1
|
Paz-Trejo C, Flores-Márquez AR, Gómez-Arroyo S. Nanotechnology in agriculture: a review of genotoxic studies of nanopesticides in animal cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66473-66485. [PMID: 37115444 PMCID: PMC10203029 DOI: 10.1007/s11356-023-26848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
Agriculture has been and still is one of the most influential primary operations in economic history worldwide. Its social, cultural, and political impact allows the progression and survival of humanity. Sustaining the supply of primary resources is crucial for the future. Therefore, the development of new technologies applied to agrochemicals is growing to obtain better food quality faster. Recently, nanotechnology has gained strength in this field in the last decade, mainly because of the presumed benefits that will carry with it compared with the current commercial presentations, like the decrease of risk in non-target organisms. The harm of pesticides is commonly associated with unwanted effects on human health, some with long-term genotoxic effects. Therefore, it would be relevant to set the existence of a risk or a benefit of the nanopesticides from a genotoxic point of view, comparing against those without this technology. Although some studies are concerned with its genotoxicity in live aquatic organisms, few focus on human in vitro models. Several studies conclude that some of them can induce oxidative stress, leading to DNA damage or cell death. However, there is still much to investigate to establish an accurate and complete assessment. In this review, we aim to give an overview of the genotoxic effect caused by nanopesticides in animal cells and a guide to the evolution of this topic, offering a base and critical review to facilitate future research.
Collapse
Affiliation(s)
- Cynthia Paz-Trejo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México.
| |
Collapse
|
2
|
Paz-Trejo C, Jiménez-García LF, Arenas-Huertero F, Gómez-Arroyo S. Comparison of the genotoxicity of two commercial pesticides by their micro and nano size capsules. Toxicol Ind Health 2022; 38:675-686. [PMID: 36045123 DOI: 10.1177/07482337221122482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of nanotechnology in the agrochemical industry has become increasingly popular over the past decade, raising the question of whether these products may represent a risk or benefit compared to their conventional presentations. In this study, we aimed to evaluate the different genotoxic effects of the Complete encapsulated presentation (CEP), the micro encapsulated fraction (MEF), and the nano encapsulated fraction (NEF) of two pesticides (Karate® and Ampligo®) in lymphocytes from human peripheral blood. To test the different fractions, the pesticides were separated by centrifugations by the average size of the capsule, then were characterized by the general composition of the capsule by RAMAN and FTIR spectroscopy and the active ingredient of both pesticides by gas chromatography-mass spectrometry. Each fraction was tested separately and analyzed by comet assay through the tail moment and the percentage of DNA in the tail and the cytokinesis-block micronucleus through their frequency of micronucleus, nucleoplasmic bridges, and nuclear buds. The nuclear division index and the Nuclear Division Cytotoxicity Index were also measured. For both pesticides, the CEP increased the genetic damage observed in the tail moment and percentage of DNA in the tail at all concentrations for both pesticides. However, in the micronucleus test, NEF induced more micronuclei than MEF and CEP in all treatments reducing cell proliferation as the concentration decreased for both pesticides. These results suggested that NEF had more genotoxic effects in both pesticides, increasing the damage to the cells.
Collapse
Affiliation(s)
- Cynthia Paz-Trejo
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, 7180Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México
| | - Luis Felipe Jiménez-García
- Laboratorio de Microscopía Electrónica, Edificio Tlahuizcalpan, Facultad de Ciencias, 98804Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, 61670Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, 7180Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México
| |
Collapse
|
3
|
Demir E, Kansız S, Doğan M, Topel Ö, Akkoyunlu G, Kandur MY, Turna Demir F. Hazard Assessment of the Effects of Acute and Chronic Exposure to Permethrin, Copper Hydroxide, Acephate, and Validamycin Nanopesticides on the Physiology of Drosophila: Novel Insights into the Cellular Internalization and Biological Effects. Int J Mol Sci 2022; 23:ijms23169121. [PMID: 36012388 PMCID: PMC9408976 DOI: 10.3390/ijms23169121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022] Open
Abstract
New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila—a non-target in vivo eukaryotic model organism—in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies.
Collapse
Affiliation(s)
- Eşref Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
- Correspondence: ; Tel.: +90-242-245-0088; Fax: +90-242-245-0100
| | - Seyithan Kansız
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
- Faculty of Science, Department of Chemistry, Ankara University, Ankara 07100, Turkey
| | - Mehmet Doğan
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kırklareli University, Kırklareli 39100, Turkey
| | - Önder Topel
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
| | - Gökhan Akkoyunlu
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
| | - Muhammed Yusuf Kandur
- Industrial Biotechnology and Systems Biology Research Group, Faculty of Engineering, Department of Bioengineering, Marmara University, İstanbul 34854, Turkey
| | - Fatma Turna Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
| |
Collapse
|
4
|
Okeke ES, Ezeorba TPC, Mao G, Chen Y, Feng W, Wu X. Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118722. [PMID: 34952184 DOI: 10.1016/j.envpol.2021.118722] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanotechnology is a rapidly developing technology that will have a significant impact on product development in the next few years. The technology is already being employed in cutting-edge cosmetic and healthcare products. Nanotechnology and nanoparticles have a strong potential for product and process innovation in the food industrial sector. This is already being demonstrated by food product availability made using nanotechnology. Nanotechnologies will have an impact on food security, packaging materials, delivery systems, bioavailability, and new disease detection materials in the food production chain, contributing to the UN Millennium Development Goals targets. Food products using nanoparticles are already gaining traction into the market, with an emphasis on online sales. This means that pre- and post-marketing regulatory frameworks and risk assessments must meet certain standards. There are potential advantages of nanotechnologies for agriculture, consumers and the food industry at large as they are with other new and growing technologies. However, little is understood about the safety implications of applying nanotechnologies to agriculture and incorporating nanoparticles into food. As a result, policymakers and scientists must move quickly, as regulatory systems appear to require change, and scientists should contribute to these adaptations. Their combined efforts should make it easier to reduce health and environmental impacts while also promoting the economic growth of nanotechnologies in the food supply chain. This review highlighted the benefits of a number of nano enabled agrochemicals/materials, the potential health impacts as well as the risk assessment and risk management for nanoparticles in the agriculture and food production chain.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China; Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria; Natural Science Unit, SGS, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| |
Collapse
|
5
|
Martakov IS, Shevchenko OG, Torlopov MA, Sitnikov PA. Colloidally Stable Conjugates of Phenolic Acids with γ-AlOOH Nanoparticles as Efficient and Biocompatible Nanoantioxidants. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
López-Aceves TG, Coballase-Urrutia E, Estrada-Rojo F, Vanoye-Carlo A, Carmona-Aparicio L, Hernández ME, Pedraza-Chaverri J, Navarro L, Aparicio-Trejo OE, Pérez-Torres A, Medina-Campos ON, Martínez-Fong D, Sánchez-Valle V, Cárdenas-Rodríguez N, Granados-Rojas L, Pulido-Camarillo E, Rodríguez-Mata V, León-Sicairos CDR. Exposure to Sub-Lethal Doses of Permethrin Is Associated with Neurotoxicity: Changes in Bioenergetics, Redox Markers, Neuroinflammation and Morphology. TOXICS 2021; 9:toxics9120337. [PMID: 34941771 PMCID: PMC8704605 DOI: 10.3390/toxics9120337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/15/2023]
Abstract
Permethrin (PERM) is a member of the class I family of synthetic pyrethroids. Human use has shown that it affects different systems, with wide health dysfunctions. Our aim was to determine bioenergetics, neuroinflammation and morphology changes, as redox markers after subacute exposure to PERM in rats. We used MDA determination, protein carbonyl assay, mitochondrial O2 consumption, expression of pro-inflammatory cytokines and a deep histopathological analysis of the hippocampus. PERM (150 mg/kg and 300 mg/kg body weight/day, o.v.) increased lipoperoxidation and carbonylated proteins in a dose-dependent manner in the brain regions. The activities of antioxidant enzymes glutathione peroxidase, reductase, S-transferase, catalase, and superoxide dismutase showed an increase in all the different brain areas, with dose-dependent effects in the cerebellum. Cytokine profiles (IL-1β, IL-6 and TNF-α) increased in a dose-dependent manner in different brain tissues. Exposure to 150 mg/kg of permethrin induced degenerated and/or dead neurons in the rat hippocampus and induced mitochondrial uncoupling and reduction of oxidative phosphorylation and significantly decreased the respiratory parameters state 3-associated respiration in complex I and II. PERM exposure at low doses induces reactive oxygen species production and imbalance in the enzymatic antioxidant system, increases gene expression of pro-inflammatory interleukins, and could lead to cell damage mediated by mitochondrial functional impairment.
Collapse
Affiliation(s)
- Teresita Guadalupe López-Aceves
- Regional Graduate Program in Biotechnology, Faculty of Biological Chemical Sciences, Autonomous University of Sinaloa, Culiacán 80000, Mexico; (T.G.L.-A.); (C.d.R.L.-S.)
- Laboratory of Neuroscience, National Institute of Pediatrics, Mexico City 04530, Mexico; (A.V.-C.); (L.C.-A.); (N.C.-R.); (L.G.-R.)
| | - Elvia Coballase-Urrutia
- Laboratory of Neuroscience, National Institute of Pediatrics, Mexico City 04530, Mexico; (A.V.-C.); (L.C.-A.); (N.C.-R.); (L.G.-R.)
- Correspondence:
| | - Francisco Estrada-Rojo
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.E.-R.); (L.N.)
| | - América Vanoye-Carlo
- Laboratory of Neuroscience, National Institute of Pediatrics, Mexico City 04530, Mexico; (A.V.-C.); (L.C.-A.); (N.C.-R.); (L.G.-R.)
| | - Liliana Carmona-Aparicio
- Laboratory of Neuroscience, National Institute of Pediatrics, Mexico City 04530, Mexico; (A.V.-C.); (L.C.-A.); (N.C.-R.); (L.G.-R.)
| | - María Eugenia Hernández
- Subdirection of Clinical Research, National Institute of Psychiatry, Mexico City 14370, Mexico;
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04150, Mexico; (J.P.-C.); (O.E.A.-T.); (O.N.M.-C.)
| | - Luz Navarro
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (F.E.-R.); (L.N.)
| | - Omar E. Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04150, Mexico; (J.P.-C.); (O.E.A.-T.); (O.N.M.-C.)
| | - Armando Pérez-Torres
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.P.-T.); (E.P.-C.); (V.R.-M.)
| | - Omar N. Medina-Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04150, Mexico; (J.P.-C.); (O.E.A.-T.); (O.N.M.-C.)
| | - Daniel Martínez-Fong
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| | - Vicente Sánchez-Valle
- Neuroplasticity and Neurodegeneration Laboratory, Department of Pharmacology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| | - Noemi Cárdenas-Rodríguez
- Laboratory of Neuroscience, National Institute of Pediatrics, Mexico City 04530, Mexico; (A.V.-C.); (L.C.-A.); (N.C.-R.); (L.G.-R.)
| | - Leticia Granados-Rojas
- Laboratory of Neuroscience, National Institute of Pediatrics, Mexico City 04530, Mexico; (A.V.-C.); (L.C.-A.); (N.C.-R.); (L.G.-R.)
| | - Evelyn Pulido-Camarillo
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.P.-T.); (E.P.-C.); (V.R.-M.)
| | - Verónica Rodríguez-Mata
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.P.-T.); (E.P.-C.); (V.R.-M.)
| | - Claudia del R. León-Sicairos
- Regional Graduate Program in Biotechnology, Faculty of Biological Chemical Sciences, Autonomous University of Sinaloa, Culiacán 80000, Mexico; (T.G.L.-A.); (C.d.R.L.-S.)
| |
Collapse
|
7
|
Kara-Ertekin S, Yazar S, Erkan M. In vitro toxicological assessment of flumethrin's effects on MCF-7 breast cancer cells. Hum Exp Toxicol 2021; 40:2165-2177. [PMID: 34142587 DOI: 10.1177/09603271211022789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pyrethroid pesticides are frequently used for household insect control of insects and in agriculture and livestock. Flumethrin is a pyrethroid that is used against ectoparasites in many animals. The goal of this study was to evaluate the cytotoxic, apoptotic, genotoxic, and estrogenic effects of flumethrin on the mammalian breast cancer cell line (MCF-7). Compared with control groups, a dose-dependent decrease was observed in cell viability at concentrations of 100 µM and higher. The cytotoxic and apoptotic effects detected by LDH assay and AO/EtBr staining increased significantly at a concentration of 1000 µM. The expression of BCL2, which is an anti-apoptotic gene, significantly decreased, whereas BAX, TP53, and P21 expression significantly increased. The results of a comet assay indicated that flumethrin significantly changed tail length, tail % DNA, tail moment, and Olive tail moment in concentrations above 1 and 10 µM. In addition, a 0.1 µM concentration of flumethrin affected ERα receptor mediated cell proliferation and increased transcription of estrogen-responsive pS2 (TFF1) and progesterone receptor (PGR) genes. As a result, flumethrin-induced apoptosis and cytotoxicity at a high concentration, while induced genotoxicity even at lower concentrations. Flumethrin is an endocrine disrupting insecticide with estrogenic effects at very low concentrations.
Collapse
Affiliation(s)
- S Kara-Ertekin
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul Yeni Yuzyil University, Istanbul, Turkey.,Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - S Yazar
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - M Erkan
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Zhu Q, Yang Y, Zhong Y, Lao Z, O'Neill P, Hong D, Zhang K, Zhao S. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). CHEMOSPHERE 2020; 254:126779. [PMID: 32957265 DOI: 10.1016/j.chemosphere.2020.126779] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Pyrethroids are a class of highly effective, broad-spectrum, less toxic, biodegradable synthetic pesticides. However, despite the extremely wide application of pyrethroids, there are many problems, such as insecticide resistance, lethal/sub-lethal toxicity to mammals, aquatic organisms or other beneficial organisms. The objectives of this review were to cover the main structures, synthesis, steroisomers, mechanisms of action, anti-mosquito activities, resistance, photodegradation and toxicities of pyrethroids. That was to provide a reference for synthesizing or screening novel pyrethroids with low insecticide resistance and low toxicity to beneficial organisms, evaluating the environmental pollution of pyrethroids and its metabolites. Besides, pyrethroids are mainly used for the control of vectors such as insects, and the non-target organisms are mammals, aquatic organisms etc. While maintaining the insecticidal activity is important, its toxic effects on non-target organisms should be also considered. Pyrethroid resistance is present not only in insect mosquitoes but also in environmental microorganisms, which results in anti-pyrethroids resistance (APR) strains. Besides, photodegradation product dibenzofurans is harmful to mammals and environment. Additionally, pyrethroid metabolites may have higher hormonal interference than the parents. Particularly, delivery of pyrethroids in nanoform can reduce the discharge of more toxic substances (such as organic solvents, etc.) to the environment.
Collapse
Affiliation(s)
- Qiuyan Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Yang Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Yingying Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Zhiting Lao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Paul O'Neill
- Department of Chemistry, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, United Kingdom.
| | - David Hong
- Department of Chemistry, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, United Kingdom.
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China; Faculty of Biotechnology and Health, Wuyi University, Jiangmen, 529020, People's Republic of China.
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
9
|
Synthesis and enhanced antioxidant and membrane-protective activity of curcumin@AlOOH nanoparticles. J Inorg Biochem 2020; 210:111168. [DOI: 10.1016/j.jinorgbio.2020.111168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 01/15/2023]
|
10
|
Navarrete-Meneses MDP, Pérez-Vera P. Pyrethroid pesticide exposure and hematological cancer: epidemiological, biological and molecular evidence. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:197-210. [PMID: 30903760 DOI: 10.1515/reveh-2018-0070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Pyrethroid insecticides are commonly used worldwide. The chronic effects of these compounds are of concern given that epidemiological studies have suggested an association with hematological cancer, particularly in children. However, the biological evidence at molecular and cellular levels is limited. A review on the molecular and cellular effects of pyrethroids is helpful to guide the study of the biological plausibility of the association of pyrethroids with hematological cancer. We reviewed studies suggesting that pyrethroids are genotoxic, induce genetic rearrangements, alter gene expression and modify DNA. All of these biological modifications could potentially contribute to the carcinogenic process in hematopoietic cells.
Collapse
Affiliation(s)
- María Del Pilar Navarrete-Meneses
- Cancer Genetics Laboratory, Human Genetics Department, National Pediatrics Institute, Mexico City, Mexico
- Graduate Program in Biological Sciences, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Patricia Pérez-Vera
- Cancer Genetics Laboratory, Human Genetics Department, National Pediatrics Institute, Mexico City, Mexico
| |
Collapse
|
11
|
Shearer JJ, Beane Freeman LE, Liu D, Andreotti G, Hamilton J, Happel J, Lynch CF, Alavanja MC, Hofmann JN. Longitudinal investigation of haematological alterations among permethrin-exposed pesticide applicators in the Biomarkers of Exposure and Effect in Agriculture study. Occup Environ Med 2019; 76:467-470. [PMID: 30962255 DOI: 10.1136/oemed-2018-105559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Permethrin use has been associated with an increased risk of multiple myeloma (MM) among pesticide applicators. However, the biological plausibility and mechanisms underlying this association are not fully understood. The aim of this study was to assess whether exposure to permethrin is related to haematological alterations among occupationally exposed pesticide applicators. METHODS We conducted a longitudinal study among 33 pesticide applicators in the Biomarkers of Exposure and Effect in Agriculture study comparing haematological parameters in the offseason with the day after permethrin exposure and, for 27 participants, approximately 3 weeks postexposure. Complete blood counts with white blood cell differential and lymphocyte subsets were measured at each visit. Multivariate linear mixed effects models were used to assess the relationship between natural log-transformed haematological parameters and exposure to permethrin. RESULTS The adjusted geometric mean immature granulocyte count was elevated among pesticide applicators following permethrin exposure compared with their offseason levels (37% increase, 95% CI 6% to 76%). Modest but statistically significant (p<0.05) alterations in red blood cell (RBC) parameters (eg, decreased RBC count and haemoglobin and increased mean corpuscular volume and RBC distribution width-SD) were also observed the day after permethrin use compared with offseason levels; decreases in RBC count and haemoglobin and increases in RBC distribution width-SD persisted approximately 3 weeks after permethrin use. CONCLUSIONS Altered haematological parameters could be indicative of disrupted haematopoiesis, providing insights into the biological plausibility of the observed association between permethrin use and MM risk among pesticide applicators.
Collapse
Affiliation(s)
- Joseph J Shearer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Danping Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jennifer Hamilton
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA
| | - Julie Happel
- Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
| | - Charles F Lynch
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, USA.,Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
| | - Michael C Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Martínez-Rodríguez NL, Tavárez S, González-Sánchez ZI. In vitro toxicity assessment of zinc and nickel ferrite nanoparticles in human erythrocytes and peripheral blood mononuclear cell. Toxicol In Vitro 2019; 57:54-61. [PMID: 30771471 DOI: 10.1016/j.tiv.2019.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Ferrite nanoparticles (NPs) have gained attention in biomedicine due to their many potential applications, such as targeted drug delivery, their use as contrast agents for magnetic resonance imaging and oncological treatments. The information about the risk effects of ferrite NPs in human blood cells is, however, scarce. To assess their potential toxicity, in vitro studies were carried out with magnetite and zinc, nickel and nickel‑zinc ferrites NPs at different concentrations (50, 100 and 200 μg·ml-1). The toxicity of the ferrite NPs was evaluated in humans by determining red blood hemolysis, by measuring the content of total proteins, and by assaying catalase and glutathione-S-transferase activities. Our results show that nickel‑zinc ferrite lead to hemolysis, and that magnetite, zinc and nickel‑zinc ferrites increase glutathione-S-transferase activity. No significant changes in human peripheral blood mononuclear cells viability were observed after the treatment with the four different ferrite NPs in vitro.
Collapse
Affiliation(s)
- Nelson Leonel Martínez-Rodríguez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic
| | - Sara Tavárez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic
| | - Zaira Isabel González-Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic.
| |
Collapse
|
13
|
Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J Control Release 2019; 294:131-153. [PMID: 30552953 DOI: 10.1016/j.jconrel.2018.12.012] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
14
|
Viana EOR, Cruz MDFSJ, da Silva MJ, Pereira GM, da Silva BP, Tinoco LW, Parente JP. Structural characterization of a complex triterpenoid saponin from Albizia lebbeck and investigation of its permeability property and supramolecular interactions with membrane constituents. Carbohydr Res 2019; 471:105-114. [PMID: 30530094 DOI: 10.1016/j.carres.2018.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 11/30/2022]
Abstract
As part of the ongoing efforts in discovering potentially bioactive natural products from medicinal plants, the present study was conducted to isolate a new complex triterpenoid saponin from the barks of Albizia lebbeck. It was isolated by using chromatographic methods and its structural elucidation was performed using detailed analyses of 1H and 13C NMR spectra including 2D-NMR (COSY, TOCSY, HSQC and HMBC) spectroscopic techniques, high-resolution electrospray ionization mass spectrometry (HRESIMS) analysis and chemical conversions. Its structure was established as 21-[[(2E,6S)-6-[6-deoxy-4-O-[(2E,6S)-6-hydroxy-2-(hydroxymethyl)-6-methyl-1-oxo-2,7-octadienyl]-[(β-d-glucopyranosyl)oxy]-2-(hydroxymethyl)-6-methyl-1-oxo-2,7-octadienyl]-[(β-d-glucopyranosyl)oxy]-2,6-dimethyl-1-oxo-2,7-octadienyl]oxy]-16-hydroxy-3-[[O-β-d-xylopyranosyl-(1 → 2)-O-α-l-arabinopyranosyl-(1 → 6)-2-(acetylamino)-2-deoxy-β-d-glucopyranosyl]oxy]-(3β,16α,21β)-olean-12-en-28-oic acid O-α-l-arabinofuranosyl-(1 → 4)-O-[β-d-glucopyranosyl-(1 → 3)]-O-6-deoxy-α-l-mannopyranosyl-(1 → 2)-β-d-glucopyranosyl ester (1). Additionally, this study aimed to investigate the permeability property of 1, its activity on membrane integrity and supramolecular interactions with cellular constituents using in vitro experimental models.
Collapse
Affiliation(s)
- Elaine O R Viana
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil
| | - Maria de Fátima S J Cruz
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil
| | - Marília J da Silva
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil
| | - Gabriela M Pereira
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil
| | - Bernadete P da Silva
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil
| | - Luzineide W Tinoco
- Laboratório Multiusuário de Análises por Ressonância Magnética Nuclear, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil
| | - José P Parente
- Laboratório de Química de Plantas Medicinais, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, P.O. Box 68045, CEP 21941-971, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Chrustek A, Hołyńska-Iwan I, Dziembowska I, Bogusiewicz J, Wróblewski M, Cwynar A, Olszewska-Słonina D. Current Research on the Safety of Pyrethroids Used as Insecticides. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E61. [PMID: 30344292 PMCID: PMC6174339 DOI: 10.3390/medicina54040061] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022]
Abstract
Pyrethroids are synthetic derivatives of natural pyrethrins extracted from Chrysanthemum cinerariaefolium. They are 2250 times more toxic to insects than to vertebrates due to insects' smaller size, lower body temperature and more sensitive sodium channels. In particular, three pyrethroid compounds, namely deltamethrin, permethrin, and alpha-cypermethrin, are commonly used as insecticides and are recommended for in-home insect control because they are considered to be relatively non-toxic to humans in all stages of life. However, recent data show that they are not completely harmless to human health as they may enter the body through skin contact, by inhalation and food or water, and absorption level depending on the type of food. Permethrin seems to have an adverse effect on fertility, the immune system, cardiovascular and hepatic metabolism as well as enzymatic activity. Deltamethrin induces inflammation, nephro- and hepatotoxicity and influences the activity of antioxidant enzymes in tissues. Alpha-cypermethrin may impair immunity and act to increase glucose and lipid levels in blood. The aim of the review is to provide comprehensive information on potential hazards associated to human exposure to deltamethrin, permethrin and alpha-cypermethrin. The results of presented studies prove that the insecticides must be used with great caution.
Collapse
Affiliation(s)
- Agnieszka Chrustek
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Inga Dziembowska
- Department of Pathophysiology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-089 Torun, Poland.
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, L. Rydygier Collegium Medicum of Nicolaus Copernicus University, 85-092 Torun, Poland.
| | - Anna Cwynar
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| | - Dorota Olszewska-Słonina
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-094 Torun, Poland.
| |
Collapse
|
16
|
Relationship between LINE-1 methylation pattern and pesticide exposure in urban sprayers. Food Chem Toxicol 2018; 113:125-133. [DOI: 10.1016/j.fct.2018.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
17
|
Tavares M, da Silva MRM, de Oliveira de Siqueira LB, Rodrigues RAS, Bodjolle-d'Almeida L, Dos Santos EP, Ricci-Júnior E. Trends in insect repellent formulations: A review. Int J Pharm 2018; 539:190-209. [PMID: 29410208 DOI: 10.1016/j.ijpharm.2018.01.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/28/2022]
Abstract
The use of natural and synthetic repellents, marketed in different pharmaceutical forms, is growing in the world due to the emerging vector-borne viral diseases as Dengue, Zika, Chikungunya, Yellow Fever and Malaria. The choice of the ideal formulation will depend on a series of factors to be analyzed: type of repellent active (natural or synthetic), pharmaceutical forms (spray, lotion, cream, gel), action time duration (short or long), environment of exposure and the user (adult, pregnant women, children, newborn). The most used repellents are DEET, IR3535 (Ethyl Butylacetylaminopropionate) (EB), Icaridin (Picaridin) and essential oils, each of them presenting advantages and disadvantages. DEET is the oldest and the most powerful repellent available in the market, thus being the reference standard. For this reason, there are many classic formulations available in the market containing the chemical component DEET in spray forms and lotions. However, due to its toxicity, DEET is not recommended for children up to 6 months and pregnant women. DEET has been an option along with other market-shared products as IR3535 and Icaridin (Picaridin), which present less toxicity in their composition. IR3535 is the less toxic and may be prescribed for children over 6 months of age and pregnant women so that they have been the best option because of the lower toxicity levels presented. IR3535 is the one that has the lowest toxicity level among the three options and may be prescribed for children above 6 months of age and pregnant women. Icaridin is as potent as DEET, but less toxic, and has the advantage of having the long-lasting action among the aforementioned repellents. The new formulations have been based on controlled release systems (CRS). The CRSs for repellents comprise polymer micro/nanocapsules, micro/solid lipid nanoparticles, nanoemulsions/microemulsions, liposomes/niosomes, nanostructured hydrogels and cyclodextrins. There are many formulations based on micro and nanocapsules containing DEET and essential oils to increase repellent action time duration and decrease permeation and consequently, systemic toxicity. The development of new formulations for the IR3535 and Icaridin is a research field yet to be explored. The current trend is the use of natural repellent actives such as essential oils, which present low toxicity, do not harm the environment, but present reduced repellent action time due to rapid evaporation after skin application. CRSs have been used as vehicle of natural repellents to improve long-lasting repellent action, reduce skin permeation and systemic effects.
Collapse
Affiliation(s)
- Melanie Tavares
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG), Carlos Chagas Filho Avenue, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil.
| | - Márcio Robert Mattos da Silva
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG), Carlos Chagas Filho Avenue, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | - Luciana Betzler de Oliveira de Siqueira
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG), Carlos Chagas Filho Avenue, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | - Raphaela Aparecida Schuenck Rodrigues
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG), Carlos Chagas Filho Avenue, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | | | - Elisabete Pereira Dos Santos
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG), Carlos Chagas Filho Avenue, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | - Eduardo Ricci-Júnior
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG), Carlos Chagas Filho Avenue, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| |
Collapse
|