1
|
Huang Y, Liao M, Hu X, Hu H, Gong H. Advances in the clinical treatment of multidrug-resistant pathogens using polymyxins. J Antimicrob Chemother 2024; 79:3210-3229. [PMID: 39351975 DOI: 10.1093/jac/dkae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES Polymyxins are a vital class of antibiotics used to combat multidrug-resistant Gram-negative bacteria. However, their use is limited due to potential nephrotoxicity and the availability of alternative antibiotics. This review aims to examine the properties of polymyxins and the clinical advances in their use for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). METHODS This review analyses literature on polymyxin properties and various clinical approaches, including intravenous drip infusion, nebulized or dry powder inhalation, and ointment application. Treatment efficacy in terms of bacterial eradication, cure rate and mortality rate are reviewed and evaluated. RESULTS Polymyxins have been reintroduced to treat critical infections due to the increasing prevalence of CR-GNB. Clinical trials and studies have confirmed that polymyxins can effectively treat CR-GNB infections when the formulation and administration are appropriate, with acceptable levels of nephrotoxicity. CONCLUSIONS In the future, the development of polymyxin formulations will aim to improve their clinical effectiveness while reducing toxicity and side effects and preventing the emergence of polymyxin-resistant strains. Enhanced efficacy and minimized potential side effects can be achieved by developing new polymyxin-delivery systems that provide a smart and controlled release or customized patient administration.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Honghua Hu
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoning Gong
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Taha M, Abdelbagi O, Baokbah TAS, Bagadood RM, Jalal NA, Obaid R, Al-Hazmi NE, Qusty NF. Insights into the protective effect of omega-3 nanoemulsion against colistin-induced nephrotoxicity in experimental rats: regulation of autophagy and necroptosis via AMPK/mTOR and RIPK1/RIPK3/MLKL signaling pathways. Ren Fail 2024; 46:2429686. [PMID: 39584420 PMCID: PMC11590192 DOI: 10.1080/0886022x.2024.2429686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024] Open
Abstract
Colistin is considered one of the most effective antibiotics against gram-negative bacteria. However, nephrotoxicity is one of the dose-limiting factors in its treatment. This study aimed to evaluate the outcome of omega-3 nanoemulsion against colistin-induced nephrotoxicity and its possible underlying mechanism. Four rat groups were involved in the present research; each group containing ten rats was divided as follows: Group I (control) rats received normal saline; Group II (omega-3 nanoemulsion) rats received a dose of 500 mg/kg/body weight orally; Group III (colistin) rats received colistin intraperitoneally (300.000 IU/kg/day); and Group IV (colistin/omega-3 nanoemulsion) rats were treated for six days. The results revealed that colistin administration caused deterioration in renal functions such as creatinine, blood urea nitrogen, 24 h proteinuria, and kidney injury molecule-1 with decrease in creatinine clearance, resulting in histological alternation and tubular damage with diffuse interstitial inflammation. Additionally, colistin significantly increased the lipid peroxidation marker malonaldehyde, proinflammatory cytokines tumor necrosis alpha, interleukin-6, interleukin-1 beta. Also, autophagy influx marker microtubule-associated protein light chain 3B, Beclin-1, and necroptotic related proteins, receptor-interacting protein kinase-3 (RIPK-3), RIPK-1, mixed lineage kinase domain-like protein, and autophagy pathway regulatory kinase AMP-activated protein kinase, with a decrease in antioxidant enzymes catalase, superoxide dismutase, and total antioxidant capacity, autophagic marker ubiquitin-binding protein (p62), and regulator Mammalian target of rapamycin. Interestingly, omega-3 nanoemulsion reversed the results above, dramatically improving renal function and histological picture. Thus, omega-3 nanoemulsion provided a notable method for suppressing colistin-induced nephrotoxicity via its antioxidant and anti-inflammatory power, inhibiting pathological autophagy and necroptosis.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Tourki A. S. Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Rehab M. Bagadood
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al–Qura University, Makkah, Saudi Arabia
| | - Naif A. Jalal
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al‐Qura University, Makkah, Saudi Arabia
| | - Rami Obaid
- Department of Medical Genetics, Faculty of Medicine at Al-Qunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Nawal E. Al-Hazmi
- Department of Chemistry, Division of Biology (Microbiology), University College of Qunfudah, Umm Al-Qura University, Al-Qunfudhah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al–Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Naraki K, Ghasemzadeh Rahbardar M, Razavi BM, Aminifar T, Khajavi Rad A, Amoueian S, Hosseinzadeh H. The power of trans-sodium crocetinate: exploring its renoprotective effects in a rat model of colistin-induced nephrotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10155-10174. [PMID: 38995374 DOI: 10.1007/s00210-024-03259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Colistin, a multidrug-resistant gram-negative bacterial infection medication, has been associated with renal impairment and failure. Trans-sodium crocetinate (TSC), a saffron-derived chemical recognized for its antioxidant and nephroprotective properties, was studied in this study to determine its potential to alleviate the nephrotoxic effects of colistin. Forty-two male Wistar rats were randomly classified into seven groups (n = 6): (1) control (normal saline, 12 days, i.p.), (2) colistin (22 mg/kg, 7 days, i.p.), (3-5) colistin + TSC (25, 50, and 100 mg/kg, 12 days, i.p., starting from 5 days before colistin), (6) TSC (100 mg/kg, 12 days, i.p.), (7) colistin + vitamin E (100 IU/kg, 12 days, i.p). On day 13, the rats were euthanized and the serum content of creatinine, BUN, Na+, and K+, as well as oxidative stress (GSH, MDA, SOD, CAT), inflammatory (IL-1β), apoptotic (Bax, Bcl-2, caspase-3, 8, 9), and autophagy (Beclin-1, LC3) markers, NGAL, and histopathological changes in the kidney were measured. Colistin significantly increased serum creatinine, BUN, MDA, IL-1β, caspase-3,8,9, Bax, Beclin-1, LC3, and NGAL levels in kidney tissue. It also caused inflammation, focal necrosis of tubular epithelial cells, protein cast, and acute tubular necrosis. Furthermore, colistin decreased SOD, CAT, GSH, and Bcl-2 levels. TSC and vitamin E administration along with colistin restored most of the alterations induced by colistin. Overall, it could be concluded that colistin induces oxidative stress, inflammation, autophagy, and apoptosis, which can cause kidney injury. However, TSC can also be used as a therapeutic agent to reduce injuries caused by colistin.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Aminifar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sakineh Amoueian
- Pathology Department, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Nasrullah MZ, Neamtalllah T, Alshibani M, Bagalagel AA, Noor AO, Bakhsh HT, Abdel-Naim AB. Caffeic acid phenethyl ester ameliorates colistin-induced nephrotoxicity in rats via modulation of FOXO1/Nrf2/Sirt1 axis. Clin Exp Pharmacol Physiol 2024; 51:e70000. [PMID: 39448197 DOI: 10.1111/1440-1681.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Colistin (Cst) is one of the antimicrobial peptides and is reserved for use against multi-drug-resistant Gram-negative bacteria. However, the clinical value of Cst is limited by its nephrotoxic adverse effects. Caffeic acid phenethyl ester (CAPE) is a honeybee propolis flavonoid recognised for its diverse pharmacological potential. It has demonstrated d antioxidant and anti-inflammatory properties, as well as protective effects against chemically induced toxicity in variuos biological systems. This study aimed to investigate the impact of CAPE on nephrotoxicity induced in rats by Cst. METHODS Animals were randomly divided into five groups. Group 1 served as control, group 2 received CAPE (10 mg/kg) orally, group 3 received Cst IP, group 4 received Cst + CAPE (5 mg/kg) and group 5 received Cst + CAPE (10 mg/kg). All treatments were given daily for 10 consecutive days. RESULTS CAPE notably attenuated Cst-inducednephrotoxicity as shown by reducing urea serum levels, creatinine, cystatin C, urinary protein contents and urinary N-acetyl-β-D-glucosaminidase (NAG). This was confirmed by histological investigations that indicated amelioration of histopathological changes in the kidney architecture as well as the deposition of collagen in renal tissues. CAPE exhibited antioxidant effects supported by the prevention of rise in Cst-induced lipid peroxidation and depletion of superoxide dismutase and catalase enzymatic activities. In addition, CAPE inhibited the expression of the inflammatory markers including tumour necrosis factor-α, nuclear factor kappa B and interleukin-6. These actions were associated with modulation of messenger ribonucleic acid (mRNA) expression of Bax and Bcl-2 in favour of anti-apoptosis. CAPE inhibited Cst-induced rise in forkhead box O1 (FOXO1) expression and downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Sirtuin 1 (Sirt1) immune-expression. CONCLUSION CAPE protects against nephrotoxicity induced by Cst in ratsprimarily through its antioxidant, antiinflammatory and antiapoptotic activities. These pritective effects are mediated via modulation of FOXO1/Nrf2/Sirt1 axis.
Collapse
Affiliation(s)
- Mohammed Z Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thikryat Neamtalllah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohannad Alshibani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa A Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad O Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussain T Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Jia Y, Zhang T, He M, Yang B, Wang Z, Liu Y. Melatonin Protects Against Colistin-Induced Intestinal Inflammation and Microbiota Dysbiosis. J Pineal Res 2024; 76:e12989. [PMID: 38978438 DOI: 10.1111/jpi.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Colistin is renowned as a last-resort antibiotic due to the emergence of multidrug-resistant pathogens. However, its potential toxicity significantly hampers its clinical utilization. Melatonin, chemically known as N-acetyl-5-hydroxytryptamine, is an endogenous hormone produced by the pineal gland and possesses diverse biological functions. However, the protective role of melatonin in alleviating antibiotic-induced intestinal inflammation remains unknown. Herein, we reveal that colistin stimulation markedly elevates intestinal inflammatory levels and compromises the gut barrier. In contrast, pretreatment with melatonin safeguards mice against intestinal inflammation and mucosal damage. Microbial diversity analysis indicates that melatonin supplementation prevents a reduction in the abundance of Erysipelotrichales and Bifidobacteriales, as well as an increase in Desulfovibrionales abundance, following colistin exposure. Remarkably, short-chain fatty acids (SCFAs) analysis shows that propanoic acid contributes to the protective effect of melatonin on colistin-induced intestinal inflammation. Furthermore, the protection effects of melatonin and propanoic acid on LPS-induced cellular inflammation in RAW 264.7 cells are confirmed. Mechanistic investigations suggest that intervention with melatonin and propanoic acid can repress the activation of the TLR4 signal and its downstream NF-κB and MAPK signaling pathways, thereby mitigating the toxic effects of colistin. Our work highlights the unappreciated role of melatonin in preventing the potential detrimental effects of colistin on intestinal health and suggests a combined therapeutic strategy to effectively manage intestinal infectious diseases.
Collapse
Affiliation(s)
- Yuqian Jia
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tingting Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mengping He
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Xie B, Liu Y, Chen C, Velkov T, Tang S, Shen J, Dai C. Colistin Induces Oxidative Stress and Apoptotic Cell Death through the Activation of the AhR/CYP1A1 Pathway in PC12 Cells. Antioxidants (Basel) 2024; 13:827. [PMID: 39061896 PMCID: PMC11273690 DOI: 10.3390/antiox13070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Colistin is commonly regarded as the "last-resort" antibiotic for combating life-threatening infections caused by multidrug-resistant (MDR) gram-negative bacteria. Neurotoxicity is a potential adverse event associated with colistin application in clinical settings, yet the exact molecular mechanisms remain unclear. This study examined the detrimental impact of colistin exposure on PC12 cells and the associated molecular mechanisms. Colistin treatment at concentrations of 0-400 μM decreased cell viability and induced apoptotic cell death in both time- and concentration-dependent manners. Exposure to colistin triggered the production of reactive oxygen species (ROS) and caused oxidative stress damage in PC12 cells. N-acetylcysteine (NAC) supplementation partially mitigated the cytotoxic and apoptotic outcomes of colistin. Evidence of mitochondrial dysfunction was observed through the dissipation of membrane potential. Additionally, colistin treatment upregulated the expression of AhR and CYP1A1 mRNAs in PC12 cells. Pharmacological inhibition of AhR (e.g., using α-naphthoflavone) or intervention with the CYP1A1 gene significantly decreased the production of ROS induced by colistin, subsequently lowering caspase activation and cell apoptosis. In conclusion, our findings demonstrate, for the first time, that the activation of the AhR/CYP1A1 pathway contributes partially to colistin-induced oxidative stress and apoptosis, offering insights into the cytotoxic effects of colistin.
Collapse
Affiliation(s)
- Baofu Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yue Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chunhong Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University Clayton, Melbourne, VIC 3800, Australia
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Aygörmez S, Maraşli Ş. Investigation of the effects of curcumin and piperine on cyclophosphamide-induced brain injury in rats. J Biochem Mol Toxicol 2024; 38:e23760. [PMID: 38953502 DOI: 10.1002/jbt.23760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy. Curcumin (CUR) and piperine (PP) show a protective effect on neurodegenerative and neurological diseases. This research was designed to measure several biochemical parameters in the brain tissue of CP-applied rats to investigate the impact of combined CUR-PP administration. The study evaluated six groups of eight rats: Group 1 was the control; Groups 2 and 3 were administered 200 or 300 mg/kg CUR-PP via oral gavage; Group 4 received only 200 mg/kg CP on day 1; Groups 5 and 6 received CP + CUR-PP for 7 days. Data from all parameters indicated that CP caused brain damage. Phosphorylated TAU (pTAU), amyloid-beta peptide 1-42 (Aβ1-42), glutamate (GLU), and gamma amino butyric acid (GABA) parameters were the same in Groups 4, 5, and 6. On the other hand, 8-hydroxy-2-deoxyguanosine (8-OHdG), nitric oxide (NO), interleukin-6 (IL-6), nuclear factor kappa beta (NF-kβ), malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-α) levels in the CP + CUR-PP groups were lower than those in the CP group (p < 0.05). However, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH) parameters were higher in the CP + CUR-PP groups compared to the CP group (p < 0.05). It is thought that the similarity of Groups 5 and 6 with Group 4 in Aβ1-42, pTAU, GLU, and GABA parameters hinder the determination of treatment protection however, they might have a therapeutic effect if the applied dose or study duration were changed. This study attempted to evaluate the effects of a CUR-PP combination on CP-induced brain damage in rats by measuring biochemical parameters and performing histopathological examinations. Based on the findings, this CUR-PP combination could be considered an alternative medicine option in cases with conditions similar to those evaluated in this study.
Collapse
Affiliation(s)
- Serpil Aygörmez
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Şaban Maraşli
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
8
|
Hassan NF, Ragab D, Ibrahim SG, Abd El-Galil MM, Hassan Abd-El-Hamid A, Hamed DM, Magdy William M, Salem MA. The potential role of Tirzepatide as adjuvant therapy in countering colistin-induced nephro and neurotoxicity in rats via modulation of PI3K/p-Akt/GSK3-β/NF-kB p65 hub, shielding against oxidative and endoplasmic reticulum stress, and activation of p-CREB/BDNF/TrkB cascade. Int Immunopharmacol 2024; 135:112308. [PMID: 38788447 DOI: 10.1016/j.intimp.2024.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Although colistin has a crucial antibacterial activity in treating multidrug-resistant gram-negative bacteria strains; it exhibited renal and neuronal toxicities rendering its use a challenge. Previous studies investigated the incretin hormones either glucose-dependent insulinotropic polypeptide (GIP) or glucagonlike peptide-1 (GLP-1) for their neuroprotective and nephroprotective effectiveness. The present study focused on investigating Tirzepatide (Tirze), a dual GLP-1/GIP agonist, as an adjuvant therapy in the colistin treatment protocol for attenuating its renal and neuronal complications. Rats were divided into; The normal control group, the colistin-treated group received colistin (300,000 IU/kg/day for 7 days; i.p.). The Tirze-treated group received Tirze (1.35 mg/kg on the 1,4,7thdays; s.c.) and daily colistin. Tirze effectively enhanced histopathological alterations, renal function parameters, and locomotor activity in rats. Tirze mechanistically acted via modulating various signaling axes evolved under the insult of phosphatidylinositol 3-kinases (PI3K)/phosphorylated protein kinase-B (p-Akt)/ glycogen synthase kinase (GSK)3-β hub causing mitigation of nuclear factor (NF)-κB (NF-κB) / tumor necrosis factor-α (TNF-α), increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ glutathione (GSH), downregulation of ER stress-related biomarkers (activation transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP)), antiapoptotic effects coupling with reduction of glial fibrillary acidic protein (GFAP) immunoreactivity and enhancement of phosphorylated c-AMP response element-binding (p-CREB) / brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) neuroprotective pathway. Briefly, Tirze exerts a promising role as adjuvant therapy in the colistin treatment protocol for protection against colistin's nephro- and neurotoxicity according to its anti-inflammatory, antioxidant, and antiapoptotic impacts besides its ability to suppress ER stress-related biomarkers.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Diaa Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Shaimaa G Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mona M Abd El-Galil
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa Hassan Abd-El-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Dalia M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mira Magdy William
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Maha A Salem
- Department of Pharmacology and Toxicology, pharmacy program, Saint Petersburg University in Cairo, Cairo, Egypt
| |
Collapse
|
9
|
Elsaid FH, Hussein AM, Eid EA, Ammar OA, Khalil AA. Effect of intermittent fasting on adriamycin-induced nephropathy: Possible underlying mechanisms. Tissue Cell 2024; 88:102360. [PMID: 38489913 DOI: 10.1016/j.tice.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/16/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE Intermittent fasting (IF) has been shown to induce a well-organized adaptive defense against stress inside the cells, which increases the production of anti-oxidant defenses, repair of DNA, biogenesis of mitochondria, and genes that combat inflammation. So, the goal of the current investigation was to identify the effects of IF on rats with adriamycin (ADR)-induced nephropathy and any potential underlying mechanisms. METHODS Four groups of 40 mature Sprague-Dawley male rats were allocated as follow; control, fasting, ADR, and ADR plus fasting. After 8 weeks of ADR administration urine, blood samples and kidneys were taken for assessment of serum creatinine (Cr), BUN, urinary proteins, indicators of oxidative damage (malondialdehyde (MDA), reduced glutathione (GSH) and Catalase (CAT) levels), histopathological examinations, immunohistochemical examinations for caspase-3, Sirt1, aquaporin2 (AQP2) and real time PCR for antioxidant genes; Nrf2, HO-1 in kidney tissues. RESULTS IF significantly improved serum creatinine, BUN and urinary protein excretion, oxidative stress (low MDA with high CAT and GSH), in addition to morphological damage to the renal tubules and glomeruli as well as caspase-3 production during apoptosis. Moreover, IF stimulates significantly the expression of Sirt1 and Nrf2/HO-1 and AQP2. CONCLUSION AQP2, Sirt1, Nrf2/HO-1 signaling may be upregulated and activated by IF, which alleviates ADR nephropathy. Enhancing endogenous antioxidants, reducing apoptosis and tubulointerstitial damage, and maintaining the glomerular membrane's integrity are other goals.
Collapse
Affiliation(s)
- Fathy H Elsaid
- Department of Medical Physiology, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Elsayed A Eid
- Department of Internal Medicine and Endocrinology, Faculty of Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Omar A Ammar
- Department of Basic Science, Faculty of Applied Health Science and Technology, Delta University for Science and Technology, Gamasa, Egypt
| | - Ali Ali Khalil
- Department of Medical Physiology, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| |
Collapse
|
10
|
Soroudi S, Mousavi G, Jafari F, Elyasi S. Prevention of colistin-induced neurotoxicity: a narrative review of preclinical data. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3709-3727. [PMID: 38091077 DOI: 10.1007/s00210-023-02884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/01/2023] [Indexed: 05/23/2024]
Abstract
Polymyxin E or colistin is an effective antibiotic against MDR Gram-negative bacteria. Due to unwanted side effects, the use of this antibiotic has been limited for a long time, but in recent years, the widespread of MDR Gram-negative bacteria infections has led to its reintroduction. Neurotoxicity and nephrotoxicity are the significant dose-limiting adverse effects of colistin. Several agents with anti-inflammatory and antioxidant properties have been used for the prevention of colistin-induced neurotoxicity. This study aims to review the preclinical studies in this field to prepare guidance for future human studies. The data was achieved by searching PubMed, Scopus, and Google Scholar databases. All eligible pre-clinical studies performed on neuroprotective agents against colistin-induced neurotoxicity, which were published up to September 2023, were included. Finally, 16 studies (ten in vitro and eight in vivo) are reviewed. Apoptosis (in 13 studies), inflammatory (in four studies), and oxidative stress (in 14 studies) pathways are the most commonly reported pathways involved in colistin-induced neurotoxicity. The assessed compounds include non-herbal (e.g., ascorbic acid, rapamycin, and minocycline) and herbal (e.g., curcumin, rutin, baicalein, salidroside, and ginsenoside) agents. Besides these compounds, some other measures like transplantation of mitochondria and the use of nerve growth factor and mesenchymal stem cells could be motivating subjects for future research. Based on the data from experimental (in vitro and animal) studies, a combination of colistin with neuroprotective agents could prevent or decrease colistin-induced neurotoxicity. However, well-designed randomized clinical trials and human studies are essential for demonstrating efficacy.
Collapse
Affiliation(s)
- Setareh Soroudi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran
| | - Ghazal Mousavi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran
| | - Fatemeh Jafari
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran.
| |
Collapse
|
11
|
Azimzadeh M, Greco G, Farmani A, Pourhajibagher M, Taherkhani A, Alikhani MY, Bahador A. Synergistic effects of nano curcumin mediated photodynamic inactivation and nano-silver@colistin against Pseudomonas aeruginosa biofilms. Photodiagnosis Photodyn Ther 2024; 45:103971. [PMID: 38218569 DOI: 10.1016/j.pdpdt.2024.103971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Patients with burn injuries colonized by multidrug-resistant Pseudomonas aeruginosa face increased mortality risk. The efficacy of colistin, a last-resort treatment, is declining as resistance levels rise. P. aeruginosa's robust biofilm exacerbates antibiotic resistance. Photodynamic Inactivation (PDI) shows promise in fighting biofilm. MATERIALS AND METHODS Nano curcumin (nCur) particles were synthesized, and their chemical characteristics were determined using zeta potential (ZP), dynamic light scattering analysis (DLS), energy-dispersive X-ray (EDX) analysis, and fourier transform infrared (FTIR). We conducted an MTT assay to assess the cytotoxicity of nCur-mediated PDI in combination with nanosilver colistin. The fractional biofilm inhibitory concentration (FBIC) of two P. aeruginosa clinical isolates and P. aeruginosa ATCC 27853 during nCur-mediated PDI@AgNPs@CL was determined using a 3-dimensional (3-D) checkerboard assay. To study the effect of nCur-mediated PDI@AgNPs@CL on lasI, lasR, rhlI, rhlR, pelA, and pslA gene expression, Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was conducted at each isolate's FBIC. The impact of treatments was also investigated using scanning electron microscopy (SEM). RESULTS The ZP and mean DLS values of the nCur were 10.3 mV and 402.6 ± 24.6 nm, respectively. The distinct functional groups of nCur corresponded with the peaks of FTIR absorption. Moreover, the EDX analysis showed the ratios of different metals in nCur. Cell viability percentages of nCur-mediated PDI@AgNPs@CL at FBIC concentrations of clinical isolates Nos. 30, 354, and P. aeruginosa ATCC 27853 were 91.36 %, 83.20 %, and 92.48 %, respectively. nCur-mediated PDI@AgNPs@CL treatment showed synergistic effects in clinical isolates and P. aeruginosa ATCC 27853 in a 3-D checkerboard assay. All six of the investigated genes showed down-regulation after nCur-mediated PDI@AgNPs@CL treatment. The most suppressed gene during nCur-mediated PDI@AgNPs@CL treatment was the rhlR gene (-11.9-fold) of P. aeruginosa ATCC 27853. The SEM micrographs further proved the connecting cement reduction and biofilm mass mitigation following nCur-mediated PDI@AgNPs@CL treatments. CONCLUSIONS The combined effect of nCur-mediated PDI and AgNPs@CL synergistically reduce the formation of biofilm in P. aeruginosa. This may be attributable to the suppression of the genes responsible for regulating the production of biofilms.
Collapse
Affiliation(s)
- Masoud Azimzadeh
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Grazia Greco
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Abbas Farmani
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran; Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
12
|
Joo L, Jeong HY, Bae DH, Jee JH, Choi WH, Kim HY, Kim S, Yang DH, Gee HY, Jeon S, Roh YG, Yoo J. Prostaglandin F2α analogue, bimatoprost ameliorates colistin-induced nephrotoxicity. Biomed Pharmacother 2023; 168:115446. [PMID: 37918255 DOI: 10.1016/j.biopha.2023.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 11/04/2023] Open
Abstract
Colistin (polymyxin E) is an antibiotic that is effective against multidrug-resistant gram-negative bacteria. However, the high incidence of nephrotoxicity caused by colistin limits its clinical use. To identify compounds that might ameliorate colistin-induced nephrotoxicity, we obtained 1707 compounds from the Korea Chemical Bank and used a high-content screening (HCS) imaging-based assay. In this way, we found that bimatoprost (one of prostaglandin F2α analogue) ameliorated colistin-induced nephrotoxicity. To further assess the effects of bimatoprost on colistin-induced nephrotoxicity, we used in vitro and in vivo models. In cultured human proximal tubular cells (HK-2), colistin induced dose-dependent cytotoxicity. The number of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells, indicative of apoptosis, was higher in colistin-treated cells, but this effect of colistin was ameliorated by cotreatment with bimatoprost. The generation of reactive oxygen species, assessed using 2,7-dichlorodihydrofluorescein diacetate, was less marked in cells treated with both colistin and bimatoprost than in those treated with colistin alone. Female C57BL/6 mice (n = 10 per group) that were intraperitoneally injected with colistin (10 mg/kg/12 hr) for 14 days showed high blood urea nitrogen and serum creatinine concentrations that were reduced by the coadministration of bimatoprost (0.5 mg/kg/12 hr). In addition, kidney injury molecule-1 (KIM1) and Neutrophil gelatinase-associated lipocalin (NGAL) expression also reduced by bimatoprost administration. Further investigation in tubuloid and kidney organoids also showed that bimatoprost attenuated the nephrotoxicity by colistin, showing dose-dependent reducing effect of KIM1 expression. In this study, we have identified bimatoprost, prostaglandin F2α analogue as a drug that ameliorates colistin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Lina Joo
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea
| | - Hye Yun Jeong
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, the Republic of Korea
| | - Dong Hyuck Bae
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea
| | - Joo Hyun Jee
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea
| | - Woo Hee Choi
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea; R&D Institute, ORGANOIDSCIENCES LTD., Seongnam, the Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, the Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonnggi-do 13620, the Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine Seoul, 03080, the Republic of Korea
| | - Dong-Ho Yang
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, the Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, the Republic of Korea
| | - SeongGyeong Jeon
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea
| | - Yun-Gil Roh
- Program in Health Policy, Chung-Buk National University, Republic of Korea
| | - Jongman Yoo
- Department of Microbiology, CHA University School of Medicine, Seongnam, the Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, the Republic of Korea; R&D Institute, ORGANOIDSCIENCES LTD., Seongnam, the Republic of Korea.
| |
Collapse
|
13
|
ALRashdi B, Mohamed R, Mohamed A, Samoul F, Mohamed M, Moussa M, Alrashidi S, Dawod B, Habotta O, Abdel Moneim A, Ramadan S. Therapeutic activity of green synthesized selenium nanoparticles from turmeric against cisplatin-induced oxido-inflammatory stress and cell death in mice kidney. Biosci Rep 2023; 43:BSR20231130. [PMID: 37902021 PMCID: PMC10643052 DOI: 10.1042/bsr20231130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 10/31/2023] Open
Abstract
Cisplatin (CDDP) is a commonly prescribed chemotherapeutic agent; however, its associated nephrotoxicity limits its clinical efficacy and sometimes requires discontinuation of its use. The existing study was designed to explore the reno-therapeutic efficacy of turmeric (Tur) alone or conjugated with selenium nanoparticles (Tur-SeNPs) against CDDP-mediated renal impairment in mice and the mechanisms underlying this effect. Mice were orally treated with Tur extract (200 mg/kg) or Tur-SeNPs (0.5 mg/kg) for 7 days after administration of a single dose of CDDP (5 mg/kg, i.p.). N-acetyl cysteine NAC (100 mg/kg) was used as a standard antioxidant compound. The results revealed that Tur-SeNPs counteracted CDDP-mediated serious renal effects in treated mice. Compared with the controls, Tur or Tur-SeNPs therapy remarkably decreased the kidney index along with the serum levels of urea, creatinine, Kim-1, and NGAL of the CDDP-injected mice. Furthermore, Tur-SeNPs ameliorated the renal oxidant status of CDDP group demonstrated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and gene expression levels of HO-1. Noteworthy, lessening of renal inflammation was exerted by Tur-SeNPs via lessening of IL-6 and TNF-α besides down-regulation of NF-κB gene expression in mouse kidneys. Tur-SeNPs treatment also restored the renal histological features attained by CDDP challenge and hindered renal apoptosis through decreasing the Bax levels and increasing Bcl-2 levels. Altogether, these outcomes suggest that the administration of Tur conjugated with SeNPs is effective neoadjuvant chemotherapy to guard against the renal adverse effects that are associated with CDDP therapy.
Collapse
Affiliation(s)
- Barakat M. ALRashdi
- Department of Biology, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Roaya A. Mohamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Amal H. Mohamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Feryal A. Samoul
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mazen I. Mohamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohsen M. Moussa
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Saad M. Alrashidi
- Consultant Radiation Oncology, Comprehensive Cancer Centre, King Fahad Medical City and College of medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Bassel Dawod
- McMaster Children’s Hospital, Faculty of Health Sciences, Hamilton, Ontario, Canada
- Department of Biology, College of Science, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shimaa S. Ramadan
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
14
|
Bintang MAKM, Nopparat J, Srichana T. In vivo evaluation of nephrotoxicity and neurotoxicity of colistin formulated with sodium deoxycholate sulfate in a mice model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3243-3252. [PMID: 37249614 DOI: 10.1007/s00210-023-02531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Neurotoxicity and nephrotoxicity are the major dose-limiting factors for the clinical use of colistin against multidrug-resistant (MDR) Gram-negative bacteria. This study aimed to investigate the neurotoxic and nephrotoxic effects of colistin formulated with in-house synthesized sodium deoxycholate sulfate (SDCS) in a mouse model. Male mice C57BL/6 were randomly divided into four groups: control (saline solution), colistin (15 mg/kg/day), colistin:SDCS 1:1, and colistin:SDCS 1:2. In the colistin:SDCS treatment groups, the dosage was 15 mg/kg/day colistin equivalent; all mice were treated for 7 successive days. The thermal tolerance, body weight gain and organ weights were measured. The levels of serum blood urea nitrogen (BUN), creatinine (Cr), superoxide dismutase (SOD), and catalase (CAT) were assessed. Histopathological damages were assessed on mice organ. The colistin:SDCS formulations significantly improved thermal pain response of the mice comparable to the control group. The administration did not impair kidney function as evidence from BUN and Cr results; however, the oxidative stress biomarkers decreased in the colistin and colistin-SDCS treated mice. Several abnormalities were observed in the kidney, liver, spleen, and sciatic nerve tissues following colistin treatment, which indicated evidence of toxicity. The colistin-SDCS formulations were associated with less acute toxicity and fewer nephrotoxic and neurotoxic changes compared with the colistin alone group which indicated that SDCS attenuated colistin nephrotoxicity and neurotoxicity. This study highlights the potential application of colistin formulated with SDCS for safer clinical use against MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Muhammad Ali Khumaini Mudhar Bintang
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Jongdee Nopparat
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
15
|
Hudson CS, Smith JE, Eales BM, Kajiji S, Liu X, Truong LD, Tam VH. Zileuton ameliorates aminoglycoside and polymyxin-associated acute kidney injury in an animal model. J Antimicrob Chemother 2023; 78:2435-2441. [PMID: 37563789 DOI: 10.1093/jac/dkad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVES Aminoglycosides and polymyxins are antibiotics with in vitro activity against MDR Gram-negative bacteria. However, their clinical use is hindered by dose-limiting nephrotoxicity. The objective of this project was to determine if zileuton can reduce nephrotoxicity associated with amikacin and polymyxin B in a rat model of acute kidney injury. METHODS Sprague Dawley rats (n = 10, both genders) were administered either amikacin (300 mg/kg) or polymyxin B (20 mg/kg) daily for 10 days. Zileuton (4 and 10 mg/kg) was delivered intraperitoneally 15 min before antibiotic administration. Blood samples were collected at baseline and daily to determine serum creatinine concentration. Nephrotoxicity was defined as a ≥2× elevation of baseline serum creatinine. Time-to-event analysis and log rank test were used to compare the onset of nephrotoxicity in different cohorts. Histopathological analysis was also conducted to characterize the extent of kidney injury. RESULTS Animals receiving amikacin or polymyxin B alone had nephrotoxicity rates of 90% and 100%, respectively. The overall rate was reduced to 30% in animals receiving adjuvant zileuton. The onset of nephrotoxicity associated with amikacin and polymyxin B was also significantly delayed by zileuton at 4 and 10 mg/kg, respectively. Histopathology confirmed reduced kidney injury in animals receiving amikacin concomitant with zileuton. CONCLUSIONS Our pilot data suggest that zileuton has the potential to attenuate nephrotoxicity associated with last-line antibiotics. This would allow these antibiotics to treat MDR Gram-negative bacterial infections optimally without dose-limiting constraints. Further studies are warranted to optimize drug delivery and dosing in humans.
Collapse
Affiliation(s)
- Cole S Hudson
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
| | - James E Smith
- Department of Pharmacy Practice & Translational Research, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
| | - Brianna M Eales
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
| | - Shama Kajiji
- Emergent System Analytics, LLC, 24 W Main St Suite 216, Clinton, CT, USA
| | - Xinli Liu
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin St, Houston, TX, USA
| | - Vincent H Tam
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
- Department of Pharmacy Practice & Translational Research, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
| |
Collapse
|
16
|
Qin C, Tang N, Gan Y, Zhao H, Li Y, Tian GB, Yang YY, Yuan P, Ding X. Liposomes Co-Delivering Curcumin and Colistin to Overcome Colistin Resistance in Bacterial Infections. Adv Healthc Mater 2023; 12:e2202903. [PMID: 37523195 DOI: 10.1002/adhm.202202903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Antibiotic colistin is the last line of defense against multidrug-resistant (MDR) Gram-negative bacterial infections. Emergence of colistin resistance in microbes is a critical challenge. Herein, curcumin is discovered, for the first time, to reverse the resistance phenotype of colistin-resistant bacteria via a checkerboard assay. For the co-delivery of curcumin and colistin, negatively charged poly(ethylene glycol)-functionalized liposomes encapsulating both drugs (Lipo-cc) are prepared. Killing kinetics and live/dead assays confirm the antibacterial activity of Lipo-cc against colistin-resistant bacteria, which is more potent than that of the free curcumin and colistin combination. Mechanistical studies reveal that Lipo-cc restores the affinity of colistin for the bacterial membrane and improves the uptake of curcumin, which leads to reduced efflux pump activity, achieving a synergistic effect of colistin and curcumin. At the effective antibacterial dose, Lipo-cc does not exhibit any toxicity. The therapeutic efficacy of Lipo-cc is further demonstrated in an intestinal bacterial infection model induced with colistin-resistant Escherichia coli. Lipo-cc reduces the bacterial burden with over 6-log reduction and alleviated inflammation caused by infection. Importantly, unlike colistin, Lipo-cc does not affect the homeostasis of the intestinal flora. Taken together, Lipo-cc successfully overcame colistin resistance, indicating its potential for the treatment of colistin-resistant bacterial infections.
Collapse
Affiliation(s)
- Chengyuan Qin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Ning Tang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Yingying Gan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P. R. China
| | - Yi Yan Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P. R. China
| |
Collapse
|
17
|
Shafik MS, El-Tanbouly DM, Bishr A, Attia AS. Insights into the role of PHLPP2/Akt/GSK3β/Fyn kinase/Nrf2 trajectory in the reno-protective effect of rosuvastatin against colistin-induced acute kidney injury in rats. J Pharm Pharmacol 2023:7140447. [PMID: 37095069 DOI: 10.1093/jpp/rgad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVES Oxidative stress-mediated colistin's nephrotoxicity is associated with the diminished activity of nuclear factor erythroid 2-related factor 2 (Nrf2) that is primarily correlated with cellular PH domain and leucine-rich repeat protein phosphatase (PHLPP2) levels. This study investigated the possible modulation of PHLPP2/protein kinase B (Akt) trajectory as a critical regulator of Nrf2 stability by rosuvastatin (RST) to guard against colistin-induced oxidative renal damage in rats. METHODS Colistin (300,000 IU/kg/day; i.p.) was injected for 6 consecutive days, and rats were treated simultaneously with RST orally at 10 or 20 mg/kg. KEY FINDINGS RST enhanced renal nuclear Nrf2 translocation as revealed by immunohistochemical staining to boost the renal antioxidants, superoxide dismutase (SOD) and reduced glutathione (GSH) along with a marked reduction in caspase-3. Accordingly, rats treated with RST showed significant restoration of normal renal function and histological features. On the molecular level, RST effectively decreased the mRNA expression of PHLPP2 to promote Akt phosphorylation. Consequently, it deactivated GSK-3β and reduced the gene expression of Fyn kinase in renal tissues. CONCLUSIONS RST could attenuate colistin-induced oxidative acute kidney injury via its suppressive effect on PHLPP2 to endorse Nrf2 activity through modulating Akt/GSK3 β/Fyn kinase trajectory.
Collapse
Affiliation(s)
- Marihan S Shafik
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Dalia M El-Tanbouly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abeer Bishr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Amina S Attia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Xiong L, Xiang D, Yuan F, Tong H, Yang R, Zhou L, Xu B, Deng C, Li X. Piceatannol-3'-O-β-D-glucopyranoside attenuates colistin-induced neurotoxicity by suppressing oxidative stress via the NRF2/HO-1 pathway. Biomed Pharmacother 2023; 161:114419. [PMID: 36822020 DOI: 10.1016/j.biopha.2023.114419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Multidrug-resistant Gram-negative bacteria are the most pressing problem in treating infectious diseases. As one of the primary drugs for multidrug-resistant Gram-negative bacteria, the neurotoxicity of colistin has become a significant challenge in clinical practice. PURPOSE This study aimed to investigate the potential effect of piceatannol-3'-O-β-D glucopyranoside (PG) on colistin-induced neurotoxicity and the underlying mechanism. METHODS In vitro, nerve cell damage models were established by exposing N2a cells to 400 μM colistin for 24 h. The effects of PG on cell viability, apoptosis level, and oxidative stress level were analyzed. A western blot experiment was performed to determine the NRF2 pathway, apoptosis, and autophagy-related proteins. Mitochondrial morphology and mitochondrial membrane potential were detected after staining using laser confocal microscopy. In vivo, nerve injury mouse model was established by intracerebroventricular colistin administration. Morphological changes in brain tissues were observed using HE and Nissl staining. RESULTS PG significantly reduced colistin-induced neuronal apoptosis levels. The apoptosis-related protein expressions were suppressed after PG intervention. Mechanistically, PG increased the levels of antioxidant factors and decreased the levels of oxidative factors, which might be related to the activation of the NRF2 pathway. In addition, PG treatment reversed the deviations in mitochondrial morphology and membrane potential. PG suppressed autophagy levels in N2a cells, possibly because PG inhibited colistin-induced apoptosis, thus reducing the level of spontaneous protective autophagy in cells. Nrf2 knockdown N2a cell models were applied to confirm that the activation of the NRF2 pathway played a vital role in PG alleviating the nerve damage caused by colistin. CONCLUSION PG is a potential treatment option for colistin-induced neurotoxicity. It mitigated colistin-induced oxidative stress-associated injury and mitochondrial damage by activating the NRF2/HO-1 pathway, thus reducing nerve cell apoptosis.
Collapse
Affiliation(s)
- Liguang Xiong
- Hunan University of Chinese Medicine, Changsha, China; Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Huan Tong
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Rui Yang
- Hunan University of Chinese Medicine, Changsha, China; Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Lili Zhou
- Hunan University of Chinese Medicine, Changsha, China
| | - Bing Xu
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Changhui Deng
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China; The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China.
| |
Collapse
|
19
|
Alagal RI, AlFaris NA, Alshammari GM, ALTamimi JZ, AlMousa LA, Yahya MA. The protection afforded by Berberine against chemotherapy-mediated nephropathy in rats involves regulation of the antioxidant axis. Basic Clin Pharmacol Toxicol 2023; 132:98-110. [PMID: 36221996 DOI: 10.1111/bcpt.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 12/30/2022]
Abstract
Doxorubicin (DOX) treatment in cancer patients leads to nephrotoxicity. The nephroprotective effect of Berberine (BBR), a herbal ingredient, is well documented as antioxidant and activation of the Nrf2 signalling. This study aimed to investigate if Nrf2 is a major protective mechanism of BBR in DOX animal models. Rats were divided as (n = 6 each): Control, BBR (100 mg/kg, orally), DOX (15 mg/kg, orally), BBR + DOX, and BBR + DOX + brusatol (0.2 mg/kg, i.p./twice per week) (an Nrf2 inhibitor). DOX was given as a single dose (day 10), whereas BBR was administered for 3 weeks on a daily basis. BBR reduced tubular degeneration and improved renal markers in DOX-treated rats. It also reduced renal nuclear levels of NF-κB p65, total reactive oxygen species (ROS), lipid peroxides, interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α), as well as mRNA levels of Bax and cleaved caspase-3. However, BBR stimulated glutathione (GSH) and superoxide dismutase (SOD) levels, the transcription of Bcl2, and the mRNA, total cytoplasmic, and nuclear levels of Nrf2 with no effect on the cytoplasmic keap1 levels. All these effects disappeared by brusatol. In conclusion, BBR prevents DOX-induced renal damage by activating Nrf2.
Collapse
Affiliation(s)
- Reham I Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, P.O.Box 84428, 11671, Saudi Arabia
| | - Nora A AlFaris
- Nutrition and Food Science (PHD), Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, 11671, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jozaa Z ALTamimi
- Nutrition and Food Science (PHD), Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, 11671, Saudi Arabia
| | - Lujain A AlMousa
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, P.O.Box 84428, 11671, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Dai C, Li M, Liu Y, Tran DH, Jiang H, Tang S, Shen J. Involvement of the inhibition of mitochondrial apoptotic, p53, NF-κB pathways and the activation of Nrf2/HO-1 pathway in the protective effects of curcumin against copper sulfate-induced nephrotoxicity in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114480. [PMID: 38321692 DOI: 10.1016/j.ecoenv.2022.114480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/29/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2024]
Abstract
Chronic copper exposure could cause potential nephrotoxicity and effective therapy strategies are limited. This study investigated the protective effects of curcumin on copper sulfate (CuSO4)-induced renal damage in a mouse model and the underlying molecular mechanisms. Mice were administrated orally with CuSO4 (100 mg/kg per day) in combination with or without curcumin (50, 100 or 200 mg/kg per day, orally) for 28 days. Results showed that curcumin supplementation significantly reduce the Cu accumulation in the kidney tissues of mice and improved CuSO4-induced renal dysfunction. Furthermore, curcumin supplantation also significantly ameliorated Cu exposure-induced oxidative stress and tubular necrosis in the kidneys of mice. Moreover, compared to the CuSO4 alone group, curcumin supplementation at 200 mg/kg per day significantly decreased CuSO4-induced the expression of p53, Bax, IL-1β, IL-6, and TNF-α proteins, levels of NF-κB mRNA, levels of caspases-9 and - 3 activities, and cell apoptosis, and significantly increased the levels of Nrf2 and HO-1 mRNAs in the kidney tissues. In conclusion, for the first time, our results reveal that curcumin could trigger the inhibition of oxidative stress, mitochondrial apoptotic, p53, and NF-κB pathways and the activation of Nrf2/HO-1 pathway to ameliorate Cu overload-induced nephrotoxicity in a mouse model. Our study highlights that curcumin supplementation may be a promising treatment strategy for treating copper overload-caused nephrotoxicity.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, PR China.
| | - Meng Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Yue Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Diem Hong Tran
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haiyang Jiang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, PR China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, PR China
| |
Collapse
|
21
|
Shafik MS, Bishr A, El-Tanbouly DM, Attia AS. Modulation of miR-205/ EGLN2 by rosuvastatin mitigates colistin-induced nephrotoxicity in rats: Involvement of ATF4/ CHOP and Nrf2 pathways. Biomed Pharmacother 2023; 157:114042. [PMID: 36436490 DOI: 10.1016/j.biopha.2022.114042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
Although the beneficial role of microRNA has been investigated thoroughly, the reno-protective role of microRNA-205 (miR-205) against colistin-induced nephrotoxicity has not yet been tackled. Hence, our study sought to study the possible modulatory effect of rosuvastatin on miR-205 and its downstream target, Egl-9 family hypoxia-inducible factor 2 (EGLN2) to combat oxidative and endoplasmic reticulum (ER) stresses as pivotal contributors to colistin-associated renal injury. Rats were randomly divided into four groups; normal, colistin (300 000 IU/Kg/day; i.p), colistin pretreated with rosuvastatin (10 mg/kg; p.o) and colistin pretreated with rosuvastatin (20 mg/kg; p.o) for 6 successive days. Pretreatment with rosuvastatin attenuated renal injury induced by colistin and enhanced kidney function with a marked reduction in renal injury markers, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Besides, rosuvastatin upregulated renal miR-205 expression and suppressed gene expression of EGLN2. In addition, it downregulated ER stress-related genes (activation transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP)) along with caspases 12 and 3. It also induced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) as detected by immunohistochemical examination besides increased renal antioxidants, reduced glutathione, and superoxide dismutase. In conclusion, rosuvastatin triggered a series of protective mechanisms against colistin-induced nephrotoxicity through modulating miR-205 and EGLN2 expression. Rosuvastatin suppressed ATF4/ CHOP trajectory and activated the Nrf2 pathway to substantiate its antioxidant and anti-apoptotic capacities.
Collapse
Affiliation(s)
- Marihan S Shafik
- Pharmacology and Toxicology department, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Abeer Bishr
- Pharmacology and Toxicology department, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Dalia M El-Tanbouly
- Pharmacology and Toxicology department, Faculty of Pharmacy, Cairo University, Egypt.
| | - Amina S Attia
- Pharmacology and Toxicology department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
22
|
Yasir M, Turner AK, Bastkowski S, Lott M, Holden ER, Telatin A, Page AJ, Webber MA, Charles IG. Genome-Wide Analysis of Innate Susceptibility Mechanisms of Escherichia coli to Colistin. Antibiotics (Basel) 2022; 11:antibiotics11111668. [PMID: 36421312 PMCID: PMC9687012 DOI: 10.3390/antibiotics11111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Colistin is an antibiotic that has seen increasing clinical use for the treatment of human infections caused by Gram-negative pathogens, particularly due to the emergence of multidrug-resistant pathogens. Colistin resistance is also a growing problem and typically results from alterations to lipopolysaccharides mediated by phosphoethanolamine (pETn) transferase enzymes which can be encoded on the chromosome, or plasmids. In this study, we used 'TraDIS-Xpress' (Transposon Directed Insertion site Sequencing with expression), where a high-density transposon mutant library including outward facing promoters in Escherichia coli BW25113 identified genes involved in colistin susceptibility. We examined the genome-wide response of E. coli following exposure to a range of concentrations of colistin. Our TraDIS-Xpress screen confirmed the importance of overexpression of the two-component system basSR (which regulates pETn transferases) but also identified a wider range of genes important for survival in the presence of colistin, including genes encoding membrane associated proteins, DNA repair machinery, various transporters, RNA helicases, general stress response genes, fimbriae and phosphonate metabolism. Validation experiments supported a role in colistin susceptibility for novel candidate genes tested. TraDIS-Xpress is a powerful tool that expands our understanding of the wider landscape of genes involved in response to colistin susceptibility mechanisms.
Collapse
Affiliation(s)
- Muhammad Yasir
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Correspondence: ; Tel.: +44-1603255391
| | - A. Keith Turner
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich NR4 7UQ, UK
| | - Sarah Bastkowski
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich NR4 7UQ, UK
| | - Martin Lott
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich NR4 7UQ, UK
| | - Emma R. Holden
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich NR4 7UQ, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich NR4 7UQ, UK
| | - Andrew J. Page
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich NR4 7UQ, UK
| | - Mark A. Webber
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Norwich Medical School, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, UK
| | - Ian G. Charles
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Norwich Medical School, Norwich Research Park, Colney Lane, Norwich NR4 7TJ, UK
| |
Collapse
|
23
|
Phytochemical Combination Is More Effective than Individual Components in Reducing Stress Signaling in Rat Hippocampal Neurons and Microglia In Vitro. Int J Mol Sci 2022; 23:ijms232012651. [PMID: 36293507 PMCID: PMC9603949 DOI: 10.3390/ijms232012651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
Age-related decrements in the central nervous system (CNS) are thought to result from: (1) increased susceptibility to and accumulating effects of free radicals and inflammation; and (2) dysregulation in Ca2+ homeostasis, which affects numerous signaling pathways. Certain bioactive phytochemicals exhibit potent anti-inflammatory activities which may mitigate these age-related CNS decrements. This study investigated the individual and combination effects of green tea catechin (epigallocatechin gallate, EGCG), curcumin from turmeric, and broccoli sprouts which contain the isothiocyanate sulforaphane on inflammation and dysregulation in Ca2+ homeostasis to determine if the individual compounds were working synergistically and/or through independent mechanisms. Rat hippocampal neurons or highly aggressive proliferating immortalized (HAPI) microglial cells were pre-treated for a week with either the individual components or all in combination before inducing Ca2+ buffering deficits with dopamine (DA, 0.1 µM for 2 h) or inflammation using lipopolysaccharide (LPS, 100 ng/mL for 18 h), respectively. The EGCG (3 µM) and combination protected against DA-induced deficits in Ca2+ buffering (both % of cells that recovered and recovery time, p < 0.05). Additionally, the EGCG and combination reduced stress-mediated inflammation in HAPI rat microglial cells by attenuating LPS-induced nitrite release, inducible nitrous oxide synthase (iNOS) expression, and tumor necrosis factor-alpha (TNF-α) release (p < 0.05), but not cyclooxygenase-2 (COX-2) expression. Overall, broccoli sprouts (2 µM) and curcumin (1 µM) were not as effective as the EGCG or combination. Further research is needed to determine if dietary intervention with a variety of foods containing compounds such as those found in green tea, turmeric, or broccoli sprouts can play a role in reducing age-related CNS inflammation, microglial activation, and downstream signaling pathways that can lead to neuronal dysfunction.
Collapse
|
24
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Gergin ÖÖ, Pehlivan SS, Ulger M, Mat OC, Bayram A, Gönen ZB, Gökdemir NS, Biçer C, Yildiz K, Yay AH. Efficacy of stem cell-based therapies for colistin-induced nephrotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103933. [PMID: 35863655 DOI: 10.1016/j.etap.2022.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/18/2022] [Accepted: 07/10/2022] [Indexed: 06/09/2023]
Abstract
The increase in infections with multidrug resistant bacteria has forced to return to the use of colistin, antibiotic with known nephrotoxicity. Mesenchymal stem cells (MSCs) are being extensively investigated for their potential in regenerative medicine. This study aimed to investigate the possible protective mechanisms of the MSCs against kidney injury induced by colistin. Forty adult female albino rats were randomly classified into 4 equal groups; the control group, the MSC-treated group (a single dose of 1 ×106 /ml MSCs through the tail vein), the colistin-treated group (36 mg/kg/day colistin was given for 7 days), and the both colistin and MSC group (36 mg/kg/day colistin and 1 ×106 /ml MSCs). Main outcome measures were histopathological alterations, kidney malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and immunohistological autophagy evaluation. MSC repressed the progression of colistin-induced kidney injury as evidenced by the improvement of histopathological alterations and the substantial increase MDA, and decrease SOD and CAT in serum levels. Moreover, MSC resulted in a profound reduction in oxidative stress as manifested by decreased MDA and increased SOD in serum. Notably, MSC suppressed colistin-induced autophagy; it reduced renal levels of Beclin-1, P62 and LC3A/B. Furthermore, MSC decreased renal levels of eNOS. Lastly, MSC efficiently decreased expression of the TUNEL positive cell number. MSC confers protection against colistin-induced kidney injury by alleviating oxidative stress, nitric oxide synthase besides modulating reducing autophagy and apoptosis.
Collapse
Affiliation(s)
- Özlem Öz Gergin
- Department of Anaesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey.
| | - Sibel Seckin Pehlivan
- Department of Anaesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey.
| | - Menekse Ulger
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | - Adnan Bayram
- Department of Anaesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey.
| | | | - Nur Seda Gökdemir
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| | - Cihangir Biçer
- Department of Anaesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey.
| | - Karamehmet Yildiz
- Department of Anaesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey.
| | - Arzu Hanım Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey; Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| |
Collapse
|
26
|
Yen NTH, Park SM, Thu VTA, Phat NK, Cho YS, Yoon S, Shin JG, Kim DH, Oh JH, Long NP. Genome-wide gene expression analysis reveals molecular insights into the drug-induced toxicity of nephrotoxic agents. Life Sci 2022; 306:120801. [PMID: 35850247 DOI: 10.1016/j.lfs.2022.120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
Drug-induced nephrotoxicity is frequently reported. However, the mechanisms underlying nephrotoxic medications and their overlapping molecular events, which might have therapeutic value, are unclear. We performed a genome-wide analysis of gene expression and a gene set enrichment analysis to identify common and unique pathways associated with the toxicity of colistin, ifosfamide, indomethacin, and puromycin. Rats were randomly allocated into the treatment or control group. The treatment group received a toxic dose once daily of each investigated drug for 1 week. Differentially expressed genes were found in the drug-treated kidney and liver compared to the control, except for colistin in the liver. Upregulated pathways were mainly related to cell death, cell cycle, protein synthesis, and immune response modulation in the kidney. Cell cycle was upregulated by all drugs. Downregulated pathways were associated with carbon metabolism, amino acid metabolism, and fatty acid metabolism. Indomethacin, colistin, and puromycin shared the most altered pathways in the kidney. Ifosfamide and indomethacin affected molecular processes greatly in the liver. Our findings provide insight into the mechanisms underlying the renal and hepatic adverse effects of the four drugs. Further investigation should explore the combinatory drug therapies that attenuate the toxic effects and maximize the effectiveness of nephrotoxic drugs.
Collapse
Affiliation(s)
- Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Vo Thuy Anh Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Republic of Korea; Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 614-735, Republic of Korea.
| |
Collapse
|
27
|
Mahdiani S, Omidkhoda N, Heidari S, Hayes AW, Karimi G. Protective effect of luteolin against chemical and natural toxicants by targeting NF-κB pathway. Biofactors 2022; 48:744-762. [PMID: 35861671 DOI: 10.1002/biof.1876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
Humans are continuously exposed to environmental, occupational, consumer and household products, food, and pharmaceutical substances. Luteolin, a flavone from the flavonoids family of compounds, is found in different fruits and vegetables. LUT is a strong anti-inflammatory (via inhibition of NF-κB, ERK1/2, MAPK, JNK, IL-6, IL-8, and TNF-α) and antioxidant agent (reducing ROS and enhancement of endogenous antioxidants). LUT can chelate transition metal ions responsible for ROS generation and consequently repress lipoxygenase. It has been proven that NF-κB, as a commom cellular pathway plays a considerable role in the progression of inflammatory process and stimulates the expression of genes encoding inducible pro-inflammatory enzymes (iNOS and COX-2) and cytokines including IL-1β, IL-6, and TNF-α. This review summarizes the available literature discussing LUT and its potential protective role against pharmaceuticals-, metals-, and environmental compounds-induced toxicities. Furthermore, the review explains the involved protective mechanisms, especially inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Michigan State University, East Lansing, Michigan, USA
- University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Shi HH, Chen LP, Wang CC, Zhao YC, Wang YM, Xue CH, Zhang TT. Docosahexaenoic acid-acylated curcumin diester alleviates cisplatin-induced acute kidney injury by regulating the effect of gut microbiota on the lipopolysaccharide- and trimethylamine- N-oxide-mediated PI3K/Akt/NF-κB signaling pathway in mice. Food Funct 2022; 13:6103-6117. [PMID: 35575345 DOI: 10.1039/d1fo04178a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An increasing number of studies have reported the effects of curcumin (Cur) and docosahexaenoic acid (DHA) on alleviating acute kidney injury (AKI). In this work, we have performed a comparative investigation to determine the effect of dietary DHA-acylated Cur esters, ester derivatives of Cur, and recombination of curcumin and DHA on alleviating acute kidney injury in a mouse model induced by a single intraperitoneal injection with cisplatin (20 mg kg-1). The results showed that the DHA-acylated Cur diesters significantly decreased the abnormally increased blood urea nitrogen, creatinine, lipopolysaccharide (LPS) and trimethylamine-N-oxide (TMAO) in serum caused by AKI. Histopathological results confirmed that DHA-acylated Cur diesters clearly reduced the degree of renal tubular injury. The renal protective effect of the DHA-acylated Cur diester was better than that of the monoester and the recombination of Cur and DHA. Notably, we found that the DHA-acylated Cur diester treatment remarkably changed the relative abundance of microbiota related to LPS and TMAO/trimethylamine (TMA) metabolism. Moreover, dietary DHA-acylated Cur diesters clearly reduced the MDA content and elevated GSH levels in the kidney of AKI mice, as well as changed the fatty acid composition in the kidney. Further mechanism studies showed that DHA-acylated Cur diesters significantly inhibited inflammation, apoptosis and oxidative stress by preventing the LPS and TMAO-mediated PI3K/Akt/NF-κB signaling pathway. The above results indicate that DHA-acylated Cur diesters are a potentially novel candidate or targeted dietary pattern to prevent and treat drug-induced acute kidney injury.
Collapse
Affiliation(s)
- Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Li-Pin Chen
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China. .,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, P. R. China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China. .,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| |
Collapse
|
29
|
Sanad FAA, Ahmed SF, El-Tantawy WH. Antidiabetic and hypolipidemic potentials of Solidago virgaurea extract in alloxan-induced diabetes type 1. Arch Physiol Biochem 2022; 128:716-723. [PMID: 32026741 DOI: 10.1080/13813455.2020.1722705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of the current study is to investigate the antidiabetic and hypolipidemic potentials of Solidago virgaurea extract in alloxan-induced diabetic rats. MATERIALS AND METHODS Alloxan-induced diabetic rats were orally administered a dose of Solidago virgaurea extract (250 mg/kg body weight) daily for 15 days. Then blood glucose, insulin, serum lipid profile, amylase, tumour necrosis factor-α (TNF- α), and liver glycogen were determined. Besides, superoxide dismutase (SOD), catalase activities, and malondialdehyde (MDA) levels in pancreatic tissue were assessed. RESULTS Solidago virgaurea extract significantly reduced blood glucose level, serum amylase activity, TNF-α level, and pancreatic MDA level as well as increasing the serum insulin, liver glycogen level, pancreatic SOD, and catalase activities in comparison with their corresponding diabetic rats, p < .05. CONCLUSION The findings of this study support the ethnomedicinal use of Solidago virgaurea extract as an antidiabetic and antihyperlipidemic in the management of diabetes mellitus.
Collapse
|
30
|
Mirjalili M, Mirzaei E, Vazin A. Pharmacological agents for the prevention of colistin-induced nephrotoxicity. Eur J Med Res 2022; 27:64. [PMID: 35525994 PMCID: PMC9077985 DOI: 10.1186/s40001-022-00689-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Colistin is a polymyxin antibiotic which has been used for treatment of Gram-negative infections, but it was withdrawn due to its nephrotoxicity. However, colistin has gained its popularity in recent years due to the reemergence of multidrug resistant Gram-negative infections and drug-induced toxicity is considered as the main obstacle for using this valuable antibiotic. RESULTS In total, 30 articles, including 29 animal studies and one clinical trial were included in this study. These compounds, including aged black garlic extract, albumin fragments, alpha lipoic acid, astaxanthin, baicalein, chrysin, cilastatin, colchicine, curcumin, cytochrome c, dexmedetomidine, gelofusine, grape seed proanthocyanidin extract, hesperidin, luteolin, lycopene, melatonin, methionine, N-acetylcysteine, silymarin, taurine, vitamin C, and vitamin E exhibited beneficial effects in most of the published works. CONCLUSIONS In this review, the authors have attempted to review the available literature on the use of several compounds for prevention or attenuation of colistin-induced nephrotoxicity. Most of the studied compounds were potent antioxidants, and it seems that using antioxidants concomitantly can have a protective effect during the colistin exposure.
Collapse
Affiliation(s)
- Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Mirzaei
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Gastroprotective, hepatoprotective, and nephroprotective effects of thymol against the adverse effects of acetylsalicylic acid in rats: Biochemical and histopathological studies. Saudi J Biol Sci 2022; 29:103289. [PMID: 35521358 PMCID: PMC9065893 DOI: 10.1016/j.sjbs.2022.103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/09/2022] [Accepted: 04/17/2022] [Indexed: 11/21/2022] Open
|
32
|
Delineation of the molecular mechanisms underlying Colistin-mediated toxicity using metabolomic and transcriptomic analyses. Toxicol Appl Pharmacol 2022; 439:115928. [DOI: 10.1016/j.taap.2022.115928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
|
33
|
Alagal RI, AlFaris NA, Alshammari GM, ALTamimi JZ, AlMousa LA, Yahya MA. Kaempferol attenuates doxorubicin-mediated nephropathy in rats by activating SIRT1 signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Zhang X, Wang Q, Zhang J, Song M, Shao B, Han Y, Yang X, Li Y. The Protective Effect of Selenium on T-2-Induced Nephrotoxicity Is Related to the Inhibition of ROS-Mediated Apoptosis in Mice Kidney. Biol Trace Elem Res 2022; 200:206-216. [PMID: 33547999 DOI: 10.1007/s12011-021-02614-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 02/04/2023]
Abstract
T-2 toxin is produced by the Fusarium genus. Ingestion of food or feed contaminated by T-2 toxin will cause damage to kidney. Selenium (Se), an essential trace element, showed the significant protective effects against kidney and renal cell damage induced by toxic substances. To explore the protective effects and mechanisms of Se against T-2-induced renal lesions, forty-eight male Kunming mice were exposed to T-2 toxin (1.0 mg/kg) and/or Se (0.2 mg/kg) for 28 days. In this study, we found that Se alleviated T-2-induced nephrotoxicity, presenting as increasing the body weight and kidney coefficient, relieving the renal structure injury, decreasing the contents of renal function-related biomarkers, decreasing the levels of reactive oxygen species (ROS), and increasing the mitochondrial membrane potential in T-2 toxin-treated mice. In addition, inhibition of renal cell apoptosis by Se was associated with blocking the mitochondrial pathway in T-2 toxin-treated mice, presenting as decreasing the protein expression of cytochrome-c, activities of caspase-3/9, as well as regulating the protein and mRNA expressions of Bax and Bcl-2. These results documented that the alleviating effect of Se on T-2-induced nephrotoxicity is related to the inhibition of ROS-mediated renal apoptosis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Yanfei Han
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
35
|
Yavuz YC, Cetin N, Menevşe E, Cizmecioglu A, Celik E, Biyik Z, Sevinc C, Yavuz S, Korez MK, Altintepe L. Can magnesium sulfate prophylaxis reduce colistin nephrotoxicity? Nefrologia 2021; 41:661-669. [PMID: 36165156 DOI: 10.1016/j.nefroe.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/19/2020] [Indexed: 06/16/2023] Open
Abstract
The study aimed to investigate the role of magnesium sulfate prophylaxis in nephrotoxicity caused by colistin. Thirty Wistar Albino rats were divided into four groups: control, colistin, magnesium (Mg), and Mg+colistin. The drugs were administered to the groups for seven days. Urea-creatinine values were measured at the beginning (T0) and end (T1) of the study. Malondialdehyde (MDA) levels were measured in plasma and kidney tissue, glutathione (GSH) levels were analyzed in the erythrocyte and kidney tissues. At the end of the study, the semiquantitative score (SQS) was calculated by the histopathological examination of the kidneys. Urea values significantly decreased in Mg and Mg+colistin groups compared to the baseline (p=0.013 and p=0.001). At the time of T1, these groups had significantly lower urea values than the colistin and control groups. Creatinine value was significantly increased in the colistin group compared to baseline (p=0.005), the creatinine value in the colistin group was significantly higher than the Mg+colistin group (p=0.011). Plasma MDA levels were significantly higher in the colistin group compared to the other groups at the time of T1 (p<0.001). The Mg+colistin group had lower renal MDA levels than the colistin group. The colistin group had significantly higher renal tubular grade (p=0.035), renal affected area (p<0.001), and SQS (p=0.001) than the Mg+colistin group. The results of the study suggested that Mg sulfate may have a nephrotoxicity-reducing effect on colistin.
Collapse
Affiliation(s)
| | - Nihal Cetin
- Selcuk University Faculty of Medicine, Pharmacology Department, Konya, Turkey
| | - Esma Menevşe
- Selcuk University Faculty of Medicine, Biochemistry Department, Konya, Turkey
| | - Ahmet Cizmecioglu
- Selcuk University Faculty of Medicine, Internal Medicine Department, Konya, Turkey
| | - Esin Celik
- Selcuk University Faculty of Medicine, Pathology Department, Konya, Turkey
| | - Zeynep Biyik
- Selcuk University Faculty of Medicine, Nephrology Department, Konya, Turkey
| | - Can Sevinc
- Ataturk University Faculty of Medicine, Nephrology Department, Erzurum, Turkey
| | - Serkan Yavuz
- University of Healthy Sciences, Konya Training and Research Hospital, Department of Chest Disease, Konya, Turkey
| | - Muslu Kazim Korez
- Selcuk University Faculty of Medicine, Biostatistics Department, Konya, Turkey
| | | |
Collapse
|
36
|
METTL3-mediated M6A methylation modification is involved in colistin-induced nephrotoxicity through apoptosis mediated by Keap1/Nrf2 signaling pathway. Toxicology 2021; 462:152961. [PMID: 34560125 DOI: 10.1016/j.tox.2021.152961] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 12/23/2022]
Abstract
Colistin is a cationic polypeptide antibiotic. Despite its nephrotoxicity, it is still widely used as a last-line antibiotic against infection worldwide with the emergence of multi-drug resistant Gram-negative bacilli. N-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for kidney development. However, m6A methylation impacts not only RNA stability, but also other RNA metabolism processes. How RNA decay affects the nephrotoxicity of colistin is largely unknown. Therefore, in this study, we verified that colistin could induce mouse kidney apoptosis through some apoptotic indicators, and confirmed the relationship between methylation and apoptosis through the detection of m6A methylation, thus elucidating the potential mechanism of colistin nephrotoxicity. The results showed that the renal tubule dilation and tubular structure were observed in the colistin group, and the oxidative stress index and ATPase activities were significantly different from those in the control group. Under electron microscope, the kidney in colistin group showed typical apoptotic morphological changes such as nuclear pyknosis, chromatin edge aggregation, and intact nuclear membrane, accompanied by significant changes in apoptosis-related genes. The level of m6A in the colistin group was significantly decreased, accompanied by downregulation of METTL3 mRNA and protein levels, and METTL3 was significantly correlated with apoptotic gene proteins. Data from this study suggested that m6A methylation was involved in oxidative stress-mediated apoptosis in the mechanism of colistin nephrotoxicity.
Collapse
|
37
|
Jafari F, Elyasi S. Prevention of colistin induced nephrotoxicity: a review of preclinical and clinical data. Expert Rev Clin Pharmacol 2021; 14:1113-1131. [PMID: 34015235 DOI: 10.1080/17512433.2021.1933436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The emergence of antimicrobial resistance in Gram-negative bacteria is a concerning challenge for health systems. The polymyxins, including colistin, are one of the limited available options these pathogens management. Nephrotoxicity, beside neurotoxicity is the major dose-limiting adverse reaction of polymyxins, with an up to 60% prevalence. As oxidative stress, inflammatory pathways and apoptosis are considered as the main mechanisms of colistin-induced kidney damage, various studies have evaluated antioxidant and/or antiapoptotic compounds for its prevention. In this article, we reviewed animal and human studies on these probable preventive measures.Area covered: PubMed, Scopus, and google scholar databases were searched using several combination of 'colistin', 'polymyxin E', 'CMS', 'Colistimethate sodium', 'nephrotoxicity', 'kidney injury', 'kidney damage', 'renal injury', 'renal damage', 'nephroprotectants', 'renoprotective', 'nephroprotective', and 'prevention'. All eligible articles including animal and human studies up to the end of 2020 were included.Expert opinion: Most of available studies are in vivo researches on anti-oxidant and anti-apoptotic agents like NAC, vitamin C and E, silymarin, and curcumin which mostly showed promising findings. However, limited human studies on NAC and vitamin C did not demonstrate considerable efficacy. So, before proposing these compounds, further well-designed randomized clinical trials are necessary.
Collapse
Affiliation(s)
- Fatemeh Jafari
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Abd-Elhakim YM, Moselhy AAA, Aldhahrani A, Beheiry RR, Mohamed WAM, Soliman MM, Saffaf BA, M. El Deib M. Protective Effect of Curcumin against Sodium Salicylate-Induced Oxidative Kidney Damage, Nuclear Factor-Kappa Dysregulation, and Apoptotic Consequences in Rats. Antioxidants (Basel) 2021; 10:826. [PMID: 34064189 PMCID: PMC8224369 DOI: 10.3390/antiox10060826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
This study examined the effect of sodium salicylates (SS), alone and in combination with curcumin (CUR), on kidney function and architecture in rats. Five rat groups were given 1 mL physiological saline/rat orally, 1 mL olive oil/rat orally, 50 mg CUR/kg bwt orally, 300 mg SS/kg bwt intraperitoneally, or CUR+SS for 15 days. The hematological indices, serum protein profile, serum electrolytes balance, oxidative stress, and lipid peroxidation of kidney tissues were assessed. The histopathological examination and immune expression of Caspase-3 and nuclear factor kappa (NF-κB) were conducted. The findings showed that SS injection induced nephrotoxic activity, including increased serum urea, creatinine, and uric acid levels. It also caused apparent pathological alterations with increased Caspase-3 and NF-κB immuno-expression. In addition, thrombocytopenia, leukocytosis, neutrophilia, hyponatremia, hypochloremia, hypocalcemia, and hypomagnesemia but not hyperkalemia and hyperphosphatemia were evident in SS-injected rats. Moreover, SS exposure increased serum α1 globulin, renal tissue malondialdehyde, and Caspase-3 levels but superoxide dismutase, glutathione peroxidase, and Bcl-2 levels declined. Meanwhile, CUR significantly counteracted the SS harmful impacts on kidneys but SS+CUR co-administration induced an anemic condition. Overall, CUR has an evident protective role against SS-induced renal damage, but the disturbed hematological alterations should be carefully taken into consideration in their combined use.
Collapse
Affiliation(s)
- Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Attia A. A. Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Turabah 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Rasha R. Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Wafaa A. M. Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Turabah 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Bayan A. Saffaf
- Pharmacology Department, Faculty of Pharmacy, Future University, City of the Future 41639, Egypt;
| | - Maha M. El Deib
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
39
|
Gao C, Liu C, Chen Y, Wang Q, Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem Toxicol 2021; 153:112255. [PMID: 33989732 DOI: 10.1016/j.fct.2021.112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Drug-induced nephrotoxicity (DIN) is a major cause of kidney damage and is associated with high mortality and morbidity, which limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressive agents, non-steroidal anti-inflammatory drugs (NSAIDs), and contrast agents. However, in recent years, a number of studies have shown that many natural products (NPs), including phytochemicals, various plants extracts, herbal formulas, and NPs derived from animals, confer protective effects against DIN through multi-targeting therapeutic mechanisms, such as inhibition of oxidative stress, inflammation, apoptosis, fibrosis, and necroptosis, regulation of autophagy, maintenance of cell polarity, etc., by regulating multiple signaling pathways and novel molecular targets. In this review, we summarize and discuss the protective effects and mechanisms underlying the action of NPs against DIN found in recent years, which will contribute to the development of promising renal protective agents.
Collapse
Affiliation(s)
- Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chang Liu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Chen
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qingtao Wang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhihui Hao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
40
|
Kabel AM, Salama SA. Effect of taxifolin/dapagliflozin combination on colistin-induced nephrotoxicity in rats. Hum Exp Toxicol 2021; 40:1767-1780. [PMID: 33882723 DOI: 10.1177/09603271211010906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colistin is an antimicrobial agent that is used in resistant gram-negative infections. Its most common dose-limiting adverse effect is nephrotoxicity. The objective of our study was to explore the possible effects of each of taxifolin and dapagliflozin alone and in combination on colistin-induced nephrotoxicity in rats. Sixty male rats were randomized into six groups: Control; colistin; colistin + taxifolin; colistin + dapagliflozin; colistin + carboxymethyl cellulose (CMC) and colistin + taxifolin + dapagliflozin. Dapagliflozin, taxifolin, and CMC were given daily for 7 days, 4 hours before colistin injection. Kidney weight/body weight ratio and renal function tests were determined. Renal tissue nerve growth factor-β (NGF-β), transforming growth factor beta 1 (TGF-β1), proinflammatory cytokines, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB) p65, signal transducer and activator of transcription 3 (STAT3), oxidative stress parameters, beclin-1 and c-Jun NH2-terminal kinase (JNK) activities were measured. Kidneys were examined histopathologically and immunohistochemically. Taxifolin and/or dapagliflozin induced significant improvement in the renal functions and oxidative stress parameters with significant increase in tissue Nrf2, STAT3 and NGF-β accompanied with significant decrease in kidney weight/body weight ratio, tissue proinflammatory cytokines, TGF-β1, NF-κB (p65), TLR4, beclin-1 and JNK activities and improved the histopathological picture when compared to rats treated with colistin alone. This improvement was significant with taxifolin/dapagliflozin combination compared to rats treated with each of these agents alone. So, we concluded that the combined use of taxifolin and dapagliflozin may confer a therapeutic tool for attenuation of colistin-induced nephrotoxicity.
Collapse
Affiliation(s)
- A M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - S A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
41
|
Yavuz YC, Cetin N, Menevşe E, Cizmecioglu A, Celik E, Biyik Z, Sevinc C, Yavuz S, Korez MK, Altintepe L. Can magnesium sulfate prophylaxis reduce colistin nephrotoxicity? Nefrologia 2021; 41:S0211-6995(21)00057-6. [PMID: 33892977 DOI: 10.1016/j.nefro.2020.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 10/21/2022] Open
Abstract
The study aimed to investigate the role of magnesium sulfate prophylaxis in nephrotoxicity caused by colistin. Thirty Wistar Albino rats were divided into four groups: control, colistin, magnesium (Mg), and Mg+colistin. The drugs were administered to the groups for seven days. Urea-creatinine values were measured at the beginning (T0) and end (T1) of the study. Malondialdehyde (MDA) levels were measured in plasma and kidney tissue, glutathione (GSH) levels were analyzed in the erythrocyte and kidney tissues. At the end of the study, the semiquantitative score (SQS) was calculated by the histopathological examination of the kidneys. Urea values significantly decreased in Mg and Mg+colistin groups compared to the baseline (p=0.013 and p=0.001). At the time of T1, these groups had significantly lower urea values than the colistin and control groups. Creatinine value was significantly increased in the colistin group compared to baseline (p=0.005), the creatinine value in the colistin group was significantly higher than the Mg+colistin group (p=0.011). Plasma MDA levels were significantly higher in the colistin group compared to the other groups at the time of T1 (p<0.001). The Mg+colistin group had lower renal MDA levels than the colistin group. The colistin group had significantly higher renal tubular grade (p=0.035), renal affected area (p<0.001), and SQS (p=0.001) than the Mg+colistin group. The results of the study suggested that Mg sulfate may have a nephrotoxicity-reducing effect on colistin.
Collapse
Affiliation(s)
| | - Nihal Cetin
- Selcuk University Faculty of Medicine, Pharmacology Department, Konya, Turkey
| | - Esma Menevşe
- Selcuk University Faculty of Medicine, Biochemistry Department, Konya, Turkey
| | - Ahmet Cizmecioglu
- Selcuk University Faculty of Medicine, Internal Medicine Department, Konya, Turkey
| | - Esin Celik
- Selcuk University Faculty of Medicine, Pathology Department, Konya, Turkey
| | - Zeynep Biyik
- Selcuk University Faculty of Medicine, Nephrology Department, Konya, Turkey
| | - Can Sevinc
- Ataturk University Faculty of Medicine, Nephrology Department, Erzurum, Turkey
| | - Serkan Yavuz
- University of Healthy Sciences, Konya Training and Research Hospital, Department of Chest Disease, Konya, Turkey
| | - Muslu Kazim Korez
- Selcuk University Faculty of Medicine, Biostatistics Department, Konya, Turkey
| | | |
Collapse
|
42
|
Protective Effects of Liposomal Curcumin on Oxidative Stress/Antioxidant Imbalance, Metalloproteinases 2 and -9, Histological Changes and Renal Function in Experimental Nephrotoxicity Induced by Gentamicin. Antioxidants (Basel) 2021; 10:antiox10020325. [PMID: 33671770 PMCID: PMC7926985 DOI: 10.3390/antiox10020325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Our study aimed to assess the efficiency of Curcumin nanoformulation (LCC) on experimental nephrotoxicity induced by Gentamicin in rats. METHODS Six groups of seven rats were used: C-(control group) received saline solution i.p. (i.p. = intraperitoneal), G-gentamicin (G, 80 mg/kg body weight (b.w.)), GCC1 and GCC2-with G and CC solution (single dose of 10 mg/kg b.w.-CC1, or 20 mg/kg b.w.-CC2), GLCC1 (10 mg/kg b.w.) and GLCC2 (20 mg/kg b.w.) with G and LCC administration. Oxidative stress parameters (NOx = nitric oxide, MDA = malondialdehyde, TOS = total oxidative stress), antioxidant parameters (CAT = catalase, TAC = total antioxidant capacity), matrix metalloproteinases (MMP-2 and MMP-9), and renal function parameters (creatinine, blood urea nitrogen, and urea) were measured. Kidneys histopathologic examination was made for each group. RESULTS Pretreatment with CC and LCC in both doses had significantly alleviating effects on assessed parameters (NOx, MDA, TOS, CAT, TAC, MMP-2, and -9) as compared with the untreated group (p < 0.006). Histopathological aspect and renal function were significantly improved in CC and LCC groups. Liposomal formulation (LCC) showed higher efficiency on all examined parameters compared to CC (p < 0.006). CONCLUSIONS Our results demonstrated improving renal function and kidney cytoarchitecture, oxidative stress/antioxidant/balance, and MMPs plasma concentrations with better dose-related efficacity of LCC than CC.
Collapse
|
43
|
Oktan MA, Heybeli C, Ural C, Kocak A, Bilici G, Cavdar Z, Ozbal S, Arslan S, Yilmaz O, Cavdar C. Alpha-lipoic acid alleviates colistin nephrotoxicity in rats. Hum Exp Toxicol 2020; 40:761-771. [PMID: 33111558 DOI: 10.1177/0960327120966043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Colistin methanesulfonate (CMS), a clinical form of colistin, is widely used as a last-line treatment for multidrug-resistant (MDR) gram-negative bacterial infections in critically ill patients presenting a considerably high mortality rate. However, nephrotoxicity is considered to be a critical adverse effect that limits CMS's clinical use. Alpha-lipoic acid (ALA) is a strong antioxidant that is effective in preventing nephrotoxicity in many models. The aim of this study was to investigate ALA's ability to protect against nephrotoxicity induced by colistin in rats. Male Wistar albino rats were randomly divided into four groups. Group 1 was the control group (Control; n = 6), in which isotonic saline was administered to the rats. Group 2 was the ALA group (ALA; n = 6) in which rats received 100 mg/kg ALA. Groups 3 was the CMS (CMS; n = 7) in which 450.000 IU/kg/day of CMS was administered to the rats. Groups 4 was the CMS + ALA group (n = 6), in which rats were injected with 100 mg/kg of ALA 30 min before administration of CMS. All injections were performed intraperitoneally at 1, 4, 7, and 10 days. Urine was collected by using a metabolic cage for 24 h after each administration. The rats were euthanized under ether anesthesia after 24 h of the last administration. Blood and kidney samples then were collected for histological and biochemical analysis. ALA pretreatment could reverse the effects of colistin-induced nephrotoxicity, partly through its suppressing effect on Nox4 and caspase-3, which in turn results in its antioxidant and antiapoptotic effect. Therefore, ALA may be an effective strategy for the management of colistin nephrotoxicity.
Collapse
Affiliation(s)
- Mehmet Asi Oktan
- Department of Nephrology, 37508Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Cihan Heybeli
- Department of Nephrology, 37508Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Cemre Ural
- Department of Molecular Medicine, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Ayse Kocak
- Department of Molecular Medicine, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Gokcen Bilici
- Department of Histology and Embryology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Zahide Cavdar
- Department of Molecular Medicine, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Seda Ozbal
- Department of Histology and Embryology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Sevki Arslan
- Faculty of Science, Department of Biology, Pamukkale University, Denizli, Turkey
| | - Osman Yilmaz
- Department of Laboratory Animal Science, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Caner Cavdar
- Department of Nephrology, 37508Dokuz Eylul University School of Medicine, Izmir, Turkey
| |
Collapse
|
44
|
Dai C, Xiong J, Wang Y, Shen J, Velkov T, Xiao X. Nerve Growth Factor Confers Neuroprotection against Colistin-Induced Peripheral Neurotoxicity. ACS Infect Dis 2020; 6:1451-1459. [PMID: 32422040 DOI: 10.1021/acsinfecdis.0c00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotoxicity is an unwanted side effect for patients when receiving parenteral colistin therapy. The development of effective neuroprotective agents that can be coadministered during colistin therapy remains a priority area in antimicrobial chemotherapy. The present study aimed to investigate the protective effect of nerve growth factor (NGF) against colistin-induced peripheral neurotoxicity using a murine model. C57BL/6 mice were randomly divided into the following 6 groups: (i) untreated control, (ii) NGF alone (36 μg/kg/day administered intraperitoneally), (iii) colistin alone (18 mg/kg/day administered intraperitoneally), and (iv-vi) colistin (18 mg/kg/day) plus NGF (9, 18, and 36 μg/kg/day). After treatment for 7 days, neurobehavioral and electrophysiology changes, histopathological assessments of sciatic nerve damage, and oxidative stress biomarkers were examined. The mRNA expression levels of Nrf2, HO-1, Akt, Bax, and caspase-3 and -9 were assessed using quantitative RT-PCR. The results showed that, across all the groups wherein NGF was coadministered with colistin, a marked attenuation of colistin-induced sciatic nerve damage and improved sensory and motor function were observed. In comparison to the colistin only treatment group, animals that received NGF displayed upregulated Nrf2 and HO-1 mRNA expression levels and downregulated Bax and caspase-3 and -9 mRNA expression levels. In summary, our study reveals that NGF coadministration protects against colistin-induced peripheral neurotoxicity via the activation of Akt and Nrf2/HO-1 pathways and inhibition of oxidative stress. This study highlights the potential clinical application of NGF as a neuroprotective agent for coadministration during colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianli Xiong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
45
|
Dai C, Wang Y, Sharma G, Shen J, Velkov T, Xiao X. Polymyxins-Curcumin Combination Antimicrobial Therapy: Safety Implications and Efficacy for Infection Treatment. Antioxidants (Basel) 2020; 9:antiox9060506. [PMID: 32526966 PMCID: PMC7346118 DOI: 10.3390/antiox9060506] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of antimicrobial resistance in Gram-negative bacteria poses a huge health challenge. The therapeutic use of polymyxins (i.e., colistin and polymyxin B) is commonplace due to high efficacy and limiting treatment options for multidrug-resistant Gram-negative bacterial infections. Nephrotoxicity and neurotoxicity are the major dose-limiting factors that limit the therapeutic window of polymyxins; nephrotoxicity is a complication in up to ~60% of patients. The emergence of polymyxin-resistant strains or polymyxin heteroresistance is also a limiting factor. These caveats have catalyzed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and resistant organisms and/or minimize the unwanted side effects. Curcumin—an FDA-approved natural product—exerts many pharmacological activities. Recent studies showed that polymyxins–curcumin combinations showed a synergistically inhibitory effect on the growth of bacteria (e.g., Gram-positive and Gram-negative bacteria) in vitro. Moreover, curcumin co-administration ameliorated colistin-induced nephrotoxicity and neurotoxicity by inhibiting oxidative stress, mitochondrial dysfunction, inflammation and apoptosis. In this review, we summarize the current knowledge-base of polymyxins–curcumin combination therapy and discuss the underlying mechanisms. For the clinical translation of this combination to become a reality, further research is required to develop novel polymyxins–curcumin formulations with optimized pharmacokinetics and dosage regimens.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, the University of Melbourne, Parkville 3052, Australia;
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| |
Collapse
|
46
|
Dai C, Xiao X, Zhang Y, Xiang B, Hoyer D, Shen J, Velkov T, Tang S. Curcumin Attenuates Colistin-Induced Peripheral Neurotoxicity in Mice. ACS Infect Dis 2020; 6:715-724. [PMID: 32037797 DOI: 10.1021/acsinfecdis.9b00341] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peripheral neurotoxicity often occurs in patients receiving parenteral polymyxin therapy (i.e., colistin methanesulfonate or polymyxin B). The present study aimed to investigate the protective effect of curcumin on colistin-induced peripheral neurotoxicity using a murine model. Female C57BL/6 mice (n = 10 in each group) were randomly divided into the following: (1) control group (saline), (2) curcumin only group (200 mg/kg/day; orally), (3) colistin only group (18 mg/kg/day; i.p.), (4) colistin (18 mg/kg/day) plus curcumin 50 mg/kg/day group, (5) colistin (18 mg/kg/day) plus curcumin 100 mg/kg/day group, (6) colistin (18 mg/kg/day) plus curcumin 200 mg/kg/day group; all mice were treated for 7 days. Orally applied curcumin was detected in the brain, cerebellum, and sciatic nerve. Co-administration of oral curcumin markedly improved colistin-induced impaired sensory and motor dysfunctions in a dose-dependent manner. Curcumin supplementation at 100 and 200 mg/kg significantly decreased lipid peroxidation and upregulated catalase (CAT) and superoxide dismutase (SOD) activities, ATP levels, and Na+/K+-ATPase activity in sciatic nerve tissue, compared to the colistin alone group. Curcumin supplementation at 200 mg/kg upregulated the levels of AKT, NGF, mTOR, Nrf2, and HO-1 mRNA and concomitantly downregulated Bax, caspases-3, and -9 mRNA; it also decreased caspase-3 and caspase-9 activity. In summary, for the first time, our study reveals that the protective effect of oral curcumin on colistin induced peripheral neurotoxicity is associated with the activation of NGF/Akt and Nrf2/HO-1 pathways and inhibition of oxidative stress. This study highlights the potential clinical application of curcumin as an oral neuroprotective agent coadministered during colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Biao Xiang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
47
|
Koohsari M, Ahangar N, Mohammadi E, Shaki F. Ameliorative Effect of Melatonin Against Reproductive Toxicity of Tramadol in Rats via the Regulation of Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis-related Gene Expression Signaling Pathway. ADDICTION & HEALTH 2020; 12:118-129. [PMID: 32782734 PMCID: PMC7395930 DOI: 10.22122/ahj.v12i2.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The aim of the present study was to investigate the protective properties of melatonin (MT) against oxidative stress, mitochondrial dysfunction, and apoptosis induced by tramadol-reproductive toxicity in male rats. METHODS The rats were divided into the 7 groups of control, melatonin (1.5 mg/kg), tramadol (50 mg/kg), and melatonin (1, 1.5 and 2.5 mg/kg) administered 30 minutes before tramadol and vitamin C group (100 mg/kg). All injections were performed intraperitoneally. After administration for 3 consecutive weeks, the animals were killed and testis tissues were used for assessment of oxidative stress markers including lipid peroxidation (LPO), glutathione (GSH) content and protein carbonyl (PrC), and sperm analysis. Mitochondria were isolated from rat's testis using differential centrifugation technique and were studied in terms of mitochondrial viability, mitochondrial membrane potential (MMP), and mitochondrial swelling. The other part of the tissue sample was placed in RNA protector solution for assessment of Bax and Bcl-2 gene expression through real-time polymerase chain reaction (real-time PCR) assay. FINDINGS Tramadol caused a significant decline in epidermal sperm count, motility, and morphology, as well as a significant decrease in GSH level and mitochondrial function, and a significant evaluation of LPO, PrC, MMP, and mitochondrial swelling. In addition, tramadol induced a significant decrease in Bcl-2 gene expression, and increase in Bax gene expression. However, pretreatment of rats with MT improved sperm analysis, and testicular antioxidative status, and mitochondrial function. Furthermore, MT pretreatment regulated testicular Bcl-2 and Bax expressions. CONCLUSION Considering the protective effects of MT against reproductive toxicity induced by tramadol, this compound can be used as a possible agent for the prevention and treatment of tramadol-induced reproductive toxicity.
Collapse
Affiliation(s)
- Motahareh Koohsari
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute AND Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute AND Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
48
|
Çelik H, Kandemir FM, Caglayan C, Özdemir S, Çomaklı S, Kucukler S, Yardım A. Neuroprotective effect of rutin against colistin-induced oxidative stress, inflammation and apoptosis in rat brain associated with the CREB/BDNF expressions. Mol Biol Rep 2020; 47:2023-2034. [PMID: 32030599 DOI: 10.1007/s11033-020-05302-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
The purpose of the current study was to examine the neuroprotective effect of rutin against colistin-induced neurotoxicity in rats. Thirty-five male Sprague Dawley rats were randomly divided into 5 groups. The control group (orally received physiological saline), the rutin group (orally administered 100 mg/kg body weight), the colistin group (i.p. administered 15 mg/kg body weight), the Col + Rut 50 group (i.p. administered 15 mg/kg body weight of colistin, and orally received 50 mg/kg body weight of rutin), the Col + Rut 100 group (i.p. administered 15 mg/kg body weight of colistin, and orally received 100 mg/kg body weight of rutin). Administration of colistin increased levels of glial fibrillary acidic protein and brain-derived neurotrophic factor and acetylcholinesterase and butyrylcholinesterase activities while decreasing level of cyclic AMP response element binding protein and extracellular signal regulated kinases 1 and 2 (ERK1/2) expressions. Colistin increased oxidative impairments as evidenced by a decrease in level of nuclear factor erythroid 2-related factor 2 (Nrf-2), glutathione, superoxide dismutase, glutathione peroxidase and catalase activities, and increased malondialdehyde content. Colistin also increased the levels of the apoptotic and inflammatoric parameters such as cysteine aspartate specific protease-3 (caspase-3), p53, B-cell lymphoma-2 (Bcl-2), nuclear factor kappa B (NF-κB), Bcl-2 associated X protein (Bax), tumor necrosis factor-α (TNF-α) and neuronal nitric oxide synthase (nNOS). Rutin treatment restored the brain function by attenuating colistin-induced oxidative stress, apoptosis, inflammation, histopathological and immunohistochemical alteration suggesting that rutin supplementation mitigated colistin-induced neurotoxicity in male rats.
Collapse
Affiliation(s)
- Hamit Çelik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey.
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Yardım
- Department of Neurosurgery, Private Buhara Hospital, Erzurum, Turkey
| |
Collapse
|
49
|
Çelik H, Kucukler S, Çomaklı S, Özdemir S, Caglayan C, Yardım A, Kandemir FM. Morin attenuates ifosfamide-induced neurotoxicity in rats via suppression of oxidative stress, neuroinflammation and neuronal apoptosis. Neurotoxicology 2019; 76:126-137. [PMID: 31722249 DOI: 10.1016/j.neuro.2019.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/06/2019] [Accepted: 11/09/2019] [Indexed: 01/10/2023]
Abstract
Ifosfamide (IFA), a commonly used chemotherapeutic drug, has been frequently associated with encephalopathy and central nervous system toxicity. The present study aims to investigate whether morin could protect against acute IFA-induced neurotoxicity. Morin was administered to male rats once daily for 2 consecutive days at doses of 100 and 200 mg/kg body weight (BW) orally. IFA (500 mg/kg BW; i.p.) was administered on second day. The results showed that morin markedly inhibited the production of acetylcholinesterase (AChE), butrylcholinesterase (BChE), carbonic anhydrase (CA), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and nuclear factor erythroid 2-related factor 2 (Nrf-2) induced by IFA. Morin ameliorated IFA-induced lipid peroxidation, glutathione (GSH) depletion, and decrease antioxidant enzyme activities, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Histopathological changes and immunohistochemical expressions of c-Jun N-terminal kinase (JNK) and c-Fos in the IFA-induced brain tissues were decreased after administration of morin. Furthermore, morin was able to down regulate the levels of inflammatory and apoptotic markers such as nuclear factor kappa B (NF-κB), neuronal nitric oxide synthase (nNOS), tumor necrosis factor-α (TNF-α), p53, cysteine aspartate specific protease-3 (caspase-3) and B-cell lymphoma-2 (Bcl-2). Taken together, our results demonstrated that morin elicited a typical chemoprotective effect on IFA-induced acute neurotoxicity.
Collapse
Affiliation(s)
- Hamit Çelik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol,Turkey.
| | - Ahmet Yardım
- Department of Neurosurgery, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
50
|
Fuller MA, Carey A, Whiley H, Kurimoto R, Ebara M, Köper I. Nanoparticles in an antibiotic-loaded nanomesh for drug delivery. RSC Adv 2019; 9:30064-30070. [PMID: 35530227 PMCID: PMC9072143 DOI: 10.1039/c9ra06398f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
Antibiotic loaded nanomeshes were fabricated by electrospinning polycaprolactone, a biocompatible polymer, with 12.5% w/w Colistin, 1.4% w/w Vancomycin and either cationic or anionic gold nanoparticles in varying combinations. The resulting nanomeshes had different antibiotic release profiles, with citrate capped gold nanoparticles combined with Colistin having the highest sustained release over 14 days for a 4 mg, 1.5 cm2 nanomesh. The electrospinning parameters were optimised to ensure the spinning of a homogenous mesh and the addition of antibiotics was confirmed through 1H NMR and ATR-FTIR. This research, as a proof of concept, suggests an opportunity for fabricating nanomeshes which contain gold nanoparticles as a drug release mechanism for antibiotics.
Collapse
Affiliation(s)
- Melanie A Fuller
- Institute for NanoScale Science and Technology, Flinders University Bedford Park South Australia 5042 Australia
- College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0047 Japan
| | - Ashley Carey
- Institute for NanoScale Science and Technology, Flinders University Bedford Park South Australia 5042 Australia
| | - Harriet Whiley
- College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Rio Kurimoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0047 Japan
| | - Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0047 Japan
| | - Ingo Köper
- Institute for NanoScale Science and Technology, Flinders University Bedford Park South Australia 5042 Australia
| |
Collapse
|