1
|
Sugimoto-Sawada Y, Yamashiro M, Kono M, Ikeda H, Itagaki H, Iijima K. Effects of culture media on gene expression in reconstructed human epidermis and THP-1 monocytes for skin sensitization evaluation in co-culture systems. Toxicol In Vitro 2025; 106:106035. [PMID: 40024580 DOI: 10.1016/j.tiv.2025.106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Co-culture with reconstituted epidermis formed by normal human epidermal keratinocytes (RhE) increases the expression of the skin sensitization markers CD54 and CD86 on the human monocytic leukemia cell line THP-1 without chemicals. Therefore, we investigated the effects of culture media [RPMI1640 for RhE; keratinization induction (KI) medium for THP-1], co-culture, and the responses to the skin sensitizer 2,4-dinitrochlorobenzene (DNCB) on gene expression in mono- and cocultures of RhE and THP-1 cells. Microarray and pathway analyses revealed that in mono-RhE, RPMI medium induced epidermal differentiation-related genes, whereas in monoculture THP-1 cells, KI medium upregulated inflammation-related genes. Surprisingly, the medium composition had a more significant impact than co-culture in both cells. However, crosstalk between RhE and THP-1 cells was observed upon DNCB exposure by comparing the differentially expressed gene sets. DNCB-treated THP-1 cells showed increased expression of NR4A1, NR4A2, NR4A3, SIK1, and HMOX1 in co-culture than in monoculture, and these gene expression patterns were confirmed by real-time RT-PCR. It has been suggested that danger signals from RhE, in response to DNCB, enhance the expression of these genes in THP-1 cells. We clarified the effects of the medium and co-culture and proposed these five genes as potential markers for skin sensitization evaluation.
Collapse
Affiliation(s)
- Y Sugimoto-Sawada
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - M Yamashiro
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - M Kono
- Mandom Corpotation, 5-12, Junikencho Chuo-ku, Osaka-city, Osaka 540-8530, Japan
| | - H Ikeda
- Mandom Corpotation, 5-12, Junikencho Chuo-ku, Osaka-city, Osaka 540-8530, Japan
| | - H Itagaki
- ITACS Consulting, 5-11-19-2504 Minamidai, Minami-ku, Sagamihara 252-0314, Japan
| | - K Iijima
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
2
|
Gądarowska D, Kalka J, Daniel-Wójcik A, Mrzyk I. Alternative Methods for Skin-Sensitization Assessment. TOXICS 2022; 10:740. [PMID: 36548573 PMCID: PMC9783525 DOI: 10.3390/toxics10120740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Skin sensitization is a term used to refer to the regulatory hazard known as allergic contact dermatitis (ACD) in humans or contact hypersensitivity in rodents, an important health endpoint considered in chemical hazard and risk assessments. Information on skin sensitization potential is required in various regulatory frameworks, such as the Directive of the European Parliament and the Council on Registration, Evaluation and Authorization of Chemicals (REACH). The identification of skin-sensitizing chemicals previously required the use of animal testing, which is now being replaced by alternative methods. Alternative methods in the field of skin sensitization are based on the measurement or prediction of key events (KE), i.e., (i) the molecular triggering event, i.e., the covalent binding of electrophilic substances to nucleophilic centers in skin proteins; (ii) the activation of keratinocytes; (iii) the activation of dendritic cells; (iv) the proliferation of T cells. This review article focuses on the current state of knowledge regarding the methods corresponding to each of the key events in skin sensitization and considers the latest trends in the development and modification of these methods.
Collapse
Affiliation(s)
- Dominika Gądarowska
- The Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| | - Joanna Kalka
- The Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Anna Daniel-Wójcik
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| | - Inga Mrzyk
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| |
Collapse
|
3
|
Karri V, Lidén C, Fyhrquist N, Högberg J, Karlsson HL. Impact of mono-culture vs. Co-culture of keratinocytes and monocytes on cytokine responses induced by important skin sensitizers. J Immunotoxicol 2021; 18:74-84. [PMID: 34019775 DOI: 10.1080/1547691x.2021.1905754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sensitization to a contact allergen brings with it a lifelong risk to develop allergic contact dermatitis. Inflammation is an important part of the skin sensitizing mechanism, and understanding how different haptens stimulate the immune system, as well as the role played by different cell types present in skin, may be helpful for developing optimized in vitro models for risk assessment of new chemicals or mixtures. The aim of this study was to compare the cytokine profile following exposure of cells representing keratinocytes (HaCaT), monocytes (THP-1) and a co-culture of these cells to three clinically important skin sensitizers: cobalt (II) chloride (CoCl2), methylisothiazolinone (MI) and p-phenylenediamine (PPD). Secretion of ten pro-inflammatory cytokines was measured using multiplexing. The results showed that the cytokine response differed substantially between the three cell assays. CoCl2 caused an increase of IL-8 in HaCaT cells, while the induction of also IL-13 and IL-1β was observed in THP-1 cells and co-cultures. MI induced six cytokines in HaCaT cells but only IL-1β in the THP-1 cells and four cytokines in the co-culture. Interestingly, the IL-1β response was massive in the co-culture. PPD caused release of IL-1β in all three models as well as IL-8 in the co-culture. Control experiments with two non-sensitizers and irritants (lactic acid and sodium dodecyl sulfate) showed no effect on IL-8 or IL-1β in the co-culture. Taken together, results from this exploratory analysis show unique cytokine profiles dependent on the type of hapten and cell model. Importantly, all three haptens triggered secretion of IL-1β and IL-8 in a co-culture of HaCaT cells and THP-1 cells, representing the most robust test system.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carola Lidén
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
4
|
Thélu A, Catoire S, Kerdine-Römer S. Immune-competent in vitro co-culture models as an approach for skin sensitisation assessment. Toxicol In Vitro 2020; 62:104691. [DOI: 10.1016/j.tiv.2019.104691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
|
5
|
Steinritz D, Lang S, Popp T, Siegert M, Rothmiller S, Kranawetvogl A, Schmidt A, John H, Gudermann T, Thiermann H, Kehe K. Skin sensitizing effects of sulfur mustard and other alkylating agents in accordance to OECD guidelines. Toxicol Lett 2019; 314:172-180. [PMID: 31404593 DOI: 10.1016/j.toxlet.2019.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/20/2019] [Indexed: 11/28/2022]
Abstract
Vesicants cause a multitude of cutaneous reactions like erythema, blisters and ulcerations. After exposure to sulfur mustard (SM) and related compounds, patients present dermal symptoms typically known for chemicals categorized as skin sensitizer (e.g. hypersensitivity and flare-up phenomena). However, although some case reports led to the assumption that SM and other alkylating compounds represent sensitizers, a comprehensive investigation of SM-triggered immunological responses has not been conducted so far. Based on a well-structured system of in chemico and in vitro test methods, the Organization for Economic Co-operation and Development (OECD) established procedures to categorize agents on their skin sensitizing abilities. In this study, the skin sensitizing potential of SM and three related alkylating agents (AAs) was assessed following the OECD test guidelines. Besides SM, investigated AAs were chlorambucil (CHL), nitrogen mustard (HN3) and 2-chloroethyl ethyl sulfide (CEES). The methods are described in detail in the EURL ECVAM DataBase service on ALternative Methods to animal experimentation (DB-ALM). In accordance to OECD recommendations, skin sensitization is a pathophysiological process starting with a molecular initiating step and ending with the in vivo outcome of an allergic contact dermatitis. This concept is called adverse outcome pathway (AOP). An AOP links an adverse outcome to various key events which can be assayed by established in chemico and in vitro test methods. Positive outcome in two out of three key events indicates that the chemical can be categorized as a skin sensitizer. In this study, key event 1 "haptenation" (covalent modification of epidermal proteins), key event 2 "activation of epidermal keratinocytes" and key event 3 "activation of dendritic cells" were investigated. Covalent modification of epidermal proteins measured by using the DPRA-assay provided distinct positive results for all tested substances. Same outcome was seen in the KeratinoSens assay, investigating the activation of epidermal keratinocytes. The h-CLAT assay performed to determine the activation of dendritic cells provided positive results for SM and CEES but not for CHL and HN3. Altogether, following OECD requirements, our results suggest the classification of all investigated substances as skin sensitizers. Finally, a tentative AOP for SM-induced skin sensitization is suggested.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany.
| | - Simon Lang
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Tanja Popp
- Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany; Bundeswehr Institute of Radiobiology, 80937, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | | | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Faculty of Human Sciences, Bundeswehr University, 85579, Neubiberg, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | | | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Kai Kehe
- Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany; Bundeswehr Medical Service Academy, 80937, Munich, Germany
| |
Collapse
|
6
|
Tsoutsoulopoulos A, Siegert M, John H, Zubel T, Mangerich A, Schmidt A, Mückter H, Gudermann T, Thiermann H, Steinritz D, Popp T. A novel exposure system generating nebulized aerosol of sulfur mustard in comparison to the standard submerse exposure. Chem Biol Interact 2019; 298:121-128. [PMID: 30502332 DOI: 10.1016/j.cbi.2018.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/10/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Inhalation of the chemical warfare agent sulfur mustard (SM) is associated with severe acute and long-term pulmonary dysfunctions and health effects. The still not completely elucidated molecular toxicology and a missing targeted therapy emphasize the need for further research. However, appropriate human data are extremely rare. In vivo animal experiments are often regarded as gold standard in toxicology but may exhibit significant differences compared to the human pulmonary anatomy and physiology. Thus, alternative in vitro exposure methods, adapted to the human in vivo situation by exposing cells at the air-liquid interface (ALI), are complimentary approaches at a cellular level. So far, it is unclear whether the enhanced experimental complexity of ALI exposure, that is potentially biologically more meaningful, is superior to submerged exposures which are typically performed. Aim of our study was the evaluation of an appropriate in vitro exposure system (CULTEX® Radial Flow System (RFS) equipped with an eFlow® membrane nebulizer) for the exposure of cultivated human lung cells (A549) with SM under ALI conditions. Cellular responses (i.e. cell viability) and formation of SM-specific DNA-adducts were investigated and compared between ALI and submerse SM exposures. Our results proved the safe applicability of our ALI exposure system setup. The aerosol generation and subsequent deposition at the ALI were stable and uniform. The technical CULTEX® RFS setup is based on ALI exposure with excess of aerosol from that only some is deposited on the cell layer. As expected, a lower cytotoxicity and DNA-adduct formation were detected when identical SM concentrations were used compared to experiments under submerged conditions. A distinct advantage of SM-ALI compared to SM-submerse exposures could not be found in our experiments. Though, the CULTEX® RFS was found suitable for SM-ALI exposures.
Collapse
Affiliation(s)
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Tabea Zubel
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Universität der Bundeswehr München, Faculty of Human Sciences, Department for Sports Sciences, 85577, Neubiberg, Germany
| | - Harald Mückter
- Walther Straub Institute of Pharmacology and Toxicology, University of Munich, 80336, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, University of Munich, 80336, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, University of Munich, 80336, Munich, Germany
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, University of Munich, 80336, Munich, Germany.
| |
Collapse
|
7
|
Menacher G, Balszuweit F, Lang S, Thiermann H, Kehe K, Gudermann T, Schmidt A, Steinritz D, Popp T. Necrosulfonamide - Unexpected effect in the course of a sulfur mustard intoxication. Chem Biol Interact 2018; 298:80-85. [PMID: 30391637 DOI: 10.1016/j.cbi.2018.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 11/26/2022]
Abstract
Although its first military use in Ypres was 100 years ago, no causal therapy for sulfur mustard (SM) intoxications exists so far. To improve the therapeutic options for the treatment of SM intoxications, we developed a co-culture of keratinocytes (HaCaT cells) and immunocompetent cells (THP-1 cells) to identify potential substances for further research. Here, we report on the influence of necrosulfonamide (NSA) on the course of a SM intoxication in vitro. The cells were challenged with 100, 200 and 300 μM SM and after 1 h treated with NSA (1, 5, 10 μM). NSA was chosen for its known ability to inhibit necroptosis, a specialized pathway of programmed necrosis. However, in our settings NSA showed only mild effects on necrotic cell death after SM intoxication, whereas it had an immense ability to prevent apoptosis. Furthermore, NSA was able to reduce the production of interleukin-6 and interleukin-8 at certain concentrations. Our data highlight NSA as a candidate compound to address cell death and inflammation in SM exposure.
Collapse
Affiliation(s)
- Georg Menacher
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | | | - Simon Lang
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Kai Kehe
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Bundeswehr Medical Academy, Dept. Medical CBRN Defense, 80937, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilian-University Munich, Goethestraße 33, 80336, Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Bundeswehr University Munich, Faculty of Human Sciences, 85577, Neubiberg, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilian-University Munich, Goethestraße 33, 80336, Munich, Germany
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilian-University Munich, Goethestraße 33, 80336, Munich, Germany.
| |
Collapse
|
8
|
Menacher G, Steinritz D, Schmidt A, Popp T, Worek F, Gudermann T, Thiermann H, Balszuweit F. Effects of anti-inflammatory compounds on sulfur mustard injured cells: Recommendations and caveats suggested by in vitro cell culture models. Toxicol Lett 2018; 293:91-97. [DOI: 10.1016/j.toxlet.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 11/27/2022]
|
9
|
Rose D, Schmidt A, Brandenburger M, Sturmheit T, Zille M, Boltze J. Sulfur mustard skin lesions: A systematic review on pathomechanisms, treatment options and future research directions. Toxicol Lett 2017; 293:82-90. [PMID: 29203275 DOI: 10.1016/j.toxlet.2017.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare, which has been used for one hundred years. However, its exact pathomechanisms are still incompletely understood and there is no specific therapy available so far. In this systematic review, studies published between January 2000 and July 2017 involving pathomechanisms and experimental treatments of SM-induced skin lesions were analyzed to summarize current knowledge on SM pathology, to provide an overview on novel treatment options, and to identify promising targets for future research to more effectively counter SM effects. We suggest that future studies should focus on (I) systemic effects of SM intoxication due to its distribution throughout the body, (II) removal of SM depots that continuously release active compound contributing to chronic skin damage, and (III) therapeutic options that counteract the pleiotropic effects of SM.
Collapse
Affiliation(s)
- Dorothee Rose
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Universität der Bundeswehr, Fakultät für Humanwissenschaften, Department für Sportwissenschaft, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany.
| | - Matthias Brandenburger
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Tabea Sturmheit
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Marietta Zille
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany; Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| |
Collapse
|
10
|
Anti-apoptotic and moderate anti-inflammatory effects of berberine in sulfur mustard exposed keratinocytes. Toxicol Lett 2017; 293:2-8. [PMID: 28916288 DOI: 10.1016/j.toxlet.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
Skin affections after sulfur mustard (SM) exposure include erythema, blister formation and severe inflammation. An antidote or specific therapy does not exist. Anti-inflammatory compounds as well as substances counteracting SM-induced cell death are under investigation. In this study, we investigated the benzylisoquinoline alkaloide berberine (BER), a metabolite in plants like berberis vulgaris, which is used as herbal pharmaceutical in Asian countries, against SM toxicity using a well-established in vitro approach. Keratinocyte (HaCaT) mono-cultures (MoC) or HaCaT/THP-1 co-cultures (CoC) were challenged with 100, 200 or 300mM SM for 1h. Post-exposure, both MoC and CoC were treated with 10, 30 or 50μM BER for 24h. At that time, supernatants were collected and analyzed both for interleukine (IL) 6 and 8 levels and for content of adenylate-kinase (AK) as surrogate marker for cell necrosis. Cells were lysed and nucleosome formation as marker for late apoptosis was assessed. In parallel, AK in cells was determined for normalization purposes. BER treatment did not influence necrosis, but significantly decreased apoptosis. Anti-inflammatory effects were moderate, but also significant, primarily in CoC. Overall, BER has protective effects against SM toxicity in vitro. Whether this holds true should be evaluated in future in vivo studies.
Collapse
|
11
|
Ahmad S, Ahmad A. Emerging targets for treating sulfur mustard-induced injuries. Ann N Y Acad Sci 2016; 1374:123-31. [PMID: 27285828 DOI: 10.1111/nyas.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022]
Abstract
Sulfur mustard (SM; bis-(2-chlororethyl) sulfide) is a highly reactive, potent warfare agent that has recently reemerged as a major threat to military and civilians. Exposure to SM is often fatal, primarily due to pulmonary injuries and complications caused by its inhalation. Profound inflammation, hypercoagulation, and oxidative stress are the hallmarks that define SM-induced pulmonary toxicities. Despite advances, effective therapies are still limited. This current review focuses on inflammatory and coagulation pathways that influence the airway pathophysiology of SM poisoning and highlights the complexity of developing an effective therapeutic target.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, the University of Alabama at Birmingham (UAB), Birmingham, Alabama
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, the University of Alabama at Birmingham (UAB), Birmingham, Alabama
| |
Collapse
|
12
|
Wang P, Zhang Y, Chen J, Guo L, Xu B, Wang L, Xu H, Xie J. Analysis of different fates of DNA adducts in adipocytes post-sulfur mustard exposure in vitro and in vivo using a simultaneous UPLC-MS/MS quantification method. Chem Res Toxicol 2015; 28:1224-33. [PMID: 25955432 DOI: 10.1021/acs.chemrestox.5b00055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur mustard (SM) is a powerful alkylating vesicant that can rapidly penetrate skin, ocular, and lung bronchus mucous membranes and react with numerous nucleophiles in vivo. Although the lesion mechanisms of SM remain unclear, DNA damage is believed to be the most crucial factor in initiating SM-induced toxicity. Four major DNA adducts were identified for retrospective detection and DNA lesion evaluation, namely, N(7)-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (N(7)-HETEG), bis(2-ethyl-N(7)-guanine)thioether (Bis-G), N(3)-(2-hydroxyethylthioethyl)-2'-adenine (N(3)-HETEA), and O(6)-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (O(6)-HETEG). Because of previous observations that the levels of SM-DNA adducts were relatively higher in adipose-rich organs, such as the brain, we focused on the in vitro and in vivo fates of the DNA adducts in exposed adipocytes. A UPLC-MS/MS method developed in our laboratory was used to profile the N(7)-HETEG, Bis-G, and N(3)-HETEA levels in human mature adipocytes (HA-s) that had differentiated from human subcutaneous preadipocytes (HPA-s). This method was also used to profile three other cell lines related to the targeting of major tissues, including human keratinocytes (HaCaT), human hepatocytes (L-02), and human lung fibroblasts (HLF). Long-lasting adduct persistence and a high proportion of Bis-G were found in exposed adipocytes in vitro. The survival properties of exposed adipocytes were also tested. At the same time, the fate of SM-DNA adducts in vivo was characterized using a rat model exposed to 1 and 10 mg/kg doses of SM. The level of DNA adducts in the exposed adipose tissue (AT) was much lower than those in other organs studied in our previous work. The adduct persistence behavior was observed in AT with an extremely high proportion of Bis-G, which was higher than N(7)-HETEG. In light of these results, we suggest that an adipose-rich environment may promote the formation of Bis-G and that adipocyte-specific DNA repair mechanisms may result in adduct persistence and the survival of adipocytes after SM exposure. These conclusions should be further investigated.
Collapse
Affiliation(s)
- Peng Wang
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yajiao Zhang
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jia Chen
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lei Guo
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Bin Xu
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lili Wang
- ‡State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Hua Xu
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jianwei Xie
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| |
Collapse
|