1
|
Zhang Q, Song N, Xu H. Analysis strategy of contamination source using chemical fingerprint information based on GC-HRMS: A case study of landfill leachate. WATER RESEARCH 2024; 273:123067. [PMID: 39742632 DOI: 10.1016/j.watres.2024.123067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/28/2024] [Indexed: 01/03/2025]
Abstract
With the increasing prevalence of emerging contaminants (ECs) in the environment, gaining a deeper understanding of the chemical information pertaining to the contamination source is a crucial step toward effective prevention and control of these ECs. This study presents a novel strategy for analyzing the chemical information of contamination sources using gas chromatography-high resolution mass spectrometry (GC-HRMS) and demonstrates it on landfill leachate, a common and representative environmental contamination source. Initially, a non-targeted screening approach using HRMS was used to characterize a total of 5344 organic compounds with identification confidence levels 1 and 2 in 14 landfill leachate samples. Leveraging this as a base data set, the similarity analysis was first performed, and the classification fingerprints exhibited a pronounced level of similarity. Second, 169 characteristic marker contaminants with important and significant differences were identified in the 3 groups of landfill leachate with different solid waste compositions (mostly kitchen waste, mostly plastic & daily chemical product waste, and proportion average) by difference analysis. Finally, 101 hazardous chemicals (HCs) were screened in the data set. The results demonstrated that a class of contamination source exhibited certain common characteristics, while different groups of samples had their own distinct contamination signatures. This work offers a unique perspective on the interpretation of chemical information from contamination sources, aiming to provide a valuable reference for environmental pollution management.
Collapse
Affiliation(s)
- Qian Zhang
- College of Environment, Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China.; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.; Suzhou Research Institute, Hohai University, Suzhou 215100, PR China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China..
| | - Hang Xu
- College of Environment, Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China.; Suzhou Research Institute, Hohai University, Suzhou 215100, PR China..
| |
Collapse
|
2
|
Negreiros HA, Fontele SBC, Batista FA, Farias MGD, Silva FCCD, Nascimento MLLBD, Moura KGD, Correa LDS, Pereira ARS, Lopes LDO, Ferreira PMP, Mendes AN, Gonçalves JCR, Melo-Cavalcante AADC, Sousa JMDCE. Toxicogenetic profile of the monoterpene alpha-terpineol on normal and tumor eukaryotic cells. Drug Chem Toxicol 2024; 47:427-435. [PMID: 36912194 DOI: 10.1080/01480545.2023.2188440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Alpha-terpineol is a monoterpene alcohol found in essential oils from medicinal plants with some well-known pharmacological activities and widely used in cosmetics. However, the toxicological effects and additional pharmacological activities need to be clarified. Thus, the study evaluated the toxic, cytotoxic, genotoxic, hemolytic, and oxidative potential of alpha-terpineol in non-clinical bioassays. Different concentrations of alpha-terpineol were used in bioassays, including MTT (50, 100, 200, and 400 μg/mL), Artemia salina (6.25-400 μg/mL), Allium cepa (10, 50, and 100 μg/mL), comet assay (100, 200, and 500 μg/mL), cytokinesis-block micronucleus (100, 250, and 500 μg/mL), confocal microscopy for apoptosis quantification (100 and 500 μg/mL), hemolysis and Saccharomyces cerevisiae central disk test (10, 35, and 75 μg/mL). For the MTT test, alpha-terpineol was more cytotoxic on melanoma murine B16-F10 cells rather than macrophages. For A. salina test, alpha-terpineol showed LC50 of 68.29 and 76.36 μg/mL for 24 h and 48 h of exposure time, respectively. Meanwhile, alpha-terpineol was also cytotoxic to meristematic cells, which revealed inhibition of cellular division and mutagenic action by formation of bridges and delayed anaphases. The compound increased damage index and frequency of damage corroborated by the presence of micronuclei, bridges and nuclear buds at 500 μg/mL, but it caused neither hemolysis, oxidative damage on the S. cerevisiae nor cell death in normal fibroblasts. The findings indicate alpha-terpineol has cytotoxic potential by cytogenetic and molecular mechanisms associated with apoptosis and probable target effects against melanoma cells.
Collapse
Affiliation(s)
- Helber Alves Negreiros
- Postgraduation Program in Pharmaceutical Sciences, Laboratory of Research in Toxicological Genetics (LAPGENIC), Federal University of Piauí, Teresina, Brazil
| | | | - Felipe Alves Batista
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
| | | | - Felipe Cavalcanti Carneiro da Silva
- Postgraduation Program in Pharmaceutical Sciences, Laboratory of Research in Toxicological Genetics (LAPGENIC), Federal University of Piauí, Teresina, Brazil
| | - Maria Luisa Lima Barreto do Nascimento
- Postgraduation Program in Pharmaceutical Sciences, Laboratory of Research in Toxicological Genetics (LAPGENIC), Federal University of Piauí, Teresina, Brazil
| | | | | | | | - Luana de Oliveira Lopes
- Postgraduation Program in Pharmaceutical Sciences, Laboratory of Research in Toxicological Genetics (LAPGENIC), Federal University of Piauí, Teresina, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
- Postgraduation Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Anderson Nogueira Mendes
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
- Postgraduation Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduation Program in Pharmaceutical Sciences, Laboratory of Research in Toxicological Genetics (LAPGENIC), Federal University of Piauí, Teresina, Brazil
| | - João Marcelo de Castro E Sousa
- Postgraduation Program in Pharmaceutical Sciences, Laboratory of Research in Toxicological Genetics (LAPGENIC), Federal University of Piauí, Teresina, Brazil
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
- Postgraduation Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
3
|
Bahavarnia F, Hasanzadeh M, Bahavarnia P, Shadjou N. Advancements in application of chitosan and cyclodextrins in biomedicine and pharmaceutics: recent progress and future trends. RSC Adv 2024; 14:13384-13412. [PMID: 38660530 PMCID: PMC11041621 DOI: 10.1039/d4ra01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
The global community is faced with numerous health concerns such as cancer, cardiovascular and neurological diseases, diabetes, joint pain, osteoporosis, among others. With the advancement of research in the fields of materials chemistry and medicine, pharmaceutical technology and biomedical analysis have entered a new stage of development. The utilization of natural oligosaccharides and polysaccharides in pharmaceutical/biomedical studies has gained significant attention. Over the past decade, several studies have shown that chitosan and cyclodextrin have promising biomedical implications in background analysis, ongoing development, and critical applications in biomedical and pharmaceutical research fields. This review introduces different types of saccharides/natural biopolymers such as chitosan and cyclodextrin and discusses their wide-ranging applications in the biomedical/pharmaceutical research area. Recent research advances in pharmaceutics and drug delivery based on cyclodextrin, and their response to smart stimuli, as well as the biological functions of cyclodextrin and chitosan, such as the immunomodulatory effects, antioxidant, and antibacterial properties, have also been discussed, along with their applications in tissue engineering, wound dressing, and drug delivery systems. Finally, the innovative applications of chitosan and cyclodextrin in the pharmaceutical/biomedicine were reviewed, and current challenges, research/technological gaps, and future development opportunities were surveyed.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Parinaz Bahavarnia
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
4
|
Nehr-Majoros AK, Király Á, Helyes Z, Szőke É. Lipid raft disruption as an opportunity for peripheral analgesia. Curr Opin Pharmacol 2024; 75:102432. [PMID: 38290404 DOI: 10.1016/j.coph.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Chronic pain conditions are unmet medical needs, since the available drugs, opioids, non-steroidal anti-inflammatory/analgesic drugs and adjuvant analgesics do not provide satisfactory therapeutic effect in a great proportion of patients. Therefore, there is an urgent need to find novel targets and novel therapeutic approaches that differ from classical pharmacological receptor antagonism. Most ion channels and receptors involved in pain sensation and processing such as Transient Receptor Potential ion channels, opioid receptors, P2X purinoreceptors and neurokinin 1 receptor are located in the lipid raft regions of the plasma membrane. Targeting the membrane lipid composition and structure by sphingolipid or cholesterol depletion might open future perspectives for the therapy of chronic inflammatory, neuropathic or cancer pain, most importantly acting at the periphery.
Collapse
Affiliation(s)
- Andrea Kinga Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Ágnes Király
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary.
| |
Collapse
|
5
|
Elkholy NS, Mohammed HS, Shafaa MW. Assessment of the therapeutic potential of lutein and beta-carotene nanodispersions in a rat model of fibromyalgia. Sci Rep 2023; 13:19712. [PMID: 37953299 PMCID: PMC10641082 DOI: 10.1038/s41598-023-46980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Fibromyalgia (FM) is a chronic disorder characterized by widespread musculoskeletal pain, fatigue, and cognitive impairment. Despite the availability of various treatment options, FM remains a challenging condition to manage. In the present study, we investigated the efficacy of formulated nanodispersions of lutein and beta-carotene in treating FM-related symptoms induced by reserpine in female Wistar rats. Several techniques have been implemented to assess this efficacy at various levels, including biochemical, bioelectrical, and behavioral. Namely, oxidative stress markers, monoamine levels, electrocorticography, pain threshold test, and open field test were conducted on control, FM-induced, and FM-treated groups of animals. Our results provided compelling evidence for the efficacy of carotenoid nanodispersions in treating FM-related symptoms. Specifically, we found that the dual action of the nanodispersion, as both antioxidant and antidepressant, accounted for their beneficial effects in treating FM. With further investigation, nano-carotenoids and particularly nano-lutein could potentially become an effective alternative treatment for patients with FM who do not respond to current treatment options.
Collapse
Affiliation(s)
- Nourhan S Elkholy
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
- Nawah Scientific Co., Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Medhat W Shafaa
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
6
|
Mishra G, Singh P, Pottoo FH, Javed MN, Zeleke MM, Yimer YS. Nutraceuticals for Fibromyalgia and Neuropathic Pain. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:133-191. [DOI: 10.4018/978-1-7998-4120-3.ch007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Both neuropathic pain and fibromyalgia are horrific painful conditions arising due to impairment in the somatosensory nervous system and the musculoskeletal system, respectively. They share some common symptoms like hyperalgesia, allodynia, insomnia, cognitive deficits, and mood disturbances. It is believed that fibromyalgia is the consequence of dysfunction of the central nervous system, autonomic nervous system, imbalance in neurotransmitters, and psychological and emotional stress. Henceforth, these pain syndromes have become a major challenge for healthcare professionals due to their complex etiology and poor availability and effectiveness of the drugs. Notably, the available synthetic drugs possess serious side effects including physical dependence and tolerance. Therefore, researchers are now seeking natural-based therapy for modulating chronic pain conditions. This chapter has been written with the intention of exploring the beneficial effects of various nutraceuticals including herbal dietary supplements in neuropathic pain and fibromyalgia.
Collapse
Affiliation(s)
- Garima Mishra
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | - Pradeep Singh
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | - Faheem Hyder Pottoo
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Md Noushad Javed
- School of Pharmaceutical Sciences and Research, Jamia Hamdard, India
| | - Mulugeta Molla Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Ethiopia
| | | |
Collapse
|
7
|
Nutraceuticals: A source of benefaction for neuropathic pain and fibromyalgia. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Paiva-Santos AC, Ferreira L, Peixoto D, Silva F, Soares MJ, Zeinali M, Zafar H, Mascarenhas-Melo F, Raza F, Mazzola PG, Veiga F. Cyclodextrins as an encapsulation molecular strategy for volatile organic compounds – pharmaceutical applications. Colloids Surf B Biointerfaces 2022; 218:112758. [DOI: 10.1016/j.colsurfb.2022.112758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 01/07/2023]
|
9
|
Evaluation of the terpenes β-caryophyllene, α-terpineol, and γ-terpinene in the mouse chronic constriction injury model of neuropathic pain: possible cannabinoid receptor involvement. Psychopharmacology (Berl) 2022; 239:1475-1486. [PMID: 34846548 DOI: 10.1007/s00213-021-06031-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Pain is one of the most common reasons to seek medical attention, and chronic pain is a worldwide epidemic. Anecdotal reports suggest cannabis may be an effective analgesic. As cannabis contains the terpenes α-terpineol, β-caryophyllene, and γ-terpinene, we hypothesized these terpenes would produce analgesia in a mouse model of neuropathic pain. We used the chronic constriction injury of the sciatic nerve mouse model, which produces mechanical allodynia, assessed via the von Frey assay, as well as thermal hyperalgesia assessed via the hotplate assay. Compounds were further assessed in tests of locomotor activity, hypothermia, and acute antinociception. Each terpene produced dose-related reversal of mechanical allodynia and thermal hyperalgesia. Thermal hyperalgesia displayed higher sensitivity to the effects of each terpene than mechanical allodynia, and the rank order potency of the terpenes was α-terpineol > β-caryophyllene > γ-terpinene. To examine the involvement of cannabinoid receptors, further tests were conducted in mice lacking either functional cannabinoid type 1 receptors (CB1R (-/-)) or cannabinoid type 2 receptors (CB2R (-/-)). Compared to wild type mice, CB1R (-/-) mice treated with α-terpineol displayed a 2.91-fold decrease in potency to reverse mechanical allodynia; in CB2R (-/-) mice, the potency of α-terpineol was decreased 11.73-fold. The potency of β-caryophyllene to reverse mechanical allodynia decreased 1.80-fold in CB2R (-/-) mice. Each terpene produced a subset of effects in tests of locomotor activity, hypothermia, and acute antinociception. These findings suggest α-terpineol, β-caryophyllene, and γ-terpinene may have differential cannabinoid receptor activity and a pharmacological profile that may yield new efficacious analgesics.
Collapse
|
10
|
Pina LTS, Serafini MR, Oliveira MA, Sampaio LA, Guimarães JO, Guimarães AG. Carvone and its pharmacological activities: A systematic review. PHYTOCHEMISTRY 2022; 196:113080. [PMID: 34999510 DOI: 10.1016/j.phytochem.2021.113080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Natural products from plants have gained prominence in the search for therapeutic alternatives. Monoterpenes, such as carvone, are suggested as candidates for the treatment of several diseases. Therefore, the objective of this study is to review the pharmacological activities of carvone in experimental models in vitro and in vivo. For this, the searches were carried out in May 2020 (upgraded in July 2021) in the databases of PubMed, Web of Science and Scopus and gathered studies on the pharmacological activities of carvone. Two independent reviewers performed the selection of articles using the Rayyan application, extracted the relevant data and assessed the methodological quality of the selected studies using Syrcle's risk of bias tool. Ninety-one articles were selected that described 10 pharmacological activities of carvone, such as antimicrobial, antispasmodic, anti-inflammatory, antioxidant, antinociceptive, anticonvulsant, among others. The evaluation of the methodological quality presented an uncertain risk of bias for most studies. In light of that, carvone stands out as a viable and promising alternative in the treatment of several pathological conditions. However, carrying out studies to evaluate possible mechanisms of action and the safety of this monoterpene is recommended.
Collapse
Affiliation(s)
- Lícia T S Pina
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| | - Mairim R Serafini
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Laeza A Sampaio
- Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Juliana O Guimarães
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Adriana G Guimarães
- Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
11
|
Gouveia DN, Guimarães AG, Oliveira MA, Rabelo TK, Pina LTS, Santos WBR, Almeida IKS, A. Andrade T, Serafini MR, S. Lima B, Araújo AAS, Menezes-Filho JER, Santos-Miranda A, Scotti L, Scotti MT, Coutinho HDM, Quintans JSS, Capasso R, Quintans-Júnior LJ. Nanoencapsulated α-terpineol attenuates neuropathic pain induced by chemotherapy through calcium channel modulation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Effect of α-Terpineol on Chicken Meat Quality during Refrigerated Conditions. Foods 2021; 10:foods10081855. [PMID: 34441632 PMCID: PMC8392150 DOI: 10.3390/foods10081855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 01/11/2023] Open
Abstract
The present study was designed to evaluate the in vitro antimicrobial properties of nine bioactive compounds (BACs). Applying the disc paper and minimum inhibitory concentration (MIC) assays, we found that the BACs with the widest spectrum of in vitro antibacterial activity against the studied bacteria were carvacrol and α-terpineol (αTPN). Subsequently, αTPN was selected and applied at different concentrations into the fresh minced chicken meat. The meat was then vacuum packaged and stored for 14 days at 4 °C. Physicochemical properties, lipid oxidation (thiobarbituric acid reactive substances, TBARS), electronic-nose-based smell detection, and microbiological characteristics were monitored. At day 14, meat treated with higher concentrations of αTPN (MIC-2 and MIC-4) exhibited a significantly increased pH and lightness (L*), increased yellowness (b*), decreased redness (a*), caused a significant decrease in water holding capacity (WHC), and decreased lipid oxidation by keeping TBARS scores lower than the control. Although αTPN showed perceptibly of overlapped aroma profiles, the E-nose was able to distinguish the odor accumulation of αTPN between the different meat groups. During the 2-week storage period, αTPN, particularly MIC-4, showed 5.3 log CFU/g reduction in aerobic mesophilic counts, causing total inhibition to the Pseudomonas lundessis, Listeria monocytogenes, and Salmonella Typhimurium. These promising results highlight that αTPN is exploitable to improve the shelf life and enhance the safety of meat and meat products.
Collapse
|
13
|
Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int J Mol Sci 2021; 22:ijms22083891. [PMID: 33918736 PMCID: PMC8068842 DOI: 10.3390/ijms22083891] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Fibromyalgia is a syndrome characterized by chronic and widespread musculoskeletal pain, often accompanied by other symptoms, such as fatigue, intestinal disorders and alterations in sleep and mood. It is estimated that two to eight percent of the world population is affected by fibromyalgia. From a medical point of view, this pathology still presents inexplicable aspects. It is known that fibromyalgia is caused by a central sensitization phenomenon characterized by the dysfunction of neuro-circuits, which involves the perception, transmission and processing of afferent nociceptive stimuli, with the prevalent manifestation of pain at the level of the locomotor system. In recent years, the pathogenesis of fibromyalgia has also been linked to other factors, such as inflammatory, immune, endocrine, genetic and psychosocial factors. A rheumatologist typically makes a diagnosis of fibromyalgia when the patient describes a history of pain spreading in all quadrants of the body for at least three months and when pain is caused by digital pressure in at least 11 out of 18 allogenic points, called tender points. Fibromyalgia does not involve organic damage, and several diagnostic approaches have been developed in recent years, including the analysis of genetic, epigenetic and serological biomarkers. Symptoms often begin after physical or emotional trauma, but in many cases, there appears to be no obvious trigger. Women are more prone to developing the disease than men. Unfortunately, the conventional medical therapies that target this pathology produce limited benefits. They remain largely pharmacological in nature and tend to treat the symptomatic aspects of various disorders reported by the patient. The statistics, however, highlight the fact that 90% of people with fibromyalgia also turn to complementary medicine to manage their symptoms.
Collapse
|
14
|
Barbosa SM, Abreu NDC, de Oliveira MS, Cruz JN, Andrade EHDA, Menezes Neto MA, Cajueiro Gurgel ES. Effects of light intensity on the anatomical structure, secretory structures, histochemistry and essential oil composition of Aeollanthus suaveolens Mart. ex Spreng. (Lamiaceae). BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Anti-Tumor Efficiency of Perillylalcohol/β-Cyclodextrin Inclusion Complexes in a Sarcoma S180-Induced Mice Model. Pharmaceutics 2021; 13:pharmaceutics13020245. [PMID: 33578857 PMCID: PMC7916601 DOI: 10.3390/pharmaceutics13020245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
The low solubility and high volatility of perillyl alcohol (POH) compromise its bioavailability and potential use as chemotherapeutic drug. In this work, we have evaluated the anticancer activity of POH complexed with β-cyclodextrin (β-CD) using three complexation approaches. Molecular docking suggests the hydrogen-bond between POH and β-cyclodextrin in molar proportion was 1:1. Thermal analysis and Fourier-transform infrared spectroscopy (FTIR) confirmed that the POH was enclosed in the β-CD cavity. Also, there was a significant reduction of particle size thereof, indicating a modification of the β-cyclodextrin crystals. The complexes were tested against human L929 fibroblasts after 24 h of incubation showing no signs of cytotoxicity. Concerning the histopathological results, the treatment with POH/β-CD at a dose of 50 mg/kg promoted approximately 60% inhibition of tumor growth in a sarcoma S180-induced mice model and the reduction of nuclear immunoexpression of the Ki67 antigen compared to the control group. Obtained data suggest a significant reduction of cycling cells and tumor proliferation. Our results confirm that complexation of POH/β-CD not only solves the problem related to the volatility of the monoterpene but also increases its efficiency as an antitumor agent.
Collapse
|
16
|
Pina LTS, Guimarães AG, Santos WBDR, Oliveira MA, Rabelo TK, Serafini MR. Monoterpenes as a perspective for the treatment of seizures: A Systematic Review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153422. [PMID: 33310306 DOI: 10.1016/j.phymed.2020.153422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epilepsy affects more than 65 million people worldwide. Treatment for epileptic seizures is ineffective and has many adverse effects. For this reason, the search for new therapeutic options capable of filling these limitations is necessary. HYPOTHESIS/PURPOSE In this sense, natural products, such as monoterpenes, have been indicated as a new option to control neurological disorders such as epilepsy. STUDY DESIGN Therefore, the objective of this study was to review the monoterpenes that have anticonvulsive activity in animal models. METHODS The searches were performed in the PubMed, Web of Science and Scopus databases in September, 2020 and compiled studies using monoterpenes as an alternative to seizure. Two independent reviewers performed the study selection, data extraction and methodological quality assessment using the Syrcle tool. RESULTS 51 articles that described the anticonvulsant activity of 35 monoterpenes were selected with action on the main pharmacological target, including GABAA receptors, glutamate, calcium channels, sodium and potassium. In addition, these compounds are capable of reducing neuronal inflammation and oxidative stress caused by seizure. CONCLUSION These compounds stand out as a promising alternative for acting through different pharmacological mechanisms, which may not only reduce seizure, but also promote neuroprotective effect by reducing toxicity in brain regions. However, further studies are needed to determine the mechanism of action and safety assessment of these compounds.
Collapse
Affiliation(s)
- Lícia T S Pina
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil.
| | - Adriana G Guimarães
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Wagner B da R Santos
- Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Thallita K Rabelo
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mairim R Serafini
- Graduate Program in Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Pharmaceutical Sciences, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
17
|
Dos Santos PH, Mesquita T, Miguel-Dos-Santos R, de Almeida GKM, de Sá LA, Dos Passos Menezes P, de Souza Araujo AA, Lauton-Santos S. Inclusion complex with β-cyclodextrin is a key determining factor for the cardioprotection induced by usnic acid. Chem Biol Interact 2020; 332:109297. [PMID: 33096055 DOI: 10.1016/j.cbi.2020.109297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Ischemia-reperfusion (I/R) injury causes oxidative stress, leading to severe cardiac dysfunction. Thus, biologically active compounds with antioxidant properties may be viewed as a promising therapeutic strategy against oxidative-related cardiac disorders. Usnic acid (UA), a natural antioxidant, was complexed with β-cyclodextrin (βCD) to improve its bioavailability. Wistar male rats were orally treated with the free form of UA (50 mg/kg) or the inclusion complex UA/βCD (50 mg/kg) for seven consecutive days. Afterward, hearts were subjected to I/R injury, and the cardiac contractility, rhythmicity, infarct size, and antioxidant enzyme activities were evaluated. Here, we show that neither UA nor UA/βCD treatments developed signs of toxicity. After I/R injury, animals treated with UA/βCD showed improved post-ischemic cardiac functional recovery while the release of cell injury biomarkers decreased. Following reduced cardiac damage, a lower incidence of ventricular arrhythmias and smaller myocardial infarct size were associated with reduced lipid peroxidation, along with preserved activity of antioxidant enzymes compared to untreated rats. Surprisingly, uncomplexed UA did not protect hearts against IR injury. Altogether, our results indicate that the inclusion complex UA/βCD is a critical determining factor responsible for the cardioprotection action of UA, suggesting the involvement of an antioxidant-dependent mechanisms. Moreover, our findings support that UA/βCD is a structurally engineered compound with active cardioprotective properties.
Collapse
Affiliation(s)
- Péligris Henrique Dos Santos
- Department of Physiology, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil
| | - Thassio Mesquita
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, United States.
| | - Rodrigo Miguel-Dos-Santos
- Department of Physiology, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil; Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, St. Olav's Hospital, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Grace Kelly Melo de Almeida
- Department of Physiology, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil
| | - Lucas Andrade de Sá
- Department of Physiology, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil
| | - Paula Dos Passos Menezes
- Department of Pharmacy, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Sandra Lauton-Santos
- Department of Physiology, Biological Sciences and Health Center, Federal University of Sergipe, São Cristóvão, Brazil.
| |
Collapse
|
18
|
Chen Z, Zong L, Chen C, Xie J. Development and characterization of PVA-Starch active films incorporated with β-cyclodextrin inclusion complex embedding lemongrass (Cymbopogon citratus) oil. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100565] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Marques CSF, Barreto NS, de Oliveira SSC, Santos ALS, Branquinha MH, de Sousa DP, Castro M, Andrade LN, Pereira MM, da Silva CF, Chaud MV, Jain S, Fricks AT, Souto EB, Severino P. β-Cyclodextrin/Isopentyl Caffeate Inclusion Complex: Synthesis, Characterization and Antileishmanial Activity. Molecules 2020; 25:E4181. [PMID: 32932660 PMCID: PMC7570699 DOI: 10.3390/molecules25184181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
Isopentyl caffeate (ICaf) is a bioactive ester widely distributed in nature. Our patented work has shown promising results of this molecule against Leishmania. However, ICaf shows poor solubility, which limits its usage in clinical settings. In this work, we have proposed the development of an inclusion complex of ICaf in β-cyclodextrin (β-CD), with the aim to improve the drug solubility, and thus, its bioavailability. The inclusion complex (ICaf:β-CD) was developed applying three distinct methods, i.e., physical mixture (PM), kneading (KN) or co-evaporation (CO) in different molar proportions (0.25:1, 1:1 and 2:1). Characterization of the complexes was carried out by thermal analysis, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and molecular docking. The ICaf:β-CD complex in a molar ratio of 1:1 obtained by CO showed the best complexation and, therefore, was selected for further analysis. Solubility assay showed a marked improvement in the ICaf:β-CD (CO, 1:1) solubility profile when compared to the pure ICaf compound. Cell proliferation assay using ICaf:β-CD complex showed an IC50 of 3.8 and 2.7 µg/mL against L. amazonesis and L. chagasi promastigotes, respectively. These results demonstrate the great potential of the inclusion complex to improve the treatment options for visceral and cutaneous leishmaniases.
Collapse
Affiliation(s)
- Carine S. F. Marques
- Postgraduation in Biotechnology Program, Industrial and Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; (C.S.F.M.); (N.S.B.); (S.J.); (A.T.F.)
| | - Nathalia S. Barreto
- Postgraduation in Biotechnology Program, Industrial and Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; (C.S.F.M.); (N.S.B.); (S.J.); (A.T.F.)
| | - Simone S. C. de Oliveira
- Departament of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University l Rio de Janeiro, 21941-918 Rio de Janeiro, RJ, Brazil; (S.S.C.d.O.); (A.L.S.S.); (M.H.B.)
| | - André L. S. Santos
- Departament of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University l Rio de Janeiro, 21941-918 Rio de Janeiro, RJ, Brazil; (S.S.C.d.O.); (A.L.S.S.); (M.H.B.)
| | - Marta H. Branquinha
- Departament of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University l Rio de Janeiro, 21941-918 Rio de Janeiro, RJ, Brazil; (S.S.C.d.O.); (A.L.S.S.); (M.H.B.)
| | - Damião P. de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900 Paraíba, Brazil; (D.P.d.S.); (M.C.)
| | - Mayara Castro
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-900 Paraíba, Brazil; (D.P.d.S.); (M.C.)
| | - Luciana N. Andrade
- Department of Medicine, Federal University of Sergipe, CEP 49400-000 Lagarto, Sergipe, Brazil;
| | - Matheus M. Pereira
- CICECO-Aveiro Institute of Materials, Departamento f Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Classius F. da Silva
- Department of Exact Sciences and Earth, Federal University of São Paulo (UNIFESP), 09972-270 Diadema CEP, Brazil;
| | - Marco V. Chaud
- Department of Technological and Environmental Processes, Sorocaba University (UNISO), Rod. Raposo Tavares, Km 92.5, 18023-000 Sorocaba, Brazil;
| | - Sona Jain
- Postgraduation in Biotechnology Program, Industrial and Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; (C.S.F.M.); (N.S.B.); (S.J.); (A.T.F.)
| | - Alini T. Fricks
- Postgraduation in Biotechnology Program, Industrial and Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; (C.S.F.M.); (N.S.B.); (S.J.); (A.T.F.)
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciênciasda Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Patricia Severino
- Postgraduation in Biotechnology Program, Industrial and Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; (C.S.F.M.); (N.S.B.); (S.J.); (A.T.F.)
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women′s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| |
Collapse
|
20
|
de Araujo Andrade T, dos Passos Menezes P, de Carvalho YMBG, dos Santos Lima B, de Souza EPBSS, de Souza Araujo AA, Melo MAO, Quintans-Júnior LJ, de Souza Siqueira Quintans J, Guterres SS, Pohlmann AR, Shanmugam S, Frank LA, Serafini MR. (-)-linalool-Loaded Polymeric Nanocapsules Are a Potential Candidate to Fibromyalgia Treatment. AAPS PharmSciTech 2020; 21:184. [PMID: 32632735 DOI: 10.1208/s12249-020-01719-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022] Open
Abstract
Fibromyalgia (FM) is a chronic disease that has as main characteristic generalized musculoskeletal pain, which can cause physical and emotional problems to patients. However, pharmacological therapies show side effects that hamper the adhesion to treatment. Given this, (-)-linalool (LIN), a monoterpene with several therapeutic properties already reported in scientific literature as anti-depressive, antinociceptive, anti-inflammatory, and antihyperalgesic also demonstrated therapeutic potential in the treatment of FM. Nevertheless, physicochemical limitations as high volatilization and poor water-solubility make its use difficult. In this perspective, this present research had performed the incorporation of LIN into polymeric nanocapsules (LIN-NC). Size, morphology, encapsulation efficiency, cytotoxicity, and drug release were performed. The antihyperalgesic effect of LIN-NC was evaluated by a chronic non-inflammatory muscle pain model. The results demonstrated that the polymeric nanocapsules showed particle size of 199.1 ± 0.7 nm with a PDI measurement of 0.13 ± 0.01. The drug content and encapsulation efficiency were 13.78 ± 0.05 mg/mL and 80.98 ± 0.003%, respectively. The formulation did not show cytotoxicity on J774 macrophages. The oral treatment with LIN-NC and free-LIN increased the mechanical withdrawal threshold on all days of treatment in comparison with the control group. In conclusion, LIN-NC is a promising proposal in the development of phytotherapy-based nanoformulations for future clinical applications.
Collapse
|
21
|
Vasconcelos ACCG, Vasconcelos DFP, da Silva FRP, França LFDC, Alves EHP, Di Lenardo D, Pessoa LDS, Nascimento HMS, Carvalho ADS, Sousa FBDM, Barbosa ALDR, Medeiros JVR, Novaes PD, Mariano FS, Lima BDS, Araujo AADS, Júnior LJQ, de Oliveira AP. Alpha-terpineol complexed with beta-cyclodextrin reduces damages caused by periodontitis in rats. J Periodontal Res 2020; 55:877-886. [PMID: 32583890 DOI: 10.1111/jre.12780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE This study aimed to assess the effectiveness of the treatment with alpha-terpineol (αTPN) complexed with beta-cyclodextrin (βCD) on oral, blood, and hepatic parameters in ligature-induced periodontitis. MATERIAL AND METHODS Forty female rats were distributed among the following groups: control (vehicle solution), periodontitis (ligature + vehicle solution), 5 mg/kg of αTPN-βCD (ligature), and 25 mg/kg of αTPN-βCD (ligature). Compounds were administered daily via intraperitoneal injection over a 20-day period. Periodontitis was induced with the bilateral insertion of ligatures around the first lower molars of each rat. Oral parameters, as well as blood biomarkers, were measured: histopathological assessment of the hepatic tissue was carried out using light and transmission electron microscopy. RESULTS The treatment with αTPN-βCD significantly improved several oral parameters and blood biomarkers in comparison with rats with periodontitis. In addition, the treatment with αTPN-βCD significantly ameliorated the steatosis score and reduced the number of lipid droplets and the amount of foamy cytoplasm in the hepatocytes of rats with periodontitis. CONCLUSION The results obtained suggest that the treatment with αTPN-βCD improves several oral and blood parameters in rats with experimental periodontitis. In addition, hepatic alterations caused by periodontitis were ameliorated in the rats treated with αTPN-βCD.
Collapse
Affiliation(s)
- Any Carolina Cardoso Guimarães Vasconcelos
- Medicinal Plants Research Center (NPPM), Federal University of hPiaui, Teresina, Brazil.,Medicine School, Education Institute of Parnaiba Valley (IESVAP-Afya), Parnaiba, Brazil
| | | | - Felipe Rodolfo Pereira da Silva
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of Parnaiba Delta (UFDPar), Parnaiba, Brazil
| | - Luiz Felipe de Carvalho França
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of Parnaiba Delta (UFDPar), Parnaiba, Brazil
| | - Even Herlany Pereira Alves
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of Parnaiba Delta (UFDPar), Parnaiba, Brazil
| | - David Di Lenardo
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of Parnaiba Delta (UFDPar), Parnaiba, Brazil
| | - Larissa Dos Santos Pessoa
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of Parnaiba Delta (UFDPar), Parnaiba, Brazil
| | - Hélio Mateus Silva Nascimento
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of Parnaiba Delta (UFDPar), Parnaiba, Brazil
| | - André Dos Santos Carvalho
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of Parnaiba Delta (UFDPar), Parnaiba, Brazil
| | | | - André Luiz Dos Reis Barbosa
- Laboratory of Experimental Psychopharmacology (LAFFEX), Federal University of Parnaiba Delta (UFDPar), Parnaiba, Brazil
| | - Jand-Venes Rolim Medeiros
- Laboratory of Experimental Psychopharmacology (LAFFEX), Federal University of Parnaiba Delta (UFDPar), Parnaiba, Brazil
| | - Pedro Duarte Novaes
- Department of Morphology, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Flávia Sammartino Mariano
- Department of Morphology, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, Brazil
| | | | | | | | | |
Collapse
|
22
|
Assis DB, Aragão Neto HDC, da Fonsêca DV, de Andrade HHN, Braga RM, Badr N, Maia MDS, Castro RD, Scotti L, Scotti MT, de Almeida RN. Antinociceptive Activity of Chemical Components of Essential Oils That Involves Docking Studies: A Review. Front Pharmacol 2020; 11:777. [PMID: 32547391 PMCID: PMC7272657 DOI: 10.3389/fphar.2020.00777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Pain is considered an unpleasant sensory and emotional experience, being considered as one of the most important causes of human suffering. Computational chemistry associated with bioinformatics has stood out in the process of developing new drugs, through natural products, to manage this condition. OBJECTIVE To analyze, through literature data, recent molecular coupling studies on the antinociceptive activity of essential oils and monoterpenes. DATA SOURCE Systematic search of the literature considering the years of publications between 2005 and December 2019, in the electronic databases PubMed and Science Direct. ELIGIBILITY CRITERIA Were considered as criteria of 1) Biological activity: non-clinical effects of an OE and/or monoterpenes on antinociceptive activity based on animal models and in silico analysis, 2) studies with plant material: chemically characterized essential oils and/or their constituents isolated, 3) clinical and non-clinical studies with in silico analysis to assess antinociceptive activity, 4) articles published in English. Exclusion criteria were literature review, report or case series, meta-analysis, theses, dissertations, and book chapter. RESULTS Of 16,006 articles, 16 articles fulfilled all the criteria. All selected studies were non-clinical. The most prominent plant families used were Asteraceae, Euphorbiaceae, Verbenaceae, Lamiaceae, and Lauraceae. Among the phytochemicals studied were α-Terpineol, 3-(5-substituted-1,3,4-oxadiazol-2-yl)-N'-[2-oxo-1,2-dihydro-3H-indol-3-ylidene] propane hydrazide, β-cyclodextrin complexed with citronellal, (-)-α-bisabolol, β-cyclodextrin complexed with farnesol, and p-Cymene. The softwares used for docking studies were Molegro Virtual Docker, Sybyl®X, Vlife MDS, AutoDock Vina, Hex Protein Docking, and AutoDock 4.2 in PyRx 0.9. The molecular targets/complexes used were Nitric Oxide Synthase, COX-2, GluR2-S1S2, TRPV1, β-CD complex, CaV1, CaV2.1, CaV2.2, and CaV2.3, 5-HT receptor, delta receptor, kappa receptor, and MU (μ) receptor, alpha adrenergic, opioid, and serotonergic receptors, muscarinic receptors and GABAA opioid and serotonin receptors, 5-HT3 and M2 receptors. Many of the covered studies used molecular coupling to investigate the mechanism of action of various compounds, as well as molecular dynamics to investigate the stability of protein-ligand complexes. CONCLUSIONS The studies revealed that through the advancement of more robust computational techniques that complement the experimental studies, they may allow some notes on the identification of a new candidate molecule for therapeutic use.
Collapse
Affiliation(s)
- Davidson Barbosa Assis
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Diogo Vilar da Fonsêca
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Renan Marinho Braga
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Nader Badr
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Mayara dos Santos Maia
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Ricardo Dias Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcus Tullius Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
23
|
Vieira G, Cavalli J, Gonçalves ECD, Braga SFP, Ferreira RS, Santos ARS, Cola M, Raposo NRB, Capasso R, Dutra RC. Antidepressant-Like Effect of Terpineol in an Inflammatory Model of Depression: Involvement of the Cannabinoid System and D2 Dopamine Receptor. Biomolecules 2020; 10:E792. [PMID: 32443870 PMCID: PMC7280984 DOI: 10.3390/biom10050792] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
Depression has a multifactorial etiology that arises from environmental, psychological, genetic, and biological factors. Environmental stress and genetic factors acting through immunological and endocrine responses generate structural and functional changes in the brain, inducing neurogenesis and neurotransmission dysfunction. Terpineol, monoterpenoid alcohol, has shown immunomodulatory and neuroprotective effects, but there is no report about its antidepressant potential. Herein, we used a single lipopolysaccharide (LPS) injection to induce a depressive-like effect in the tail suspension test (TST) and the splash test (ST) for a preventive and therapeutic experimental schedule. Furthermore, we investigated the antidepressant-like mechanism of action of terpineol while using molecular and pharmacological approaches. Terpineol showed a coherent predicted binding mode mainly against CB1 and CB2 receptors and also against the D2 receptor during docking modeling analyses. The acute administration of terpineol produced the antidepressant-like effect, since it significantly reduced the immobility time in TST (100-200 mg/kg, p.o.) as compared to the control group. Moreover, terpineol showed an antidepressant-like effect in the preventive treatment that was blocked by a nonselective dopaminergic receptor antagonist (haloperidol), a selective dopamine D2 receptor antagonist (sulpiride), a selective CB1 cannabinoid receptor antagonist/inverse agonist (AM281), and a potent and selective CB2 cannabinoid receptor inverse agonist (AM630), but it was not blocked by a nonselective adenosine receptor antagonist (caffeine) or a β-adrenoceptor antagonist (propranolol). In summary, molecular docking suggests that CB1 and CB2 receptors are the most promising targets of terpineol action. Our data showed terpineol antidepressant-like modulation by CB1 and CB2 cannabinoid receptors and D2-dopaminergic receptors to further corroborate our molecular evidence.
Collapse
Affiliation(s)
- Graziela Vieira
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (G.V.); (J.C.); (E.C.D.G.); (M.C.)
| | - Juliana Cavalli
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (G.V.); (J.C.); (E.C.D.G.); (M.C.)
| | - Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (G.V.); (J.C.); (E.C.D.G.); (M.C.)
- Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Saulo F. P. Braga
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.F.P.B.); (R.S.F.)
| | - Rafaela S. Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (S.F.P.B.); (R.S.F.)
| | - Adair R. S. Santos
- Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Maíra Cola
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (G.V.); (J.C.); (E.C.D.G.); (M.C.)
| | - Nádia R. B. Raposo
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de For a 36036-330, Brazil;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Endocannabinoid Research Group, 80078 Naples, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (G.V.); (J.C.); (E.C.D.G.); (M.C.)
- Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| |
Collapse
|
24
|
Ramos AGB, de Menezes IRA, da Silva MSA, Torres Pessoa R, de Lacerda Neto LJ, Rocha Santos Passos F, Melo Coutinho HD, Iriti M, Quintans-Júnior LJ. Antiedematogenic and Anti-Inflammatory Activity of the Monoterpene Isopulegol and Its β-Cyclodextrin (β-CD) Inclusion Complex in Animal Inflammation Models. Foods 2020; 9:E630. [PMID: 32423148 PMCID: PMC7278878 DOI: 10.3390/foods9050630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/15/2023] Open
Abstract
Isopulegol (ISO) is an alcoholic monoterpene widely found in different plant species, such as Melissa officinalis, and has already been reported to have a number of pharmacological properties. Like other terpenes, ISO is a highly volatile compound that is slightly soluble in water, so its inclusion into cyclodextrins (CDs) is an interesting approach to increase its solubility and bioavailability. Thus, our aim was to evaluate the antiedematogenic and anti-inflammatory activity of isopulegol and a β-cyclodextrin-isopulegol inclusion complex (ISO/β-CD) in rodent models. For the anti-inflammatory activity evaluation, antiedematogenic plethysmometry and acute (peritonitis and pleurisy), as well as chronic (cotton pellet-induced granuloma) anti-inflammatory models, were used. The docking procedure is used to evaluate, analyze, and predict their binding mode of interaction with H1 and Cox-2 receptors. The animals (n = 6) were divided into groups: ISO and ISO/β-CD, negative control (saline), and positive control (indomethacin and promethazine). ISO and ISO/β-CD were able to reduce acute inflammatory activity by decreasing albumin extravasation, leukocyte migration, and MPO concentration, and reducing exudate levels of IL-1β and TNF-α. ISO and ISO/β-CD significantly inhibited edematogenic activity in carrageenan- and dextran-induced paw edema. Moreover, both significantly reduced chronic inflammatory processes, given the lower weight and protein concentration of granulomas in the foreign body granulomatous inflammation model. The results suggest that the inclusion of ISO in β-cyclodextrins improves its pharmacological properties, with the histamine and prostaglandin pathways as probable mechanisms of inhibition, and also reinforces the anti-inflammatory profile of this terpene.
Collapse
Affiliation(s)
- Andreza Guedes Barbosa Ramos
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.G.B.R.); (I.R.A.d.M.); (M.S.A.d.S.); (R.T.P.); (L.J.d.L.N.); (H.D.M.C.)
| | - Irwin Rose Alencar de Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.G.B.R.); (I.R.A.d.M.); (M.S.A.d.S.); (R.T.P.); (L.J.d.L.N.); (H.D.M.C.)
| | - Maria Sanádia Alexandre da Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.G.B.R.); (I.R.A.d.M.); (M.S.A.d.S.); (R.T.P.); (L.J.d.L.N.); (H.D.M.C.)
| | - Renata Torres Pessoa
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.G.B.R.); (I.R.A.d.M.); (M.S.A.d.S.); (R.T.P.); (L.J.d.L.N.); (H.D.M.C.)
| | - Luiz Jardelino de Lacerda Neto
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.G.B.R.); (I.R.A.d.M.); (M.S.A.d.S.); (R.T.P.); (L.J.d.L.N.); (H.D.M.C.)
| | - Fabíola Rocha Santos Passos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Aracaju - SE 49100-000, Brazil; (F.R.S.P.); (L.J.Q.-J.)
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, Brazil; (A.G.B.R.); (I.R.A.d.M.); (M.S.A.d.S.); (R.T.P.); (L.J.d.L.N.); (H.D.M.C.)
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy
| | - Lucindo José Quintans-Júnior
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Aracaju - SE 49100-000, Brazil; (F.R.S.P.); (L.J.Q.-J.)
| |
Collapse
|
25
|
Carvalho AMS, Heimfarth L, Pereira EWM, Oliveira FS, Menezes IRA, Coutinho HDM, Picot L, Antoniolli AR, Quintans JSS, Quintans-Júnior LJ. Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-α and IL-6. JOURNAL OF NATURAL PRODUCTS 2020; 83:1107-1117. [PMID: 32091204 DOI: 10.1021/acs.jnatprod.9b01116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytol is a diterpene constituent of chlorophyll and has been shown to have several pharmacological properties, particularly in relation to the management of painful inflammatory diseases. Arthritis is one of the most common of these inflammatory diseases, mainly affecting the synovial membrane, cartilage, and bone in joints. Proinflammatory cytokines, such as TNF-α and IL-6, and the NFκB signaling pathway play a pivotal role in arthritis. However, as the mechanisms of action of phytol and its ability to reduce the levels of these cytokines are poorly understood, we decided to investigate its pharmacological effects using a mouse model of complete Freund's adjuvant (CFA)-induced arthritis. Our results showed that phytol was able to inhibit joint swelling and hyperalgesia throughout the whole treatment period. Moreover, phytol reduced myeloperoxidase (MPO) activity and proinflammatory cytokine release in synovial fluid and decreased IL-6 production as well as the COX-2 immunocontent in the spinal cord. It also downregulated the p38MAPK and NFκB signaling pathways. Therefore, our findings demonstrated that phytol can be an innovative antiarthritic agent due to its capacity to attenuate inflammatory reactions in joints and the spinal cord, mainly through the modulation of mediators that are key to the establishment of arthritic pain.
Collapse
Affiliation(s)
| | | | | | | | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará 63100-000, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará 63100-000, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042 La Rochelle, France
| | | | | | | |
Collapse
|
26
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
27
|
Mei RF, Shi YX, Duan WH, Ding H, Zhang XR, Cai L, Ding ZT. Biotransformation of α-terpineol by Alternaria alternata. RSC Adv 2020; 10:6491-6496. [PMID: 35496018 PMCID: PMC9049759 DOI: 10.1039/c9ra08042b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/15/2020] [Indexed: 11/29/2022] Open
Abstract
α-Terpineol (1), the main volatile constituent in some traditional Chinese medicines, has been reported to be metabolized to 4R-oleuropeic acid by the larvae of common cutworms. The present study verified that α-terpineol could be converted to 4R-oleuropeic acid (2) and (1S,2R,4R)-p-menthane-1,2,8-triol (3) by Alternaria alternata fermentation. Using shortened fermentation times, 7-hydroxy-α-terpineol (2a) was identified as an oxidative intermediate, which was consistent with the hypothesis put forward by previous studies. Cytochrome P450 enzymes were also confirmed to catalyze this biotransformation. This is the first study on the biotransformation of α-terpineol by microbial fermentation.
Collapse
Affiliation(s)
- Rui-Feng Mei
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Ya-Xian Shi
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Wei-He Duan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Hao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xiao-Ran Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
28
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
29
|
Santos LS, Andrade TDA, Barbosa Gomes de Carvalho YM, Santos Oliveira AM, Barros Silva Soares de Souza EP, dos Santos CP, Frank LA, Guterres SS, Lima ÁS, Chaud MV, Alves TR, Shanmugam S, Quintans Júnior LJ, Araújo AADS, Serafini MR. Gelatin-based mucoadhesive membranes containing inclusion complex of thymol/β-cyclodextrin for treatment of oral infections. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1706509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lana Silva Santos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | | | | | | | - Luiza Abrahão Frank
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sílvia Stanisçuaski Guterres
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Álvaro Silva Lima
- Institute of Technology and Research, Tiradentes University, Aracaju, Sergipe, Brazil
| | - Marco V. Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, Sorocaba, Brazil
| | - Thais Ribeiro Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, Sorocaba, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
30
|
Antinociceptive activity of the Psidium brownianum Mart ex DC. leaf essential oil in mice. Food Chem Toxicol 2019; 135:111053. [PMID: 31857126 DOI: 10.1016/j.fct.2019.111053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 11/03/2019] [Accepted: 12/10/2019] [Indexed: 11/23/2022]
Abstract
Chronic pain management has several adverse effects and research looking for new and effective pain management drugs posing lower undesirable effects is necessary. Given the above, the pharmacological investigation of medicinal plants significantly contributes to the dissemination of plant-derived therapeutics. The aim of this study was to evaluate the antinociceptive activity of the Psidium brownianum Mart ex DC. leaf essential oil (PBEO) and the participation of the opioid pathway in this effect in mice. Swiss Mus musculus male mice were tested using acute nociception models (acetic acid induced abdominal contortions, formalin, capsaicin and hot plate tests). The possible myorelaxant action of the PBEO was tested using the rotarod test. The essential oil reduced animal nociception in chemical and heat models, with this action being devoid of a myorelaxant effect. Naloxone (2 mg/kg, intraperitoneally - i.p.) partially antagonized the PBEO activity, possibly acting via opioid receptors. The results obtained provide evidence that the traditional Psidium brownianum use may be effective for pain treatment.
Collapse
|
31
|
Eplingiella fruticosa (Lamiaceae) essential oil complexed with β-cyclodextrin improves its anti-hyperalgesic effect in a chronic widespread non-inflammatory muscle pain animal model. Food Chem Toxicol 2019; 135:110940. [PMID: 31693914 DOI: 10.1016/j.fct.2019.110940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Eplingiella fruticosa (Lamiaceae), formally known as Hyptis fruticosa, is an important aromatic medicinal herb used in folk medicine in northeastern Brazil. We aimed to evaluate the anti-hyperalgesic effect of essential oil obtained from E. fruticosa (HypEO) complexed with βCD (HypEO-βCD) in a chronic widespread non-inflammatory muscle pain animal model (a mice fibromyalgia-like model, FM). The HypEO was extracted by hydro distillation and its chemical composition was determined by GC-MS/FID. Moreover, Fos protein expression in the spinal cord was assessed by immunofluorescence. (E)-caryophyllene, bicyclogermacrene, 1,8-cineole, α-pinene, β-pinene and 21 other compounds were identified in the HypEO. The treatment with HypEO-βCD produced a longer-lasting anti-hyperalgesic effect compared to HypEO, without alterations in motor coordination or myorelaxant effects. Moreover, HypEO and HypEO-βCD produced a significant anti-hyperalgesic effect over 7 consecutive treatment days. Immunofluorescence assay demonstrated a decrease in Fos protein expression in the spinal cord (p < 0.001). We demonstrated that the anti-hyperalgesic effect produced by HypEO was improved after complexation with β-CD and this seems to be related to the central pain-inhibitory pathway, suggesting the possible use of E. fruticosa for chronic pain management.
Collapse
|
32
|
Xing X, Ma JH, Fu Y, Zhao H, Ye XX, Han Z, Jia FJ, Li X. Essential oil extracted from erythrina corallodendron L. leaves inhibits the proliferation, migration, and invasion of breast cancer cells. Medicine (Baltimore) 2019; 98:e17009. [PMID: 31490383 PMCID: PMC6738998 DOI: 10.1097/md.0000000000017009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 11/25/2022] Open
Abstract
Erythrina corallodendron L., a kind of landscape tree, has long been used as a traditional medicine. In this study, the composition of essential oil extracted from the leaves was analysed by GC-MS (gas chromatograph-mass spectrometer), with linalool identified as the main compound. Its cytotoxicity against MDA-MB-231, MCF-7 and HMLE cells was examined by MTT and cloning assays. Transwell and wound-healing assays were used to examine the inhibition of migration and invasion. Western blot, qRT-PCR and immunofluorescence staining were used to measure the mRNA and protein expression of factors related to EMT (snail, slug, E-cadherin, N-cadherin and vimentin). The essential oil of Erythrina corallodendron leaves was found to inhibit the proliferation, migration and invasion of breast cancer cells in a dose-dependent manner. The findings of this study suggest that the essential oil of E. corallodendron leaves may merit further investigation as a potential clinical or adjuvant drug for treating breast cancer migration and invasion.
Collapse
Affiliation(s)
- Xiang Xing
- School of Ocean, Shandong University, Weihai
| | - Jia-Hui Ma
- School of Ocean, Shandong University, Weihai
| | - Yao Fu
- School of Ocean, Shandong University, Weihai
| | - Hang Zhao
- School of Ocean, Shandong University, Weihai
| | | | - Zhuo Han
- School of Ocean, Shandong University, Weihai
| | - Fu-Juan Jia
- School of Ocean, Shandong University, Weihai
| | - Xia Li
- School of Ocean, Shandong University, Weihai
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
33
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
34
|
Bouchemela H, Madi F, Nouar L. DFT investigation of host–guest interactions between α-Terpineol and β-cyclodextrin. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00940-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Gouveia DN, Guimarães AG, Santos WBDR, Quintans-Júnior LJ. Natural products as a perspective for cancer pain management: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152766. [PMID: 31005719 DOI: 10.1016/j.phymed.2018.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer is the leading cause of death in the world and one of the main symptoms affecting these individuals is chronic pain, which must be evaluated and treated in its various components. Several drugs are currently used, but beyond the high cost, they have harmful side effects to patients or are transitorily effective. Ergo, there is a need to look for new options for cancer pain relief. Natural products (NPs) present themselves as strong candidates for the development of new drugs for the treatment of chronic pain, such as cancer pain. PURPOSE This systematic review aimed to summarize current knowledge about the analgesic profile of NPs in cancer pain. METHODS The search included PubMed, Scopus and Web of Science (from inception to June 2018) sought to summarize the articles studying new proposals with NPs for the management of oncological pain. Two independent reviewers extracted data on study characteristics, methods and outcomes. RESULTS After an extensive survey, 21 articles were selected, which described the analgesic potential of 15 natural compounds to relieve cancer pain. After analyzing the data, it can be suggested that these NPs, which have targets in central and peripheral mechanisms, are interesting candidates for the treatment of cancer pain for addressing different pharmacological mechanisms (even innovative), but ensuring the safety of these compounds is still a challenge. Likewise, the cannabinoids compounds leave the front as the most promising compounds for direct applicability due to the clinical studies that have already been developed and the background already established about these effects on chronic pain. CONCLUSION Regarding these findings, it can be concluded that the variability of possible biological sites of action is strategic for new perspectives in the development of therapeutic proposals different from those available in the current market.
Collapse
Affiliation(s)
- Daniele Nascimento Gouveia
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| | - Adriana Gibara Guimarães
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Av. Governador Marcelo Déda, 13, Lagarto, Sergipe, Brazil.
| | - Wagner Barbosa da Rocha Santos
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| | - Lucindo José Quintans-Júnior
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| |
Collapse
|
36
|
Trindade GG, Thrivikraman G, Menezes PP, França CM, Lima BS, Carvalho YM, Souza EP, Duarte MC, Shanmugam S, Quintans-Júnior LJ, Bezerra DP, Bertassoni LE, Araújo AA. Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food Chem Toxicol 2019; 125:198-209. [DOI: 10.1016/j.fct.2019.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/02/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023]
|
37
|
Siqueira-Lima PS, Passos FR, Lucchese AM, Menezes IR, Coutinho HD, Lima AA, Zengin G, Quintans JS, Quintans-Júnior LJ. Central nervous system and analgesic profiles of Lippia genus. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Quintans JSS, Shanmugam S, Heimfarth L, Araújo AAS, Almeida JRGDS, Picot L, Quintans-Júnior LJ. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2018; 123:233-257. [PMID: 30389585 DOI: 10.1016/j.fct.2018.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory response can be driven by cytokine production and is a pivotal target in the management of inflammatory diseases. Monoterpenes have shown that promising profile as agents which reduce the inflammatory process and also modulate the key chemical mediators of inflammation, such as pro and anti-inflammatory cytokines. The main interest focused on monoterpenes were to develop the analgesic and anti-inflammatory drugs. In this review, we summarized current knowledge on monoterpenes that produce anti-inflammatory effects by modulating the release of cytokines, as well as suggesting that which monoterpenoid molecules may be most effective in the treatment of inflammatory disease. Several different inflammatory markers were evaluated as a target of monoterpenes. The proinflammatory and anti-inflammatory cytokines were found TNF-α, IL-1β, IL-2, IL-5, IL-4, IL-6, IL-8, IL-10, IL-12 IL-13, IL-17A, IFNγ, TGF-β1 and IFN-γ. Our review found evidence that NF-κB and MAPK signaling are important pathways for the anti-inflammatory action of monoterpenes. We found 24 monoterpenes that modulate the production of cytokines, which appears to be the major pharmacological mechanism these compounds possess in relation to the attenuation of inflammatory response. Despite the compelling evidence supporting the anti-inflammatory effect of monoterpenes, further studies are necessary to fully explore their potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Saravanan Shanmugam
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Jackson R G da S Almeida
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
39
|
Nuutinen T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 2018; 157:198-228. [PMID: 30096653 DOI: 10.1016/j.ejmech.2018.07.076] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes - both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence. Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail. The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes' medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others. Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.
Collapse
Affiliation(s)
- Tarmo Nuutinen
- Department of Environmental and Biological Sciences, Univerisity of Eastern Finland (UEF), Finland; Department of Physics and Mathematics, UEF, Finland.
| |
Collapse
|
40
|
α-Terpineol reduces cancer pain via modulation of oxidative stress and inhibition of iNOS. Biomed Pharmacother 2018; 105:652-661. [PMID: 29902764 DOI: 10.1016/j.biopha.2018.06.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022] Open
Abstract
α-Terpineol (TP) is present in a wide range of essential oils of the genus Eucalyptus, with recognized potential for a range of biological effects, such as analgesic. Hence, our study aimed to investigate the effect of TP on cancer pain induced by sarcoma 180 in Swiss mice. Our results showed that TP reduced significantly mechanical hyperalgesia and spontaneous and palpation-induced nociception, improved paw use without reducing tumor growth and grip strength. Importantly, no evident biochemical and hematological toxicity was oberved. Furthermore, TP increased the tissue antioxidant capacity due to ferric-reducing antioxidant power (FRAP) and glutathione (GSH). TP also reduced inducible nitric oxide synthase (iNOS) immunocontent in the tumors. Molecular docking estimated that TP binds within the same range of iNOS regions (other iNOS inhibitors), such as N-Nitroarginine methyl ester (L-NAME). These data provide strong evidence that TP may be an interesting candidate for the development of new safe analgesic drugs that are effective for cancer pain control.
Collapse
|
41
|
Pina LTS, Ferro JNS, Rabelo TK, Oliveira MA, Scotti L, Scotti MT, Walker CIB, Barreto EO, Quintans Júnior LJ, Guimarães AG. Alcoholic monoterpenes found in essential oil of aromatic spices reduce allergic inflammation by the modulation of inflammatory cytokines. Nat Prod Res 2018; 33:1773-1777. [PMID: 29394874 DOI: 10.1080/14786419.2018.1434634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Allergic inflammation is a response of the body against pathogens by cytokine release and leucocyte recruitment. Recently, there was an increase in morbimortality associated with allergic inflammation, especially asthma. The treatment has many adverse effects, requiring the search for new therapies. Monoterpenes are natural products with anti-inflammatory activity demonstrated in several studies and can be an option to inflammation management. Thus, we investigated the effects of citronellol, α-terpineol and carvacrol on allergic inflammation. The model of asthma was established by OVA induction in male Swiss mice. The monoterpenes were administered (25, 50 or 100 mg/kg, i.p.) 1 h before induction. After 24hs, the animals were sacrificed to leucocytes and TNF-α quantification. Monoterpenes significantly decrease leucocyte migration and TNF-α levels, possibly by modulation of COX, PGE2 and H1 receptor, as demonstrated by molecular docking. These findings indicate that alcoholic monoterpenes can be an alternative for treatment of allergic inflammation and asthma.
Collapse
Affiliation(s)
- Lícia T S Pina
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , Sergipe , Brazil
| | - Jamylle N S Ferro
- b Multidisciplinary Research Center , Federal University of Alagoas , Maceió , Brazil
| | - Thallita K Rabelo
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , Sergipe , Brazil
| | - Marlange A Oliveira
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , Sergipe , Brazil
| | | | | | | | - Emiliano O Barreto
- b Multidisciplinary Research Center , Federal University of Alagoas , Maceió , Brazil
| | - Lucindo J Quintans Júnior
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , Sergipe , Brazil
| | - Adriana G Guimarães
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , Sergipe , Brazil.,e Department of Health Education , Federal University of Sergipe , Lagarto , Brazil
| |
Collapse
|
42
|
Safaripour S, Nemati Y, Parvardeh S, Ghafghazi S, Fouladzadeh A, Moghimi M. Role of l-arginine/SNAP/NO/cGMP/K ATP channel signalling pathway in antinociceptive effect of α-terpineol in mice. ACTA ACUST UNITED AC 2018; 70:507-515. [PMID: 29380385 DOI: 10.1111/jphp.12864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/22/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVES The main purpose of this study was to assess the role of l-arginine/SNAP/NO/cGMP/KATP channel pathway in analgesic effects of α-terpineol in mice. METHODS Male NMRI mice were pretreated intraperitoneally with NO precursor (l-arginine, 100 mg/kg), NO synthase inhibitor (l-NAME, 30 mg/kg), NO donor (SNAP, 1 mg/kg), guanylyl cyclase inhibitor (methylene blue, 20 mg/kg), PDE inhibitor (sildenafil, 0.5 mg/kg), KATP channel blocker (glibenclamide, 10 mg/kg) and naloxone (2 mg/kg) 20 min before the administration of α-terpineol. The formalin test was performed 20 min after the administration of α-terpineol, and nociceptive responses of mice were recorded during 30 min. KEY FINDINGS A significant and dose-dependent antinociception was produced by α-terpineol (40 and 80 mg/kg) in both the phases of formalin test. The antinociceptive effect of α-terpineol was significantly potentiated by l-arginine in the second phase while significantly antagonized by l-NAME in both phases of formalin test. Also, SNAP and sildenafil non-significantly enhanced-while methylene blue significantly diminished-the antinociceptive effect of α-terpineol in both phases of formalin test. Glibenclamide significantly reversed the α-terpineol-induced antinociception, indicating the involvement of KATP channels in antinociceptive effect of α-terpineol. CONCLUSIONS These results indicate that the antinociceptive effect of α-terpineol is mediated through l-arginine/SNAP/NO/cGMP/KATP channel pathway.
Collapse
Affiliation(s)
- Sara Safaripour
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nemati
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Fouladzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Moghimi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Thermal Analyses of Cyclodextrin Complexes. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-76159-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Silva JC, de Moraes Alcantara LF, Dias Soares JM, e Silva MG, de Lavor ÉM, Andrade VM, dos Passos Menezes P, de Souza Araújo AA, Leite LHI, de Menezes IRA, Scotti L, Scotti MT, Oliveira RC, Quintans JS, Silva Almeida JRG, Quintans-Júnior LJ. Docking, characterization and investigation of β-cyclodextrin complexed with farnesol, an acyclic sesquiterpene alcohol, produces orofacial antinociceptive profile in experimental protocols. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Rodrigues LB, Martins AOBPB, Ribeiro-Filho J, Cesário FRAS, e Castro FF, de Albuquerque TR, Fernandes MNM, da Silva BAF, Quintans Júnior LJ, Araújo AADS, Menezes PDP, Nunes PS, Matos IG, Coutinho HDM, Goncalves Wanderley A, de Menezes IRA. Anti-inflammatory activity of the essential oil obtained from Ocimum basilicum complexed with β-cyclodextrin (β-CD) in mice. Food Chem Toxicol 2017; 109:836-846. [DOI: 10.1016/j.fct.2017.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/24/2022]
|
46
|
Quintans JS, Pereira EW, Carvalho YM, Menezes PP, Serafini MR, Batista MV, Moreira CD, Lima ÁA, Branco A, Almeida JR, Gelain DP, Zengin G, Araújo AA, Quintans-Júnior LJ. Host–guest inclusion complexation of β-cyclodextrin and hecogenin acetate to enhance anti-hyperalgesic effect in an animal model of musculoskeletal pain. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Salakhutdinov NF, Volcho KP, Yarovaya OI. Monoterpenes as a renewable source of biologically active compounds. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0109] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractMonoterpenes and their derivatives play an important role in the creation of new biologically active compounds including drugs. The review focuses on the data on various types of biological activity exhibited by monoterpenes and their derivatives, including analgesic, anti-inflammatory, anticonvulsant, antidepressant, anti-Alzheimer, anti-Parkinsonian, antiviral, and antibacterial (anti-tuberculosis) effects. Searching for novel potential drugs among monoterpene derivatives shows great promise for treating various pathologies. Special attention is paid to the effect of absolute configuration of monoterpenes and monoterpenoids on their activity.
Collapse
Affiliation(s)
- Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Olga I. Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| |
Collapse
|
48
|
Araújo-Filho HG, Pereira EWM, Rezende MM, Menezes PP, Araújo AAS, Barreto RSS, Martins AOBPB, Albuquerque TR, Silva BAF, Alcantara IS, Coutinho HDM, Menezes IRA, Quintans-Júnior LJ, Quintans JSS. D-limonene exhibits superior antihyperalgesic effects in a β-cyclodextrin-complexed form in chronic musculoskeletal pain reducing Fos protein expression on spinal cord in mice. Neuroscience 2017; 358:158-169. [PMID: 28673718 DOI: 10.1016/j.neuroscience.2017.06.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Chronic musculoskeletal pain is one of the main symptoms found in Fibromyalgia with unclear etiology and limited pharmacological treatment. The aim of this study was to complex LIM in β-cyclodextrin (LIM-βCD) and then evaluate its antihyperalgesic effect in an animal model of chronic musculoskeletal pain. Differential scanning calorimetry and scanning electron microscopy was used for the characterization of the inclusion complex. Male Swiss mice were used for experimental procedures where mechanical hyperalgesia, thermal hyperalgesia, muscular strength, Fos immunofluorescence was studied after induction of hyperalgesia. Mechanism of action was also investigated through tail flick test and capsaicin-induced nociception. Endothermic events and morphological changes showed that the slurry complex method was the best method for the complexation. After induction of hyperalgesia, the oral administration of LIM-βCD (50mg/kg) significantly increased the paw withdrawal threshold compared to uncomplexed limonene. Fos immunofluorescence showed that both compounds significantly decreased the number of Fos-positive cells in the dorsal horn. In nociceptive tests, FLU was able to reverse the antinociceptive effect of LIM-βCD. After intraplantar administration of capsaicin, LIM was able to significantly decrease time to lick. LIM-βCD has antihyperalgesic action superior to its uncomplexed form, with possible action in the dorsal horn of the spinal cord. These results suggest the possible applicability of LIM, uncomplexed or complexed with βCD, in conditions such as FM and neuropathic pain, for which there are currently only limited pharmacological options.
Collapse
Affiliation(s)
- Heitor G Araújo-Filho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Erik W M Pereira
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Marília M Rezende
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Rosana S S Barreto
- Department of Health Education, Federal University of Sergipe, Largato, SE, Brazil
| | | | - Thaís R Albuquerque
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | - Bruno A F Silva
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | - Isabel S Alcantara
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | | | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
49
|
Siqueira-Lima PS, Brito RG, Araújo-Filho HG, Santos PL, Lucchesi A, Araújo AAS, Menezes PP, Scotti L, Scotti MT, Menezes IRA, Coutinho HDM, Zengin G, Aktumsek A, Antoniolli AR, Quintans-Júnior LJ, Quintans JSS. Anti-hyperalgesic effect of Lippia grata leaf essential oil complexed with β-cyclodextrin in a chronic musculoskeletal pain animal model: Complemented with a molecular docking and antioxidant screening. Biomed Pharmacother 2017; 91:739-747. [PMID: 28499245 DOI: 10.1016/j.biopha.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Due to its unclear pathophysiology, the pharmacological treatment of fibromyalgia is a challenge for researchers. Studies using medicinal plants, such as those from the genus Lippia, complexed with cyclodextrins (CDs) have shown innovative results. OBJECTIVE The present research intended to evaluate the effect of an inclusion complex containing β-cyclodextrin (βCD) inclusion complex with Lippia grata (LG) essential oil in a chronic musculoskeletal pain model, its central activity and its possible interaction with neurotransmitters involved in pain. METHODS After acid saline-induced chronic muscle pain, male mice were evaluated for primary and secondary hyperalgesia and muscle strength. Moreover, an antagonist assay was performed to assess the possible involvement of the opioidergic, serotonergic and noradrenergic pathways. In addition, Fos protein in the spinal cord was assessed, and a docking study and antioxidant assays were performed. RESULTS The treatment with LG-βCD, especially in the dose of 24mg/kg, was able to significantly decrease (p<0.05) the paw withdrawal and muscle threshold. Furthermore, LG-βCD was shown to affect the opioidergic and serotonergic pathways. There were no significant changes in muscle strength. Fos protein immunofluorescence showed a significant decrease in expression in the dorsal horn of the spinal cord. The main compounds of LG showed through the docking study interaction energies with the alpha-adrenergic and μOpioid receptors. In all antioxidant assays, LG exhibited stronger antioxidant activities than LG-βCD. CONCLUSION This study suggested that LG-βCD could be considered as a valuable source for designing new drugs in the treatment of chronic pain, especially musculoskeletal pain.
Collapse
Affiliation(s)
- Pollyana S Siqueira-Lima
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program of Biotechnology (PPGBiotec), The State University of Feira de Santana, Feira de Santana, BA, Brazil
| | - Renan G Brito
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Heitor G Araújo-Filho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Priscila L Santos
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Angélica Lucchesi
- Graduate Program of Biotechnology (PPGBiotec), The State University of Feira de Santana, Feira de Santana, BA, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy (DFA), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Department of Pharmacy (DFA), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Luciana Scotti
- Graduate Program of Natural Product and Bioactive Synthetics, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcus T Scotti
- Graduate Program of Natural Product and Bioactive Synthetics, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42250, Konya, Turkey
| | - Abdurrahman Aktumsek
- Department of Biology, Science Faculty, Selcuk University, Campus, 42250, Konya, Turkey
| | - Angelo R Antoniolli
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
50
|
Grecco SS, Lorenzi H, Tempone AG, Lago JHG. Update: biological and chemical aspects of Nectandra genus (Lauraceae). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|