; 8:antiox8100485. [PMID: 31618993 PMCID: PMC6826661 DOI: 10.3390/antiox8100485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022] Open
Abstract
Methyl jasmonate (MeJA), common in the plant kingdom, is capable of reducing articular and hepatic inflammation and oxidative stress in adjuvant-induced arthritic rats. This study investigated the actions of orally administered MeJA (75–300 mg/kg) on inflammation, oxidative stress and selected enzyme activities in the brain of Holtzman rats with adjuvant-induced arthritis. MeJA prevented the arthritis-induced increased levels of nitrites, nitrates, lipid peroxides, protein carbonyls and reactive oxygen species (ROS). It also prevented the enhanced activities of myeloperoxidase and xanthine oxidase. Conversely, the diminished catalase and superoxide dismutase activities and glutathione (GSH) levels caused by arthritis were totally or partially prevented. Furthermore, MeJA increased the activity of the mitochondrial isocitrate dehydrogenase, which helps to supply NADPH for the mitochondrial glutathione cycle, possibly contributing to the partial recovery of the GSH/oxidized glutathione (GSSG) ratio. These positive actions on the antioxidant defenses may counterbalance the effects of MeJA as enhancer of ROS production in the mitochondrial respiratory chain. A negative effect of MeJA is the detachment of hexokinase from the mitochondria, which can potentially impair glucose phosphorylation and metabolism. In overall terms, however, it can be concluded that MeJA attenuates to a considerable extent the negative effects caused by arthritis in terms of inflammation and oxidative stress.
Collapse
|
8
|
Tadaishi M, Toriba Y, Shimizu M, Kobayashi-Hattori K. Adenosine stimulates hepatic glycogenolysis via adrenal glands-liver crosstalk in mice. PLoS One 2018; 13:e0209647. [PMID: 30576384 PMCID: PMC6303095 DOI: 10.1371/journal.pone.0209647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022] Open
Abstract
Adenosine signaling is involved in glucose metabolism in hepatocytes and myocytes in vitro. However, no information is available regarding the effect of adenosine on glucose metabolism in vivo. Thus, we examined how extracellular adenosine acts on glucose metabolism using mice. Subcutaneous injections of adenosine (10, 25, and 50 mg/kg bodyweight) dose-dependently increased blood glucose levels, with the peak occurring at 30 min post injection. At 30 min after adenosine injection (25 mg/kg bodyweight), glycogen content in the liver, but not the skeletal muscle, was significantly decreased. Hepatic glycogen depletion by fasting for 12 h suppressed the increase of blood glucose levels at 30 min after adenosine injection. These results suggest that adenosine increases blood glucose levels by stimulating hepatic glycogenolysis. To investigate the effect of adenosine on the adrenal gland, we studied the glycogenolysis signal in adrenalectomized (ADX) mice. Adenosine significantly increased the blood glucose levels in sham mice but not in the ADX mice. The decrease in hepatic glycogen content induced by adenosine in the sham mice was partially suppressed in the ADX mice. The level of plasma corticosterone, the main glucocorticoid in mice, was significantly increased in the sham mice by adenosine but its levels were low in ADX mice injected with either PBS or adenosine. These results suggest that adenosine promotes secretion of corticosterone from the adrenal glands, which causes hepatic glycogenolysis and subsequently the elevation of blood glucose levels. Our findings are useful for clarifying the physiological functions of adenosine in glucose metabolism in vivo.
Collapse
Affiliation(s)
- Miki Tadaishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- * E-mail:
| | - Yutaro Toriba
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Makoto Shimizu
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kazuo Kobayashi-Hattori
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
9
|
Anti-Inflammatory and Antioxidant Actions of Methyl Jasmonate Are Associated with Metabolic Modifications in the Liver of Arthritic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2056250. [PMID: 30210649 PMCID: PMC6126068 DOI: 10.1155/2018/2056250] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/16/2022]
Abstract
Methyl jasmonate (MeJA) is a fatty acid-derived cyclopentanone which shares structural similarities with prostaglandins and has been under study as a promising anti-inflammatory agent. This study investigated the actions of MeJA on systemic inflammation and oxidative status in rats with adjuvant-induced arthritis, a model for rheumatoid arthritis. MeJA (75 to 300 mg·kg−1) was administrated orally during 18 days after arthritis induction with Freund's adjuvant. Articular and systemic inflammation was greatly increased in arthritic rats, likewise the oxidative stress in plasma and liver. The hepatic glucokinase activity and glycolysis were increased in arthritic rats. MeJA decreased most inflammatory parameters and abolished the increased protein carbonylation in plasma and liver, diminished the increased hepatic ROS content, and restored the hepatic GSH/GSSG ratio in arthritic rats. However, the MeJA treatment decreased the hepatic glucokinase activity and glycolysis and stimulated mitochondrial ROS production in healthy and arthritic rats. Oxygen uptake was increased by MeJA only in livers from treated arthritic rats. This action may bear relation to the increased activity of mitochondrial NADP+-dependent enzymes to provide reducing equivalents for the glutathione cycle. These beneficial effects, however, are associated with a decreased glucose flux through the glycolysis in the liver of arthritic and healthy rats.
Collapse
|
10
|
Monteiro J, Alves MG, Oliveira PF, Silva BM. Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit Rev Food Sci Nutr 2018; 59:2597-2625. [PMID: 29624433 DOI: 10.1080/10408398.2018.1461607] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylated xanthines (methylxanthines) are available from a significant number of different botanical species. They are ordinarily included in daily diet, in many extremely common beverages and foods. Caffeine, theophylline and theobromine are the main methylxanthines available from natural sources. The supposedly relatively low toxicity of methylxanthines, combined with the many beneficial effects that have been attributed to these compounds through time, generated a justified attention and a very prolific ground for dedicated scientific reports. Methylxanthines have been widely used as therapeutical tools, in an intriguing range of medicinal scopes. In fact, methylxanthines have been/were medically used as Central Nervous System stimulants, bronchodilators, coronary dilators, diuretics and anti-cancer adjuvant treatments. Other than these applications, methylxanthines have also been hinted to hold other beneficial health effects, namely regarding neurodegenerative diseases, cardioprotection, diabetes and fertility. However, it seems now consensual that toxicity concerns related to methylxanthine consumption and/or therapeutic use should not be dismissed. Taking all the knowledge and expectations on the potential of methylxanthines into account, we propose a systematic look at the past and future of methylxanthine pharmacologic applications, discussing all the promise and anticipating possible constraints. Anyways, methylxanthines will still substantiate considerable meaningful research and discussion for years to come.
Collapse
Affiliation(s)
- João Monteiro
- Mass Spectrometry Centre, Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,Institute of Health Research an Innovation (i3S), University of Porto , Porto , Portugal
| | | |
Collapse
|
11
|
Maldonado MR, Bracht L, de Sá-Nakanishi AB, Corrêa RCG, Comar JF, Peralta RM, Bracht A. Actions of p-synephrine on hepatic enzyme activities linked to carbohydrate metabolism and ATP levels in vivo and in the perfused rat liver. Cell Biochem Funct 2017; 36:4-12. [PMID: 29270996 DOI: 10.1002/cbf.3311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
p-Synephrine is one of the main active components of the fruit of Citrus aurantium (bitter orange). Extracts of the bitter orange and other preparations containing p-synephrine have been used worldwide to promote weight loss and for sports performance. The purpose of the study was to measure the action of p-synephrine on hepatic enzyme activities linked to carbohydrate and energy metabolism and the levels of adenine mononucleotides. Enzymes and adenine mononucleotides were measured in the isolated perfused rat liver and in vivo after oral administration of the drug (50 and 300 mg/kg) by using standard techniques. p-Synephrine increased the activity of glycogen phosphorylase in vivo and in the perfused liver. It decreased, however, the activities of pyruvate kinase and pyruvate dehydrogenase also in vivo and in the perfused liver. p-Synephrine increased the hepatic pools of adenosine diphosphate and adenosine triphosphate. Stimulation of glycogen phosphorylase is consistent with the reported increased glycogenolysis in the perfused liver and increased glycemia in rats. The decrease in the pyruvate dehydrogenase activity indicates that p-synephrine is potentially capable of inhibiting the transformation of carbohydrates into lipids. The capability of increasing the adenosine triphosphate-adenosine diphosphate pool indicates a beneficial effect of p-synephrine on the cellular energetics.
Collapse
Affiliation(s)
| | - Lívia Bracht
- Department of Biochemistry, University of Maringá, Maringá, Brazil
| | | | | | | | | | - Adelar Bracht
- Department of Biochemistry, University of Maringá, Maringá, Brazil
| |
Collapse
|
12
|
da Silva Simões M, Bracht L, Parizotto AV, Comar JF, Peralta RM, Bracht A. The metabolic effects of diuron in the rat liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:53-61. [PMID: 28683350 DOI: 10.1016/j.etap.2017.06.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
A systematic study on the effects of diuron on the hepatic metabolism was conducted with emphasis on parameters linked to energy metabolism. The experimental system was the isolated perfused rat liver. The results demonstrate that diuron inhibited biosynthesis (gluconeogenesis) and ammonia detoxification, which are dependent of ATP generated within the mitochondria. Conversely, it stimulated glycolysis and fructolysis, which are compensatory phenomena for an inhibited mitochondrial ATP generation. Furthermore, diuron diminished the cellular ATP content under conditions where the mitochondrial respiratory chain was the only source of this compound. Besides the lack of circulating glucose due to gluconeogenesis inhibition, one can expect metabolic acidosis due to excess lactate production, impairment of ammonia detoxification and cell damage due to a deficient maintenance of its homeostasis. Some of the general signs of toxicity that were observed in diuron-treated rats can be attributed, partly at least, to the effects of the herbicide on energy metabolism.
Collapse
Affiliation(s)
| | - Lívia Bracht
- Department of Biochemistry, Maringá University, 87020900 Maringá, Brazil
| | | | | | | | - Adelar Bracht
- Department of Biochemistry, Maringá University, 87020900 Maringá, Brazil.
| |
Collapse
|
13
|
Structure-Bioactivity Relationships of Methylxanthines: Trying to Make Sense of All the Promises and the Drawbacks. Molecules 2016; 21:molecules21080974. [PMID: 27472311 PMCID: PMC6273298 DOI: 10.3390/molecules21080974] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/02/2016] [Accepted: 07/19/2016] [Indexed: 12/05/2022] Open
Abstract
Methylxanthines are a group of phytochemicals derived from the purine base xanthine and obtained from plant secondary metabolism. They are unobtrusively included in daily diet in common products as coffee, tea, energetic drinks, or chocolate. Caffeine is by far the most studied methylxanthine either in animal or epidemiologic studies. Theophylline and theobromine are other relevant methylxanthines also commonly available in the aforementioned sources. There are many disseminated myths about methylxanthines but there is increased scientific knowledge to discuss all the controversy and promise shown by these intriguing phytochemicals. In fact, many beneficial physiologic outcomes have been suggested for methylxanthines in areas as important and diverse as neurodegenerative and respiratory diseases, diabetes or cancer. However, there have always been toxicity concerns with methylxanthine (over)consumption and pharmacologic applications. Herein, we explore the structure-bioactivity relationships to bring light those enumerated effects. The potential shown by methylxanthines in such a wide range of conditions should substantiate many other scientific endeavors that may highlight their adequacy as adjuvant therapy agents and may contribute to the advent of functional foods. Newly designed targeted molecules based on methylxanthine structure may originate more specific and effective outcomes.
Collapse
|
14
|
Hamishehkar H, Khoshbakht M, Jouyban A, Ghanbarzadeh S. The Relationship between Solubility and Transdermal Absorption of Tadalafil. Adv Pharm Bull 2015; 5:411-7. [PMID: 26504764 PMCID: PMC4616899 DOI: 10.15171/apb.2015.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The aim of this study was to find a relationship between drug solubility and its transdermal permeation and find the best vehicle composition to improve transdermal permeation of Tadalafil. METHODS Pure or binary mixtures of commonly used solvents in pharmaceutical sciences including ethanol, glycerin, N-methyl pyrrolidone (NMP), polyethylene glycol (PEG) 400 and propylene glycol (PG) were evaluated for drug solubility and transdermal delivery through the exercised rat skin employing Franz diffusion cells. RESULTS Tadalafil showed higher solubility in NMP compared to the other solvents. The amount of Tadalafil permeation from the pure vehicles was ranked as follow: Ethanol >glycerin >NMP>PEG 400 >PG. Furthermore, the solubility and transdermal delivery from binary mixtures of NMP and PG were higher than that obtained from pure PG, and accordingly, both increased with increasing NMP concentration in the binary solvent mixtures. The Flux values were determined as following order for Ethanol>NMP>glycerin>PG>PEG 400. CONCLUSION Generally, increase in Tadalafil solubility resulted in a decrease in its skin penetration rate and amount. However, NMP exhibited substantial drug skin penetration rate and amount accompanying with appropriate drug solvency. In conclusion, the results of this study introduced NMP as a solvent suitable for application in the formulation of topically applied drug delivery systems.
Collapse
Affiliation(s)
- Hamed Hamishehkar
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Khoshbakht
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghanbarzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|