1
|
Kim U, Jang SI, Chen PN, Horii S, Wen WC. Hepatoprotective Effect of Antrodia camphorata Mycelium Powder on Alcohol-Induced Liver Damage. Nutrients 2024; 16:3406. [PMID: 39408373 PMCID: PMC11478381 DOI: 10.3390/nu16193406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antrodia camphorata, also known as "Niuchangchih" in Taiwan, is a unique medicinal mushroom native to Taiwan. It is used in traditional medicine to treat various health conditions. In this study, we investigated the efficacy of A. camphorata mycelia on alcohol-induced liver damage, both in vitro and in vivo, in a Good Laboratory Practice (GLP) facility. METHODS The experimental groups consisted of a normal control group (G1), a negative control group (G2), an A. camphorata mycelium powder 50 mg/kg/day administration group (G3), a 100 mg/kg/day administration group (G4), a 200 mg/kg/day administration group (G5), and a positive control silymarin 200 mg/kg/day administration group (G6), with 10 Sprague Dawley rats assigned to each treatment group. RESULTS We found that treatment with A. camphorata mycelium powder significantly reduced alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, cholesterol, adiponectin, triglyceride, and malondialdehyde concentrations. Histopathological analysis also revealed that the inflammation score significantly decreased in the A. camphorata-treated groups. CONCLUSION Based on these results, we conclude that repeated oral administration of A. camphorata mycelium powder is effective in improving alcoholic liver disease.
Collapse
Affiliation(s)
- Unyong Kim
- Division of Bioanalysis, Biocomplete Inc., #603, 604, Hanshin IT Tower, 272 Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| | - Sung-Il Jang
- Golden Biotechnology Corporation, Tamsui District, New Taipei City 251, Taiwan; (S.-I.J.); (P.-N.C.); (S.H.); (W.-C.W.)
| | - Pei-Ni Chen
- Golden Biotechnology Corporation, Tamsui District, New Taipei City 251, Taiwan; (S.-I.J.); (P.-N.C.); (S.H.); (W.-C.W.)
| | - Shingo Horii
- Golden Biotechnology Corporation, Tamsui District, New Taipei City 251, Taiwan; (S.-I.J.); (P.-N.C.); (S.H.); (W.-C.W.)
| | - Wu-Che Wen
- Golden Biotechnology Corporation, Tamsui District, New Taipei City 251, Taiwan; (S.-I.J.); (P.-N.C.); (S.H.); (W.-C.W.)
| |
Collapse
|
2
|
Li W, Wan P, Qiao J, Liu Y, Peng Q, Zhang Z, Shu X, Xia Y, Sun B. Current and further outlook on the protective potential of Antrodia camphorata against neurological disorders. Front Pharmacol 2024; 15:1372110. [PMID: 38694913 PMCID: PMC11061445 DOI: 10.3389/fphar.2024.1372110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke are increasingly becoming a global burden as society ages. It is well-known that degeneration and loss of neurons are the fundamental underlying processes, but there are still no effective therapies for these neurological diseases. In recent years, plenty of studies have focused on the pharmacology and feasibility of natural products as new strategies for the development of drugs that target neurological disorders. Antrodia camphorata has become one of the most promising candidates, and the crude extracts and some active metabolites of it have been reported to play various pharmacological activities to alleviate neurological symptoms at cellular and molecular levels. This review highlights the current evidence of Antrodia camphorata against neurological disorders, including safety evaluation, metabolism, blood-brain barrier penetration, neuroprotective activities, and the potential on regulating the gut-microbiome-brain axis. Furthermore, potential strategies to resolve problematic issues identified in previous studies are also discussed. We aim to provide an overview for the ongoing development and utilization of Antrodia camphorata in cerebral neuropathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
3
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
4
|
Chen YF, Wu HC, Chang JM, Ko HH, Lin CH, Chang HS. Chemical investigations and cytotoxic effects of metabolites from Antrodia camphorata against human hepatocellular carcinoma cells. Nat Prod Res 2023; 37:560-570. [PMID: 35583297 DOI: 10.1080/14786419.2022.2076676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antrodia camphorata is used as a medicinal fungus in Taiwan to treat fatigue, food intoxication, and enhance liver function. Here we identified fermented metabolic components from the mycelium of A. camphorata KH37 and explored their anti-hepatoma potentials with study models of human hepatoblastoma cell lines. Bioassay-guided fractionation of the solid fermentation powder of A. camphorata KH37 led to the isolation of one new quinonol, antroquinonol Z (1), and nine known compounds (2-10). Treatment with 10 μM antrocamols LT1 (2) or LT3 (3) reduced cell viability of HepG2 and Huh-7 cells to about 60% in 48 hours. Antroquinonol Z (1) exhibited mild cytotoxicity against Huh-7 cells in 48 and 72 hours. Interestingly, two fractions showed cytotoxicity in HepG2 and Huh-7 cells, even better than compounds isolated from these fractions. The significant cytotoxicity of partially purified samples from A. camphorata KH37 exhibited a potential for developing alternative or complementary therapeutics against hepatoma.
Collapse
Affiliation(s)
- Yih-Fung Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ho-Cheng Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Min Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chu-Hung Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Chang JL, Gan YT, Peng XG, Ouyang QX, Pei J, Ruan HL. Peniandranoids A-E: Meroterpenoids with Antiviral and Immunosuppressive Activity from a Penicillium sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:66-75. [PMID: 36596229 DOI: 10.1021/acs.jnatprod.2c00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Peniandranoids A-E (1-5), five new meroterpenoids, together with three known analogues (6-8), were isolated from the fermentation of a soil-derived fungus, Penicillium sp.sb62. Their structures including absolute configurations were determined by extensive spectroscopic analysis, and the absolute configurations of compounds 1 and 5 were further elucidated by single-crystal X-ray diffraction. Peniandranoids A-E belong to a rare class of andrastin-type meroterpenoids incorporating an extra polyketide unit (a C10 polyketide unit for 1 and 2, a C9 polyketide unit for 3 and 4, and a furancarboxylic acid unit for 5). Compounds 1 and 6 exhibited favorable inhibitory activities against influenza virus A (H1N1) with EC50 values of 19 and 14 μg/mL, respectively. Compounds 3-8 exhibited potent immunosuppressive activities against concanavalin A-induced T cell proliferation with EC50 values ranging from 4.3 to 27 μM and lipopolysaccharide-induced B cell proliferation with EC50 values ranging from 7.5 to 23 μM, respectively.
Collapse
Affiliation(s)
- Jin-Ling Chang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Yu-Tian Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Xiao-Gang Peng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Qian-Xi Ouyang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Jiao Pei
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Han-Li Ruan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| |
Collapse
|
6
|
Yen YT, Park JH, Kang SH, Su T, Cheng H, Wen WC, Lin SS, Tai YL, Chen PN, Tsai SC. Clinical Benefits of Golden-Antrodia Camphorata Containing Antroquinonol in Liver Protection and Liver Fat Reduction After Alcoholic Hepatitis. Front Pharmacol 2022; 13:757494. [PMID: 35800453 PMCID: PMC9253287 DOI: 10.3389/fphar.2022.757494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Objective: It has been reported that antroquinonol extracted from Golden-Antrodia camphorate exerts protective effects on liver function both in vitro and in vivo. However, the protective effects of Golden-Antrodia camphorata on liver function have not been fully investigated in human clinical studies. Therefore, the present study aimed to evaluate the beneficial effects of Golden-Antrodia camphorata on hepatic function after alcohol consumption in human subjects. Methods: A total of 80 participants with increased γ-glutamyl transferase levels (60–180 U/L) were enrolled in the current study and were randomly divided into two groups. Participants in the first group were orally administrated with 300 mg/day Golden-Antrodia camphorata (tablets), while those in the second group received placebo tablets for 12 weeks. Biochemical routine blood tests were performed at 6 and 12 weeks following the first administration. Results: At 12 weeks post the first Golden-Antrodia camphorata administration, the serum levels of aspartate aminotransferase (AST; p < 0.0001), alanine aminotransferase (ALT; p = 0.0002) and triglyceride (p = 0.0158) were notably declined in the Golden-Antrodia camphorata treatment group compared with the placebo group. No clinically significant differences were observed between the Golden-Antrodia camphorata treatment and placebo groups in terms of general safety parameters. Conclusion: A statistically significant difference was obtained in the serum levels of AST, ALT and triglycerides between the Golden-Antrodia camphorata and placebo groups. However, no clinical significance was observed in any of the safety parameters examined. Overall, these findings indicated that treatment with Golden-Antrodia camphorata exerted protective effects on liver function.
Collapse
Affiliation(s)
- Yu-Ting Yen
- Drug Development Center, Institute of New Drug Development, Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Joo-Hyun Park
- Department of Family Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Seung-Hyun Kang
- Clinical Research Center of H PLUS Yangji Hospital, Seoul, South Korea
| | - Today Su
- Golden Biotechnology Corporation, New Taipei City, Taiwan
| | - Howard Cheng
- Golden Biotechnology Corporation, New Taipei City, Taiwan
| | - Wu-Che Wen
- Golden Biotechnology Corporation, New Taipei City, Taiwan
| | - Shin-Shiou Lin
- Golden Biotechnology Corporation, New Taipei City, Taiwan
| | - Yu-Ling Tai
- Golden Biotechnology Corporation, New Taipei City, Taiwan
| | - Pei-Ni Chen
- Golden Biotechnology Corporation, New Taipei City, Taiwan
- *Correspondence: Pei-Ni Chen, ; Shih-Chang Tsai,
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- *Correspondence: Pei-Ni Chen, ; Shih-Chang Tsai,
| |
Collapse
|
7
|
Francesca F, Caitlin A, Sarah L, Robyn GL. Antroquinonol administration in animal preclinical studies for Alzheimer's disease (AD): A new avenue for modifying progression of AD pathophysiology. Brain Behav Immun Health 2022; 21:100435. [PMID: 35252893 PMCID: PMC8892093 DOI: 10.1016/j.bbih.2022.100435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the rise of Alzheimer's disease (AD) in an ageing population, no cure is currently available for this disorder. This study assessed the role of a natural compound, Antroquinonol, in modifying the progression of AD when administered at the start and/or before appearance of symptoms and when the disease was well established, in a transgenic animal model. Antroquinonol was administered daily for 8 weeks, in 11 week (early stage) and 9 month (late stage) male transgenic mice (3 times Transgenic mice PS1M146V, APPSwe, and tauP301L, 3 Tg XAD) and their respective aged controls. Behavioural testing (including Elevated Plus Maze Watermaze, Recognition object testing and Y maze) was performed at the end of the drug administration. In addition AD biomarkers (Amyloid beta 42 (Aβ42), tau and phospho-tau levels), oxidative stress and inflammatory markers, were assessed in tested mice brains after their sacrifice at the end of the treatment. When administered before the start of symptoms at 11 weeks, Antroquinonol treatment at 34 mg/kg (D2) and more consistently at 75 mg/kg (D3), had a significant effect on reducing systemic inflammatory markers (Interleukin 1, IL-1β and TNF-α) and AD biomarker (Amyloid Beta 42, Aβ42 and tau) levels in the brain. The reduction of behavioural impairment reported for 3TgXAD mice was observed significantly for the D3 drug dose only and for all behavioural tests, when administered at 11 weeks. Similarly, beneficial effects of Antroquinonol (at higher dose D3) were noted in the transgenic mice in terms of AD biomarkers (tau and phosphorylated-tau), systemic inflammatory (IL-1β), brain anti-inflammatory (Nrf2) and oxidative (3-Nitrotyrosine, 3NT) markers. Improvement of memory impairment was also reported when Antroquinonol (D3) was administered at late stage (9 months). Since Antroquinonol has been used without adverse effects in previous successful clinical trials, this drug may offer a new avenue of treatment to modify AD development and progression.
Collapse
Affiliation(s)
- Fernandez Francesca
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Queensland, 4014, Australia
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| | - Aust Caitlin
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Queensland, 4014, Australia
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| | - Lye Sarah
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, Queensland, 4014, Australia
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| | - Griffiths Lyn Robyn
- Centre for Genomics and Personalised Medicine, Genomics Research Centre, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Corresponding author. Centre for Genomics and Personalised Health Genomics Research Centre, Queensland University of Technology, Australia.
| |
Collapse
|
8
|
Small-Molecule RAS Inhibitors as Anticancer Agents: Discovery, Development, and Mechanistic Studies. Int J Mol Sci 2022; 23:ijms23073706. [PMID: 35409064 PMCID: PMC8999084 DOI: 10.3390/ijms23073706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Mutations of RAS oncogenes are responsible for about 30% of all human cancer types, including pancreatic, lung, and colorectal cancers. While KRAS1 is a pseudogene, mutation of KRAS2 (commonly known as KRAS oncogene) is directly or indirectly associated with human cancers. Among the RAS family, KRAS is the most abundant oncogene related to uncontrolled cellular proliferation to generate solid tumors in many types of cancer such as pancreatic carcinoma (over 80%), colon carcinoma (40-50%), lung carcinoma (30-50%), and other types of cancer. Once described as 'undruggable', RAS proteins have become 'druggable', at least to a certain extent, due to the continuous efforts made during the past four decades. In this account, we discuss the chemistry and biology (wherever available) of the small-molecule inhibitors (synthetic, semi-synthetic, and natural) of KRAS proteins that were published in the past decades. Commercial drugs, as well as investigational molecules from preliminary stages to clinical trials, are categorized and discussed in this study. In summary, this study presents an in-depth discussion of RAS proteins, classifies the RAS superfamily, and describes the molecular mechanism of small-molecule RAS inhibitors.
Collapse
|
9
|
Ningsih R, Rafi M, Tjahjoleksono A, Bintang M, Megia R. Ripe pulp metabolite profiling of ten Indonesian dessert banana cultivars using UHPLC-Q-Orbitrap HRMS. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03834-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Qazi S, Das S, Khuntia BK, Sharma V, Sharma S, Sharma G, Raza K. In Silico Molecular Docking and Molecular Dynamic Simulation Analysis of Phytochemicals From Indian Foods as Potential Inhibitors of SARS-CoV-2 RdRp and 3CLpro. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211031707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
With the current pandemic of the novel coronavirus disease 2019 (COVID-19) in hand, researchers around the globe are dexterously working to find the best suitable drug candidates and overcome vaccination-related challenges, to achieve efficient control over the second surge of COVID-19. The medical consultants time and again have been reiterating the need to abide by the precautionary steps to prevent the spread of the coronavirus by maintaining social distancing when outside, sanitizing hands regularly, and wearing masks and gloves. They also suggest taking a good and hygienic meal so as to boost immunity. Indians have an inborn nature of using natural spices, food, and medicines in their daily lives. Indian researchers have paid heed to deploy compounds from natural sources to explore potential antiviral agents against COVID-19 as the chances of acquiring side effects are perceived as less, and the efficacy of phytochemicals from medicinal plants is sometimes greater when compared to their synthetic counterparts. In the present study, we performed an in silico molecular docking and molecular dynamic simulation analysis of screened phytochemicals from a comprehensive list of Ayurvedic herbs/functional foods that are present in natural food products against key receptor proteins of severe acute respiratory syndrome coronavirus 2. We found that Aegle marmelos, Vetiveria zizanoides, Moringaolifera, and Punica granatum have antiviral potential to prevent coronavirus infection in the populace.
Collapse
Affiliation(s)
- Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Soumi Das
- ICMR-National Institute of Pathology, New Delhi, India
| | - Bharat Krushna Khuntia
- Center for Integrative Medicine and Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vandna Sharma
- Center for Integrative Medicine and Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shruti Sharma
- ICMR-National Institute of Pathology, New Delhi, India
| | - Gautam Sharma
- Center for Integrative Medicine and Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
12
|
Tao Y, Chen L, Pu F, Xie Z, Tong S, Yan J. An efficient high-speed countercurrent chromatography method for preparative isolation of highly potent anti-cancer compound antroquinonol from Antrodia camphorata after experimental design optimized extraction. J Sep Sci 2021; 44:2655-2662. [PMID: 33884745 DOI: 10.1002/jssc.202100162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022]
Abstract
To avoid irreversible stationary phase adsorption and tedious and time-consuming separation steps, high-speed countercurrent chromatography was employed for the preparative separation of anti-tumor compound antroquinonol from solid fermentation culture of Antrodia camphorata for the first time. A Box-Behnken experimental design, based on three parameters including liquid-to-solid ratio, extraction time, and extraction temperature, was applied to optimize the ultrasonic extraction procedure. The optimal extraction condition was set as follows: liquid-to-solid ratio: 49.57:1; extraction time: 55.76 min; extraction temperature was arranged as 44.21°C. Meanwhile, an optimized solvent system containing petroleum ether, ethyl acetate, methanol, and water (4:1:4:1, v/v/v/v) was selected for the preparative separation of antroquinonol at a flow rate of 2.0 mL/min. The yield of isolated antroquinonol was determined to be 6.0 mg from 0.67 g of ethyl acetate extracts. The isolated antroquinonol was elucidated by ultra-high-performance liquid chromatography-tandem mass spectrometry, and NMR spectroscopy, and by comparison with literature data. The purity of isolated antroquinonol was determined to be 97.12%. This study confirmed that high-speed countercurrent chromatography was powerful and cost-effective for the preparative separation of the high-potently anti-tumor compound antroquinonol from solid fermentation culture of A. camphorata.
Collapse
Affiliation(s)
- Yi Tao
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China.,Zhejiang Suichang Limin Pharmaceutical Co., Lishui, Zhejiang, P. R. China
| | - Lin Chen
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Faxiang Pu
- Zhejiang Suichang Limin Pharmaceutical Co., Lishui, Zhejiang, P. R. China
| | - Zhangfu Xie
- Zhejiang Suichang Limin Pharmaceutical Co., Lishui, Zhejiang, P. R. China
| | - Shengqiang Tong
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jizhong Yan
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
13
|
Liu X, Xia Y, Zhang Y, Liang L, Xiong Z, Wang G, Song X, Ai L. Enhancement of antroquinonol production via the overexpression of 4-hydroxybenzoate polyprenyltransferase biosynthesis-related genes in Antrodia cinnamomea. PHYTOCHEMISTRY 2021; 184:112677. [PMID: 33556840 DOI: 10.1016/j.phytochem.2021.112677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Antroquinonol (AQ) as one of the most potent bioactive components in Antrodia cinnamomea (Fomitopsidaceae) shows a broad spectrum of anticancer effects. The lower yield of AQ has hampered its possible clinical application. AQ production may potentially be improved by genetic engineering. In this study, the protoplast-polyethylene glycol method combined with hygromycin as a selection marker was used in the genetic engineering of A. cinnamomea S-29. The optimization of several crucial parameters revealed that the optimal condition for generating maximal viable protoplasts was digestion of 4-day-old germlings with a mixture of enzymes (lysing enzyme, snailase, and cellulase) and 1.0 M MgSO4 for 4 h. The ubiA and CoQ2 genes, which are involved in the synthesis of 4-hydroxybenzoate polyprenyltransferase, were cloned and overexpressed in A. cinnamomea. The results showed that ubiA and CoQ2 overexpression significantly increased AQ production in submerged fermentation. The overexpressing strain produced maximum AQ concentrations of 14.75 ± 0.41 mg/L and 19.25 ± 0.29 mg/L in pCT74-gpd-ubiA and pCT74-gpd-CoQ2 transformants, respectively. These concentrations were 2.00 and 2.61 times greater than those produced by the control, respectively. This research exemplifies how the production of metabolites may be increased by genetic manipulation, and will be invaluable to guide the genetic engineering of other mushrooms that produce medically useful compounds.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yao Zhang
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, 310023, PR China
| | - Lihong Liang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
14
|
Dai X, Sun Y, Zhang T, Ming Y, Hongwei G. An overview on natural farnesyltransferase inhibitors for efficient cancer therapy. J Enzyme Inhib Med Chem 2020; 35:1027-1044. [PMID: 32308053 PMCID: PMC7191900 DOI: 10.1080/14756366.2020.1732366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022] Open
Abstract
As one of the world's five terminally ills, tumours can cause important genetic dysfunction. However, some current medicines for tumours usually have strong toxic side effects and are prone to drug resistance. Studies have found that farnesyltransferase inhibitors (FTIs) extracted from natural materials have a good inhibiting ability on tumours with fewer side effects. This article describes several FTIs extracted from natural materials and clarifies the current research progress, which provides a new choice for the treatment of tumours.
Collapse
Affiliation(s)
- Xiaohan Dai
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Yingni Sun
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Ting Zhang
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Yongfei Ming
- School of Life Science, Ludong University, Yantai, Shandong, China
| | - Gao Hongwei
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
15
|
Chang HY, Cheng TH, Wang AHJ. Structure, catalysis, and inhibition mechanism of prenyltransferase. IUBMB Life 2020; 73:40-63. [PMID: 33246356 PMCID: PMC7839719 DOI: 10.1002/iub.2418] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 12/31/2022]
Abstract
Isoprenoids, also known as terpenes or terpenoids, represent a large family of natural products composed of five‐carbon isopentenyl diphosphate or its isomer dimethylallyl diphosphate as the building blocks. Isoprenoids are structurally and functionally diverse and include dolichols, steroid hormones, carotenoids, retinoids, aromatic metabolites, the isoprenoid side‐chain of ubiquinone, and isoprenoid attached signaling proteins. Productions of isoprenoids are catalyzed by a group of enzymes known as prenyltransferases, such as farnesyltransferases, geranylgeranyltransferases, terpenoid cyclase, squalene synthase, aromatic prenyltransferase, and cis‐ and trans‐prenyltransferases. Because these enzymes are key in cellular processes and metabolic pathways, they are expected to be potential targets in new drug discovery. In this review, six distinct subsets of characterized prenyltransferases are structurally and mechanistically classified, including (1) head‐to‐tail prenyl synthase, (2) head‐to‐head prenyl synthase, (3) head‐to‐middle prenyl synthase, (4) terpenoid cyclase, (5) aromatic prenyltransferase, and (6) protein prenylation. Inhibitors of those enzymes for potential therapies against several diseases are discussed. Lastly, recent results on the structures of integral membrane enzyme, undecaprenyl pyrophosphate phosphatase, are also discussed.
Collapse
Affiliation(s)
- Hsin-Yang Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tien-Hsing Cheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Natural Products Attenuating Biosynthesis, Processing, and Activity of Ras Oncoproteins: State of the Art and Future Perspectives. Biomolecules 2020; 10:biom10111535. [PMID: 33182807 PMCID: PMC7698260 DOI: 10.3390/biom10111535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
RAS genes encode signaling proteins, which, in mammalian cells, act as molecular switches regulating critical cellular processes as proliferation, growth, differentiation, survival, motility, and metabolism in response to specific stimuli. Deregulation of Ras functions has a high impact on human health: gain-of-function point mutations in RAS genes are found in some developmental disorders and thirty percent of all human cancers, including the deadliest. For this reason, the pathogenic Ras variants represent important clinical targets against which to develop novel, effective, and possibly selective pharmacological inhibitors. Natural products represent a virtually unlimited resource of structurally different compounds from which one could draw on for this purpose, given the improvements in isolation and screening of active molecules from complex sources. After a summary of Ras proteins molecular and regulatory features and Ras-dependent pathways relevant for drug development, we point out the most promising inhibitory approaches, the known druggable sites of wild-type and oncogenic Ras mutants, and describe the known natural compounds capable of attenuating Ras signaling. Finally, we highlight critical issues and perspectives for the future selection of potential Ras inhibitors from natural sources.
Collapse
|
17
|
Kushairi N, Tarmizi NAKA, Phan CW, Macreadie I, Sabaratnam V, Naidu M, David P. Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer's disease. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Chang CC, Lu YC, Wang CC, Ko TL, Chen JR, Wang W, Chen YL, Wang YW, Chang TH, Hsu HF, Houng JY. Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish. Molecules 2020; 25:molecules25184213. [PMID: 32937928 PMCID: PMC7571120 DOI: 10.3390/molecules25184213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022] Open
Abstract
Antrodia cinnamomea (AC) has been shown to have anti-inflammatory, anti-tumor, and immunomodulation activities. It is estimated that hundreds of metric tons of AC extraction waste (ACEW) are produced per year in Taiwan. This study aims to assess the feasibility of applying ACEW as feed supplement in the aquaculture industry. ACEW significantly inhibited the growth of microorganisms in the water tank, by around 39.4% reduction on the fifth day with feed supplemented of 10% ACEW. The feed conversion efficiency of zebrafish with 10% ACEW supplementation for 30 days was 1.22-fold compared to that of the control. ACEW dramatically improved the tolerances of zebrafish under the heat and cold stresses. When at water temperature extremes of 38 °C or 11 °C, compared to the 100% mortality rate in the control group, the 10% ACEW diet group still had 91.7% and 83.3% survival rates, respectively. In a caudal fin amputation test, the fin recovery of zebrafish was increased from 68.4% to 93% with 10% ACEW diet after 3-week regeneration. ACEW effectively down-regulated the gene expression of TNF-α, IL-1β, IL-6, and IL-10, and up-regulated the gene expression of IL-4/13A. Additionally, the supplement of ACEW in the feed can maintain and prevent the fish’s body weight from dropping too much under enteritis. Taken together, ACEW has beneficial potential in aquaculture.
Collapse
Affiliation(s)
- Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Yung-Chuan Lu
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Chih-Chun Wang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Department of Otolaryngology, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Tsui-Ling Ko
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
| | - Jung-Ren Chen
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (J.-R.C.); (W.W.)
| | - Wei Wang
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (J.-R.C.); (W.W.)
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Yu-Wen Wang
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
| | - Tzu-Hsien Chang
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Hsia-Fen Hsu
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
| | - Jer-Yiing Houng
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7915)
| |
Collapse
|
19
|
Liu X, Xia Y, Zhang Y, Yang C, Xiong Z, Song X, Ai L. Comprehensive transcriptomic and proteomic analyses of antroquinonol biosynthetic genes and enzymes in Antrodia camphorata. AMB Express 2020; 10:136. [PMID: 32748086 PMCID: PMC7399014 DOI: 10.1186/s13568-020-01076-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023] Open
Abstract
Antroquinonol (AQ) has several remarkable bioactivities in acute myeloid leukaemia and pancreatic cancer, but difficulties in the mass production of AQ hamper its applications. Currently, molecular biotechnology methods, such as gene overexpression, have been widely used to increase the production of metabolites. However, AQ biosynthetic genes and enzymes are poorly understood. In this study, an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) were used to identify AQ synthesis-related genes and enzymes in Antrodia camphorata during coenzyme Q0-induced fermentation (FM). The upregulated genes related to acetyl-CoA synthesis indicated that acetyl-CoA enters the mevalonate pathway to form the farnesyl tail precursor of AQ. The metE gene for an enzyme with methyl transfer activity provided sufficient methyl groups for AQ structure formation. The CoQ2 and ubiA genes encode p-hydroxybenzoate polyprenyl transferase, linking coenzyme Q0 and the polyisoprene side chain to form coenzyme Q3. NADH is transformed into NAD+ and releases two electrons, which may be beneficial for the conversion of coenzyme Q3 to AQ. Understanding the biosynthetic genes and enzymes of AQ is important for improving its production by genetic means in the future.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China
| | - Yao Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China
| | - Caiyun Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, People's Republic of China.
| |
Collapse
|
20
|
Kuang Y, Li B, Wang Z, Qiao X, Ye M. Terpenoids from the medicinal mushroom Antrodia camphorata: chemistry and medicinal potential. Nat Prod Rep 2020; 38:83-102. [PMID: 32720965 DOI: 10.1039/d0np00023j] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to February 2020Antrodia camphorata is a medicinal mushroom endemic to Taiwan for the treatment of intoxication, liver injury, cancer, and inflammation. Owing to its rare occurrence and potent pharmacological activities, efforts have been devoted to identify its bioactive constituents, especially terpenoids. Since 1995, a total of 162 terpenoids including triterpenoids, meroterpenoids, sesquiterpenoids, diterpenoids, and steroids have been characterized. The ergostane-type triterpenoids (antcins) and meroterpenoids (antroquinonols) are characteristic constituents of A. camphorata. The terpenoids show anti-cancer, hepatoprotective, anti-inflammatory, anti-diabetic, and neuroprotective activities. This review summarizes the research progress on terpenoids in A. camphorata during 1995-2020, including structural diversity, resources, biosynthesis, pharmacological activities, metabolism, and toxicity. The medicinal potential of the terpenoids is also discussed.
Collapse
Affiliation(s)
- Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
21
|
Yi ZW, Xia YJ, Liu XF, Wang GQ, Xiong ZQ, Ai LZ. Antrodin A from mycelium of Antrodia camphorata alleviates acute alcoholic liver injury and modulates intestinal flora dysbiosis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112681. [PMID: 32087320 DOI: 10.1016/j.jep.2020.112681] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia camphorata (A. camphorata) is a rare functional fungus in Taiwan and contains a variety of biologically active ingredients. Antrodin A (AdA) is one of the main active ingredients in the solid-state fermented A. camphorata mycelium. It protects the liver from alcohol damage by improving the antioxidant and anti-inflammatory capacity of the liver and maintaining the stability of the intestinal flora. AIM OF THE STUDY The aim of this study was to evaluate the hepatoprotective activities of ethyl acetate layer extract (EALE), AdA, and Antroquinonol (Aq) from mycelium of A. camphorata on alcoholic liver injury. MATERIALS AND METHODS Mice were given with intragastrically vehicle (NC, 2% CMC-Na), alcohol (AL, 12 mL/kg bw), or different A. camphorata samples (EALE, AdA, Aq) at low (100 mg/kg bw) or high (200 mg/kg bw) dosages. The positive control (PC) group was given with silymarin (200 mg/kg bw). Except the NC group, each group of mice was fasted for 4 h after the last treatment and was intragastrically administrated with 50% alcohol (12 mL/kg bw). At the end of experiment, mouse serum was collected and the liver was excised. A portion of the liver was fixed in formalin and used for histopathological analysis, whereas the rest was used for biochemical analysis and real-time PCR analysis. The intestinal flora structure of feces was analyzed by determining the v3-v4 region sequence in 16S rDNA. RESULTS The high-dose groups of the three samples (EALEH, AdAH, and AqH) significantly alleviated the alcohol-induced increases in liver index, serum ALT, AST, and AKP activities. Serum TG level was significantly reduced in all treatment groups. The increase of HDL-C content indicated that active ingredients of A. camphorata could reduce the lipid content in serum. Furthermore, MDA contents of the AdAH and AqH groups in liver were significantly reduced, accompanying with the levels of SOD, CAT, and GSH elevated to various extents. Antioxidant and anti-inflammatory capabilities in the liver were increased in the AdAH group, as evidenced by the mRNA expression levels of Nrf-2 and HO-1 were significantly increased; while those of CYP2e1, TNF-α, and TLR-4 were significantly decreased. Analysis of intestinal flora of feces showed that alcohol treatment significantly changed the composition of intestinal flora. Supplementation with AdA could mitigate dysbiosis of intestinal flora induced by alcohol. Flora of Faecalibaculum, Lactobacillus, and Coriobacteriaceae_UCG-002 showed significantly negative correlations with ALT, AST, AKP, and MDA levels. CONCLUSION Antrodin A could improve the antioxidant and anti-inflammatory capacities of the liver and maintain the stability of intestinal flora. It is potentially a good candidate compound against acute alcoholic liver injury.
Collapse
Affiliation(s)
- Zhen-Wei Yi
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yong-Jun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xiao-Feng Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Guang-Qiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhi-Qiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Lian-Zhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
22
|
Singh L, Joshi T, Tewari D, Echeverría J, Mocan A, Sah AN, Parvanov E, Tzvetkov NT, Ma ZF, Lee YY, Poznański P, Huminiecki L, Sacharczuk M, Jóźwik A, Horbańczuk JO, Feder-Kubis J, Atanasov AG. Ethnopharmacological Applications Targeting Alcohol Abuse: Overview and Outlook. Front Pharmacol 2020; 10:1593. [PMID: 32116660 PMCID: PMC7034411 DOI: 10.3389/fphar.2019.01593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is the cause of several diseases and thus is of a major concern for society. Worldwide alcohol consumption has increased by many folds over the past decades. This urgently calls for intervention and relapse counteract measures. Modern pharmacological solutions induce complete alcohol self-restraint and prevent relapse, but they have many side effects. Natural products are most promising as they cause fewer adverse effects. Here we discuss in detail the medicinal plants used in various traditional/folklore medicine systems for targeting alcohol abuse. We also comprehensively describe preclinical and clinical studies done on some of these plants along with the possible mechanisms of action.
Collapse
Affiliation(s)
- Laxman Singh
- Centre for Biodiversity Conservation & Management, G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Almora, India
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus, Nainital, India
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Javier Echeverría
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus, Nainital, India
| | - Emil Parvanov
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Division BIOCEV, Prague, Czechia
| | - Nikolay T. Tzvetkov
- Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department Global R&D, NTZ Lab Ltd., Sofia, Bulgaria
| | - Zheng Feei Ma
- Department of Public Health, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Piotr Poznański
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Feder-Kubis
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego, Wrocław, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Chen JR, Yeh WJ, Tan HY, Yang HY. Antroquinonol Attenuated Abdominal and Hepatic Fat Accumulation in Rats Fed an Obesogenic Diet. J Food Sci 2019; 84:2682-2687. [PMID: 31441509 DOI: 10.1111/1750-3841.14746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/16/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022]
Abstract
An imbalance of energy intake and expenditure leads to fat accumulation and metabolic disorders. The aim of the study was to investigate the effects of antroquinonol on diet-induced obesity. Thirty-two rats were divided into a control group (C), an obesogenic group (OB), and two experimental groups consuming 25 (OB-AQ25) and 50 mg/kg (OB-AQ50) antroquinonol (n = 8). After a 12-week experimental period, we collected blood, liver, abdominal fat, and gastrocnemius muscle tissue for analysis. The obesogenic diet induced greater weight gain and fat accumulation, and increased hepatic lipids, and tumor necrosis factor-α and interleukin-1β concentrations in rats. Antroquinonol consumption reduced epididymal and hepatic lipids and inflammatory cytokines. We found that antroquinonol upregulated hepatic adenosine monophosphate-activated protein kinase and downregulated sterol regulatory element-binding protein-1 protein expressions and downregulated fatty acid synthase mRNA expression. In addition, gastrocnemius fibronectin type III domain containing 5 protein expression was also higher in the B group. In conclusion, our results suggested that consuming antroquinonol may ameliorate diet-induced abdominal and hepatic fat accumulation. PRACTICAL APPLICATION: Antroquinonol is a bioactive compound derived from Antrodia camphorate which is traditionally used in Chinese medicinal cuisine, and is used for developing functional foods in Taiwan. This is the first study investigating the possible effects of antroquinonol on obesity and we found that antroquinonol can ameliorate diet-induced obesity, and therefore may be used in further studies and functional food development.
Collapse
Affiliation(s)
- Jiun-Rong Chen
- School of Nutrition and Health Sciences, Taipei Medical Univ., 250 Wuxing St., Taipei, 11031, Taiwan
| | - Wan-Ju Yeh
- Dept. of Food Science, College of Agriculture, Tunghai Univ., Taichung, Taiwan
| | - Hsiu-Yun Tan
- School of Nutrition and Health Sciences, Taipei Medical Univ., 250 Wuxing St., Taipei, 11031, Taiwan
| | - Hsin-Yi Yang
- Dept. of Nutritional Science, Fu Jen Catholic Univ., No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205, Taiwan
| |
Collapse
|