1
|
Malheiros J, Amaral C, da Silva LS, Guinsburg R, Covolan L. Neonatal nociceptive stimulation results in pain sensitization, reduction of hippocampal 5-HT 1A receptor, and p-CREB expression in adult female rats. Behav Brain Res 2024; 466:114975. [PMID: 38552745 DOI: 10.1016/j.bbr.2024.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Painful invasive procedures are often performed on newborns admitted to intensive care units (ICU). The acute and long-term effects caused by these stimuli can be investigated in animal models, such as newborn rats. Previous studies have shown that animals subjected to nociceptive stimuli in the neonatal period show sex-specific behavioral changes such as signs of anxiety or depression. Under the same conditions, neonatal stimuli also provoke an increase in the rate of neurogenesis and cell activation in the hippocampal dentate gyrus. So, this study aims to identify the possible roles of central monoamines, receptor expression (5-HT1A), and signaling factors (p-CREB) underlying the long-term effects of neonatal nociceptive stimulation. For this, noxious stimulation was induced by intra-plantar injection of Complete Freund´s adjuvant (CFA) on the postnatal day 1 (P1) or 8 (P8). Control animals were not stimulated. On P75 the behavioral tests were conducted (hotplate and elevated plus maze), followed by sacrifice and molecular studies. Our results showed that neonatal nociceptive stimulation alters pain sensitization specially in females, while stimulation on P1 increases pain threshold, P8-stimulated animals respond with reduced pain threshold (P < 0.001). Hippocampal expression of 5-HT1A receptor and p-CREB were reduced in P8 F group (P < 0.001) in opposition to the increased utilization rate of dopamine and serotonin in this group (P < 0.05). This study shows sex- and age-specific responses of signaling pathways within the hippocampus accompanied by altered behavioral repertoire, at long-term after neonatal painful stimulation.
Collapse
Affiliation(s)
- Jackeline Malheiros
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Cristiane Amaral
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Luiz Severino da Silva
- Departamento de Micro Imuno Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Ruth Guinsburg
- Disciplina de Pediatria Neonatal, Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Luciene Covolan
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil.
| |
Collapse
|
2
|
Xiong Y, Cui MY, Li ZL, Fu YQ, Zheng Y, Yu Y, Zhang C, Huang XY, Chen BH. ULK1 confers neuroprotection by regulating microglial/macrophages activation after ischemic stroke. Int Immunopharmacol 2024; 127:111379. [PMID: 38141409 DOI: 10.1016/j.intimp.2023.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Microglial activation and autophagy play a critical role in the progression of ischemic stroke and contribute to the regulation of neuroinflammation. Unc-51-like kinase 1 (ULK1) is the primary autophagy kinase involved in autophagosome formation. However, the impact of ULK1 on neuroprotection and microglial activation after ischemic stroke remains unclear. In this study, we established a photothrombotic stroke model, and administered SBI-0206965 (SBI), an ULK1 inhibitor, and LYN-1604 hydrochloride (LYN), an ULK1 agonist, to modulate ULK1 activity in vivo. We assessed sensorimotor deficits, neuronal apoptosis, and microglial/macrophage activation to evaluate the neurofunctional outcome. Immunofluorescence results revealed ULK1 was primarily localized in the microglia of the infarct area following ischemia. Upregulating ULK1 through LYN treatment significantly reduced infarct volume, improved motor function, promoted the increase of anti-inflammatory microglia. In conclusion, ULK1 facilitated neuronal repair and promoted the formation of anti-inflammatory microglia pathway after ischemic injury.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mai Yin Cui
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Department of Rehabilitation and Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310051, Zhejiang, China
| | - Zhuo Li Li
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yan Qiong Fu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yu Zheng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yi Yu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xin Yi Huang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
3
|
Wang SJ, Zhao MY, Zhao PC, Zhang W, Rao GW. Research Status, Synthesis and Clinical Application of Antiepileptic Drugs. Curr Med Chem 2024; 31:410-452. [PMID: 36650655 DOI: 10.2174/0929867330666230117160632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023]
Abstract
According to the 2017 ILAE's official definition, epilepsy is a slow brain disease state characterized by recurrent episodes. Due to information released by ILAE in 2017, it can be divided into four types, including focal epilepsy, generalized epilepsy, combined generalized, and focal epilepsy, and unknown epilepsy. Since 1989, 24 new antiepileptic drugs have been approved to treat different types of epilepsy. Besides, there are a variety of antiepileptic medications under clinical monitoring. These novel antiepileptic drugs have plenty of advantages. Over the past 33 years, there have been many antiepileptic drugs on the mearket, but no one has been found that can completely cure epilepsy. In this paper, the mentioned drugs were classified according to their targets, and the essential information, and clinical studies of each drug were described. The structure-activity relationship of different chemical structures was summarized. This paper provides help for the follow-up research on epilepsy drugs.
Collapse
Affiliation(s)
- Si-Jie Wang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Min-Yan Zhao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Peng-Cheng Zhao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
4
|
Bosco F, Guarnieri L, Rania V, Palma E, Citraro R, Corasaniti MT, Leo A, De Sarro G. Antiseizure Medications in Alzheimer's Disease from Preclinical to Clinical Evidence. Int J Mol Sci 2023; 24:12639. [PMID: 37628821 PMCID: PMC10454935 DOI: 10.3390/ijms241612639] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) and epilepsy are common neurological disorders in the elderly. A bi-directional link between these neurological diseases has been reported, with patients with either condition carrying almost a two-fold risk of contracting the other compared to healthy subjects. AD/epilepsy adversely affects patients' quality of life and represents a severe public health problem. Thus, identifying the relationship between epilepsy and AD represents an ongoing challenge and continuing need. Seizures in AD patients are often unrecognized because they are often nonconvulsive and sometimes mimic some behavioral symptoms of AD. Regarding this, it has been hypothesized that epileptogenesis and neurodegeneration share common underlying mechanisms. Targeted treatment to decrease epileptiform activity could represent a valuable strategy for delaying the neurodegenerative process and related cognitive impairment. Several preclinical studies have shown that some antiseizure medications (ASMs) targeting abnormal network hyperexcitability may change the natural progression of AD. However, to date, no guidelines are available for managing seizures in AD patients because of the paucity of randomized clinical trials sufficient for answering the correlated questions. Future AD clinical studies are mandatory to update clinicians about the symptomatic treatment of seizures in AD patients and recognize whether ASM therapy could change the natural progression of the disease, thereby rescuing cognitive performance.
Collapse
Affiliation(s)
- Francesca Bosco
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Lorenza Guarnieri
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Vincenzo Rania
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Ernesto Palma
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (E.P.); (M.T.C.)
| | - Rita Citraro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Tiziana Corasaniti
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (E.P.); (M.T.C.)
| | - Antonio Leo
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Xiong Y, Fu Y, Li Z, Zheng Y, Cui M, Zhang C, Huang XY, Jian Y, Chen BH. Laquinimod Inhibits Microglial Activation, Astrogliosis, BBB Damage, and Infarction and Improves Neurological Damage after Ischemic Stroke. ACS Chem Neurosci 2023. [PMID: 37161270 DOI: 10.1021/acschemneuro.2c00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Glial activation is involved in neuroinflammation and blood-brain barrier (BBB) damage, which plays a key role in ischemic stroke-induced neuronal damage; therefore, regulating glial activation is an important way to inhibit ischemic brain injury. Effects of laquinimod (LAQ) include inhibiting axonal damage and neuroinflammation in multiple neuronal injury diseases. However, whether laquinimod can exert neuroprotective effects after ischemic stroke remains unknown. In this study, we investigated the effect of LAQ on glial activation, BBB damage, and neuronal damage in an ischemic stroke model. Adult ICR mice were used to create a photothrombotic stroke (PT) model. LAQ was administered orally at 30 min after ischemic injury. Neurobehavioral tests, Evans Blue, immunofluorescence, TUNEL, Nissl staining, and western blot were performed to evaluate the neurofunctional outcome. Quantification of immunofluorescence was evaluated by unbiased stereology. LAQ post-treatment significantly reduced infarction and improved forepaw function at 5 days after PT. Interestingly, LAQ treatment significantly promoted anti-inflammatory microglial activation. Moreover, LAQ treatment reduced astrocyte activation, glial scar formation, and BBB breakdown in ischemic brains. Therefore, this study demonstrated that LAQ post-treatment restricted microglial polarization, astrogliosis, and glial scar and improved BBB damage and behavioral function. LAQ may serve as a novel target to develop new therapeutic agents for ischemic stroke.
Collapse
Affiliation(s)
- Ye Xiong
- The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yanqiong Fu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zhuoli Li
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yu Zheng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Maiyin Cui
- Department of Rehabilitation and Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, P. R. China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xin Yi Huang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yong Jian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, P. R. China
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
6
|
Neuregulin-1/PI3K signaling effects on oligodendrocyte proliferation, remyelination and behaviors deficit in a male mouse model of ischemic stroke. Exp Neurol 2023; 362:114323. [PMID: 36690057 DOI: 10.1016/j.expneurol.2023.114323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the effect of neuregulin-1 (NRG1) on demyelination and neurological function in an ischemic stroke model, and further explored its neuroprotective mechanisms. Adult male ICR mice underwent photothrombotic ischemia surgery and were injected with NRG1 beginning 30 min after ischemia. Cylinder and grid walking tests were performed to evaluate the forepaw function. In addition, the effect of NRG1 on neuronal damage/death (Cresyl violet, CV), neuronal nuclei (NeuN), nestin, doublecortin (DCX), myelin basic protein (MBP), non-phosphorylated neurofilaments (SMI-32), adenomatous polyposis coli (APC), erythroblastic leukemia viral oncogene homolog (ErbB) 2, 4 and serine-threonine protein kinase (Akt) in cortex were evaluated using immunohistochemistry, immunofluorescence and western blot. The cylinder and grid walking tests exposed that treatment of NRG1 observably regained the forepaw function. NRG1 treatment reduced cerebral infarction, restored forepaw function, promoted proliferation and differentiation of neuron and increased oligodendrogliogenesis. The neuroprotective effect of NRG1 is involved in its activation of PI3K/Akt signaling pathway via ErbB2, as shown by the suppression of the effect of NRG1 by the PI3K inhibitor LY294002. Our results demonstrate that NRG1 is effective in ameliorating the both acute phase neuroprotection and long-term neurological functions via resumption of neuronal proliferation and differentiation and oligodendrogliogenesis in a male mouse model of ischemic stroke.
Collapse
|
7
|
Lai MC, Wu SN, Huang CW. Rufinamide, a Triazole-Derived Antiepileptic Drug, Stimulates Ca 2+-Activated K + Currents While Inhibiting Voltage-Gated Na + Currents. Int J Mol Sci 2022; 23:ijms232213677. [PMID: 36430153 PMCID: PMC9697614 DOI: 10.3390/ijms232213677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Rufinamide (RFM) is a clinically utilized antiepileptic drug that, as a triazole derivative, has a unique structure. The extent to which this drug affects membrane ionic currents remains incompletely understood. With the aid of patch clamp technology, we investigated the effects of RFM on the amplitude, gating, and hysteresis of ionic currents from pituitary GH3 lactotrophs. RFM increased the amplitude of Ca2+-activated K+ currents (IK(Ca)) in pituitary GH3 lactotrophs, and the increase was attenuated by the further addition of iberiotoxin or paxilline. The addition of RFM to the cytosolic surface of the detached patch of membrane resulted in the enhanced activity of large-conductance Ca2+-activated K+ channels (BKCa channels), and paxilline reversed this activity. RFM increased the strength of the hysteresis exhibited by the BKCa channels and induced by an inverted isosceles-triangular ramp pulse. The peak and late voltage-gated Na+ current (INa) evoked by rapid step depolarizations were differentially suppressed by RFM. The molecular docking approach suggested that RFM bound to the intracellular domain of KCa1.1 channels with amino acid residues, thereby functionally affecting BKCa channels' activity. This study is the first to present evidence that, in addition to inhibiting the INa, RFM effectively modifies the IK(Ca), which suggests that it has an impact on neuronal function and excitability.
Collapse
Affiliation(s)
- Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (S.-N.W.); (C.-W.H.)
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (S.-N.W.); (C.-W.H.)
| |
Collapse
|
8
|
Wais T, Hasan M, Rai V, Agrawal DK. Gut-brain communication in COVID-19: molecular mechanisms, mediators, biomarkers, and therapeutics. Expert Rev Clin Immunol 2022; 18:947-960. [PMID: 35868344 PMCID: PMC9388545 DOI: 10.1080/1744666x.2022.2105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Infection with COVID-19 results in acute respiratory symptoms followed by long COVID multi-organ effects presenting with neurological, cardiovascular, musculoskeletal, and gastrointestinal (GI) manifestations. Temporal relationship between gastrointestinal and neurological symptoms is unclear but warranted for exploring better clinical care for COVID-19 patients. AREAS COVERED We critically reviewed the temporal relationship between gut-brain axis after SARS-CoV-2 infection and the molecular mechanisms involved in neuroinvasion following GI infection. Mediators are identified that could serve as biomarkers and therapeutic targets in SARS-CoV-2. We discussed the potential therapeutic approaches to mitigate the effects of GI infection with SARS-CoV-2. EXPERT OPINION Altered gut microbiota cause increased expression of various mediators, including zonulin causing disruption of tight junction. This stimulates enteric nervous system and signals to CNS precipitating neurological sequalae. Published reports suggest potential role of cytokines, immune cells, B(0)AT1 (SLC6A19), ACE2, TMRSS2, TMPRSS4, IFN-γ, IL-17A, zonulin, and altered gut microbiome in gut-brain axis and associated neurological sequalae. Targeting these mediators and gut microbiome to improve immunity will be of therapeutic significance. In-depth research and well-designed large-scale population-based clinical trials with multidisciplinary and collaborative approaches are warranted. Investigating the temporal relationship between organs involved in long-term sequalae is critical due to evolving variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Tameena Wais
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Mehde Hasan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| |
Collapse
|
9
|
The interplay of neurovasculature and adult hippocampal neurogenesis. Neurosci Lett 2021; 760:136071. [PMID: 34147540 DOI: 10.1016/j.neulet.2021.136071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023]
Abstract
The subgranular zone of the dentate gyrus provides a local microenvironment (niche) for neural stem cells. In the adult brain, it has been established that the vascular compartment of such niches has a significant role in regulating adult hippocampal neurogenesis. More recently, evidence showed that neurovascular coupling, the relationship between blood flow and neuronal activity, also regulates hippocampal neurogenesis. Here, we review the most recent articles on addressing the intricate relationship between neurovasculature and adult hippocampal neurogenesis and a novel pathway where functional hyperemia enhances hippocampal neurogenesis. In the end, we have further reviewed recent research showing that impaired neurovascular coupling may cause declined neurogenesis and contribute to brain damage in neurodegenerative diseases.
Collapse
|
10
|
Abd-Allah H, Nasr M, Ahmed-Farid OAH, El-Marasy SA, Bakeer RM, Ahmed RF. Biological and Pharmacological Characterization of Ascorbic Acid and Nicotinamide Chitosan Nanoparticles against Insulin-Resistance-Induced Cognitive Defects: A Comparative Study. ACS OMEGA 2021; 6:3587-3601. [PMID: 33585742 PMCID: PMC7876703 DOI: 10.1021/acsomega.0c05096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
High consumption of industrialized food with high fat content is generally associated with insulin resistance, which in turn causes memory impairment and cognitive decline. Nicotinamide and ascorbic acid are among the promising neuroprotective molecules; however, an appreciable therapeutic activity necessitates the administration of a large dose of either. Therefore, the study aimed to assess if loading them in chitosan nanoparticles in doses 5-10 times lower than the unencapsulated forms would achieve comparable therapeutic results. Animals were fed a high-fat-high-fructose (HFHF) diet for 75 days. The vitamins in their conventional form (100 mg/kg) and the nanoparticles under investigation (10 and 20 mg/kg) were given orally concomitantly with the diet in the last 15 days. The intake of HFHF diet for 75 days led to an insulin-resistant state, with memory impairment, which was verified behaviorally through the object recognition test. This was accompanied by significant reduction in brain insulin-like growth factor 1 (IGF-1), increased acetylcholine esterase activity, increase in the serotonin and dopamine turnover ratio, and increase in oxidative stress and 8-OHdG, indicating cellular DNA fragmentation. Cellular energy was also decreased, and immunohistochemical examination verified the high immunoreactivity in both the cortex and hippocampus of the brain. The administration of nanoparticulated nicotinamide or ascorbic acid with a 10 times lesser dose than the unencapsulated forms managed to reverse all aforementioned harmful effects, with an even lesser immunoreactivity score than the unencapsulated form. Therefore, it can be concluded that nicotinamide or ascorbic acid chitosan nanoparticles can be recommended as daily supplements for neuroprotection in patients suffering from insulin resistance after conduction of clinical investigations.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, 11561 Cairo, Egypt
| | - Maha Nasr
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, 11561 Cairo, Egypt
| | - Omar A. H. Ahmed-Farid
- Department
of Physiology, National Organization for
Drug Control and Research, 35521 Giza, Egypt
| | - Salma A. El-Marasy
- Department
of Pharmacology, Medical Research Division, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Rofanda M. Bakeer
- Department
of Pathology, Faculty of Medicine, Helwan
University, 11795 Helwan, Egypt
- October
University of Modern Sciences and Arts (MSA) University, 12451 6th October
City, Egypt
| | - Rania F. Ahmed
- Department
of Pharmacology, Medical Research Division, National Research Centre, Dokki, 12622 Giza, Egypt
| |
Collapse
|
11
|
Operto FF, Verrotti A, Marrelli A, Ciuffini R, Coppola G, Pastorino GMG, Striano P, Sole M, Zucca C, Manfredi V, Città S, Elia M. Cognitive, adaptive, and behavioral effects of adjunctive rufinamide in Lennox-Gastaut syndrome: A prospective observational clinical study. Epilepsy Behav 2020; 112:107445. [PMID: 32920379 DOI: 10.1016/j.yebeh.2020.107445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Lennox-Gastaut syndrome (LGS) is a severe pediatric epilepsy syndrome characterized by multiple drug-resistant seizure types. Children with LGS usually experience cognitive regression, and LGS is almost always associated with moderate to severe cognitive impairment. Rufinamide (RFM) was approved by the European Medicines Agency in 2007 for the adjunctive treatment of seizures associated with LGS in patients ≥4 years of age. The primary objective of our study was to assess cognitive, adaptive, and behavior functioning of patients with LGS after 12 months of RFM therapy. METHODS This was an observational, multicenter, prospective study involving 16 patients diagnosed with LGS aged between 7 and 58 years (mean = 22 ± 16.3). Fourteen of 16 patients were already on therapy with 3 antiseizure drugs and 2/16 with 4 antiseizure drugs; RFM has been added with 100 mg/week increments up to a dose of 300-2400 mg/day. The participants and their parents underwent a neuropsychological evaluation for the assessment of intellectual, adaptive, and emotional/behavioral functioning (Leiter International Performance Scale-Revised (LEITER-R), Vineland, and Child Behavior CheckList (CBCL), respectively) before the RFM introduction (baseline) and 12 months after the RFM therapy (T2). Physical and neurological examination, electroencephalography (EEG) recording, seizure type and frequency, and adverse reactions were also considered. RESULTS After 12 months, the total intelligence quotient (IQ) assessed by LEITER-R did not show statistical significant changes, such as there were no statistically significant changes in adaptive functions, assessed by Vineland. Furthermore, there were no statistically significant changes in internalizing and externalizing problems assessed by CBCL. CONCLUSION Adjunctive treatment with RFM did not negatively affect cognitive, adaptive function, and emotional profile in patients with LGS after 1 year of follow-up.
Collapse
Affiliation(s)
- Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy.
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Alfonso Marrelli
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Roberta Ciuffini
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 'G. Gaslini' Institute, Genova, Italy
| | - Michela Sole
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 'G. Gaslini' Institute, Genova, Italy
| | - Claudio Zucca
- Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Valentina Manfredi
- Clinical Neurophysiology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Santina Città
- Oasi Research Institute (IRCCS), Unit of Neurology and Clinical Neurophysiopathology, Troina, Italy
| | - Maurizio Elia
- Oasi Research Institute (IRCCS), Unit of Neurology and Clinical Neurophysiopathology, Troina, Italy
| |
Collapse
|
12
|
Kim B, Lee TK, Park CW, Kim DW, Ahn JH, Sim H, Lee JC, Yang GE, Kim JD, Shin MC, Cho JH, Ryoo S, Kim YM, Won MH, Park JH. Pycnogenol ® Supplementation Attenuates Memory Deficits and Protects Hippocampal CA1 Pyramidal Neurons via Antioxidative Role in a Gerbil Model of Transient Forebrain Ischemia. Nutrients 2020; 12:E2477. [PMID: 32824513 PMCID: PMC7468866 DOI: 10.3390/nu12082477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Pycnogenol® (an extract of the bark of French maritime pine tree) is used for dietary supplement and known to have excellent antioxidative efficacy. However, there are few reports on neuroprotective effect of Pycnogenol® supplementation and its mechanisms against ischemic injury following transient forebrain ischemia (TFI) in gerbils. Now, we examined neuroprotective effect and its mechanisms of Pycnogenol® in the gerbils with 5-min TFI, which evokes a significant death (loss) of pyramidal cells located in the cornu ammonis (CA1) region of gerbil hippocampus from 4-5 days post-TFI. Gerbils were pretreated with 30, 40, and 50 mg/kg of Pycnogenol® once a day for 7 days before TFI surgery. Treatment with 50 mg/kg, not 30 or 40 mg/kg, of Pycnogenol® potently protected learning and memory, as well as CA1 pyramidal cells, from ischemic injury. Treatment with 50 mg/kg Pycnogenol® significantly enhanced immunoreactivity of antioxidant enzymes (superoxide dismutases and catalase) in the pyramidal cells before and after TFI induction. Furthermore, the treatment significantly reduced the generation of superoxide anion, ribonucleic acid oxidation and lipid peroxidation in the pyramidal cells. Moreover, interestingly, its neuroprotective effect was abolished by administration of sodium azide (a potent inhibitor of SODs and catalase activities). Taken together, current results clearly indicate that Pycnogenol® supplementation can prevent neurons from ischemic stroke through its potent antioxidative role.
Collapse
Affiliation(s)
- Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea;
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Korea;
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea;
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (C.W.P.); (J.H.A.); (H.S.); (J.-C.L.)
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Korea;
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Myoung Cheol Shin
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Jun Hwi Cho
- Department of Emergency Medicine, and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Korea; (M.C.S.); (J.H.C.)
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Moo-Ho Won
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea
| |
Collapse
|
13
|
Lee TK, Park JH, Ahn JH, Kim H, Song M, Lee JC, Kim JD, Jeon YH, Choi JH, Lee CH, Hwang IK, Yan BC, Won MH, Kang IJ. Pretreatment of Populus tomentiglandulosa protects hippocampal CA1 pyramidal neurons from ischemia-reperfusion injury in gerbils via increasing SODs expressions and maintaining BDNF and IGF-I expressions. Chin J Nat Med 2019; 17:424-434. [PMID: 31262455 DOI: 10.1016/s1875-5364(19)30050-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 12/31/2022]
Abstract
To examine the effects of Populus tomentiglandulosa (PT) extract on the expressions of antioxidant enzymes and neurotrophic factors in the cornu ammonis 1 (CA1) region of the hippocampus at 5 min after inducing transient global cerebral ischemia (TGCI) in gerbils, TGCI was induced by occlusion of common carotid arteries for 5 min. Before ischemic surgery, 200 mg·kg-1 PT extract was orally administrated once daily for 7 d. We performed neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B staining. Furthermore, we determined in situ production of superoxide anion radical, expression levels of SOD1 and SOD2 as antioxidant enzymes and brain-derived neurotrophic factor (BDNF) and insulin-like growth factor I (IGF-I) as neurotrophic factors. Pretreatment with 200 mg·kg-1 PT extract prevented neuronal death (loss). Furthermore, pretreatment with 200 mg·kg-1 PT extract significantly inhibited the production of superoxide anion radical, increased expressions of SODs and maintained expressions of BDNF and IGF-I. Such increased expressions of SODs were maintained in the neurons after IRI. In summary, pretreated PT extract can significantly increase levels of SODs and protect the neurons against TGCI, suggesting that PT can be a useful natural agent to protect against TGCI.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong Hwan Jeon
- Department of Radiology, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Bing-Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese, Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
14
|
Schanzer B, Rivas-Grajales AM, Khan A, Mathew SJ. Novel investigational therapeutics for generalized anxiety disorder (GAD). Expert Opin Investig Drugs 2019; 28:1003-1012. [DOI: 10.1080/13543784.2019.1680638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bella Schanzer
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ana Maria Rivas-Grajales
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Aamir Khan
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Sanjay J Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
15
|
Ahn JH, Shin BN, Song M, Kim H, Park JH, Lee TK, Park CW, Park YE, Lee JC, Yong JH, Lee CH, Hwang IK, Won MH, Lee YL. Intermittent fasting increases the expressions of SODs and catalase in granule and polymorphic cells and enhances neuroblast dendrite complexity and maturation in the adult gerbil dentate gyrus. Mol Med Rep 2019; 19:1721-1727. [PMID: 30628688 PMCID: PMC6390044 DOI: 10.3892/mmr.2019.9822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/31/2018] [Indexed: 11/06/2022] Open
Abstract
Intermittent fasting (ImF) is known to reduce oxidative stress and affects adult neurogenesis in the hippocampal dentate gyrus. However, it is unknown how ImF affects endogenous antioxidants expressions, cell proliferation, and neuroblast differentiation and their dendrite remodeling over 3 months in the dentate gyrus of adult gerbils. The present study subjected 6‑month old male gerbils to a normal diet or alternate‑day ImF for 1, 2 and 3 months. Changes in body weight were not significantly different between gerbils fed a normal diet and on ImF. The present study also investigated the effects of ImF on antioxidant enzymes [superoxide dismutase (SOD)‑1, SOD2 and catalase] using immunohistochemistry, and endogenous cell proliferation, neuroblast differentiation and neuroblast dendrite complexity by using Ki67 (a cell proliferation marker) and doublecortin (neuroblast differentiation marker) immunohistochemistry in the dentate gyrus. SOD1, SOD2 and CAT immunoreactivities were shown in cells in the granule cell and polymorphic layers. SOD1, SOD2 and catalase immunoreactivity in the cells peaked at 2, 1 and 1 month, respectively, following ImF. Cell proliferation was ~250, 129 and 186% of the control, at 1, 2 and 3 months of ImF, respectively. Neuroblast differentiation was ~41, 32 and 12% of the control, at 1, 2 and 3 months of ImF, respectively, indicating that dendrites of neuroblasts were more arborized and developed at 3 months of ImF. Taken together, these results indicate that ImF for 3 months improves endogenous SOD1, SOD2 and catalase expressions and enhances cell proliferation, and neuroblast dendrites complexity and maturation in the adult gerbil dentate gyrus.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Bich Na Shin
- Danchunok Company, Chuncheon, Gangwon 24210, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun-Hwan Yong
- Department of Occupational Therapy, Dongnam Health University, Suwon, Gyeonggi 16238, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|