1
|
Le AT, Prabhu N, S Almoallim H, Awad Alahmadi T. Assessment of nutraceutical value, physicochemical, and anti-inflammatory profile of Odonthalia floccose and Odonthalia dentata. ENVIRONMENTAL RESEARCH 2024; 259:119487. [PMID: 38917932 DOI: 10.1016/j.envres.2024.119487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
The nutraceutical value, and physicochemical profile as well as anti-inflammatory activity potential of Odonthalia floccose and Odonthalia dentata (red macroalgae) dry biomass were investigated in this study. Proximate composition study results revealed that the dry biomass of O. floccose and O. dentae were found to be as ash: 9.11 & 8.7 g 100 g-1, moisture: 8.24 & 8.1 g 100 g-1, total fat: 6.9 & 7.2 g 100 g-1, protein: 24.52 & 25.6 g 100 g-1, and total carbohydrate/polysaccharides: 53.84 & 48.85 g 100 g-1 of dry weight biomass respectively. Both algae biomass contain considerable quantity of minerals (Fe, Cu, Mg, and Zn). Furthermore, the major saturated fatty acids (6.24 & 5.82 g FAME 100 g-1 of total fat of O. floccose and O. dentate) (ΣFAs) present in the test algae were stearic acid, palmitic acid, and margaric acids. O. floccose and O. dentata also contain remarkable protein composition profile that compiled with considerable quantity of essential and non-essential amino acids. The vitamins such as vitamin A, B1, B2, B3, B6, B9, C, and E of O. floccose and O. dentate biomass were also identified at sufficient quantity level. The swelling capacity (SWC), water holding capacity (WHC), and oil holding capacity (OHC) properties of O. floccose and O. dentate at various temperature conditions (25 and 37 ᵒC) were found to be 8.11 & 7.02 mL g-1 and 8.95 & 7.55 mL g-1, 5.1 & 4.87 and 4.8 & 4.1 mL g-1, as well as 2.11 & 1.81 and 1.96 & 1.89 mL g-1 respectively. Among these two marine red macroalgae samples, the O. dentate showed better anti-inflammatory activity than O. floccose at 150 μg mL-1 dosage. Thus, this O. floccose and O. dentate biomass can be considerable as nutritional supplement and pharmaceutical product development related research.
Collapse
Affiliation(s)
- Anh-Tuan Le
- Faculty of Odonto-Stomatology, College of Medicine and Pharmacy, Duy Tan University, Danang, 550000, Viet Nam.
| | - N Prabhu
- Center for Research and Innovations, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602 105, Tamil Nadu, India
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh - 11545, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh - 11461, Saudi Arabia.
| |
Collapse
|
2
|
Wu D, Jia Y, Liu Y, Shang M. Dose-response relationship of dietary Omega-3 fatty acids on slowing phenotypic age acceleration: a cross-sectional study. Front Nutr 2024; 11:1424156. [PMID: 39296507 PMCID: PMC11409900 DOI: 10.3389/fnut.2024.1424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Purpose This study investigates the association between dietary Omega-3 fatty acid intake and accelerated phenotypic aging, referred to as PhenoAgeAccel. PhenoAgeAccel is defined as the difference between phenotypic biological age, calculated using blood biochemical markers, and chronological age. This study assesses the potential of Omega-3 intake to slow biological aging and its implications for public health. Methods Utilizing data from the NHANES from 1999 to 2018, this cross-sectional study included 20,337 adult participants. Through a nationally representative sample combined with comprehensive phenotypic age calculation methods, a cross-sectional analysis of Omega-3 fatty acid intake and accelerated phenotypic aging was conducted. Weighted generalized linear regression models and restricted cubic spline analyses were applied to explore the potential non-linear relationships between them. Threshold effects were further clarified through piecewise regression models, and the impact of different demographic and health characteristics was evaluated through interaction effect tests. Results After adjusting for various potential confounding factors, a significant negative correlation was found between Omega-3 fatty acid intake and PhenoAgeAccel (β = -0.071; 95% CI: -0.119, -0.024; p = 0.004), indicating that an increase in Omega-3 intake is associated with a slowdown in PhenoAgeAccel. Specifically, for each unit increase in Omega-3 intake, the accelerated phenotypic aging decreased by an average of 0.071 units, revealing a significant linear negative correlation between Omega-3 intake and PhenoAgeAccel. Moreover, threshold effect analysis identified an Omega-3 fatty acid intake threshold (1.103 grams/day), beyond which the impact of Omega-3 intake on accelerated phenotypic aging tends to stabilize. Additionally, factors such as gender, age, race, and hypertension may influence the relationship between Omega-3 intake and PhenoAgeAccel, suggesting individual dietary guidance needs in different populations. Conclusion This study highlights the potential role of dietary Omega-3 fatty acids in regulating PhenoAgeAccel and supports the strategy of delaying the aging process through dietary interventions to increase Omega-3 intake. The findings of this study contributes to the development of precise nutritional intervention strategies for different populations to optimize healthy longevity.
Collapse
Affiliation(s)
- Dongzhe Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yishuai Jia
- Department of Sports, China University of Geosciences, Beijing, China
| | - Yujia Liu
- Department of National Fitness, Scientific Exercise Research Center, China Institute of Sport Science, Beijing, China
| | - Mingyu Shang
- Chinese Swimming Academy, Beijing Sport University, Beijing, China
| |
Collapse
|
3
|
Zhao Y, Tan M, Yin Y, Zhang J, Song Y, Li H, Yan L, Jin Y, Wu Z, Yang T, Jiang T, Li H. Comprehensive macro and micro views on immune cells in ischemic heart disease. Cell Prolif 2024:e13725. [PMID: 39087342 DOI: 10.1111/cpr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.
Collapse
Affiliation(s)
- Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Geriatrics, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Jiangsu, China
| | - Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ziyue Wu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. INT J VITAM NUTR RES 2024; 94:405-421. [PMID: 38009780 DOI: 10.1024/0300-9831/a000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intestinal permeability is a physiological property that allows necessary molecules to enter the organism. This property is regulated by tight junction proteins located between intestinal epithelial cells. However, various factors can increase intestinal permeability (IIP), including diet. Specific components in the Western diet (WD), such as monosaccharides, fat, gluten, salt, alcohol, and additives, can affect the tight junctions between enterocytes, leading to increased permeability. This review explains how these components promote IIP and outlines their potential implications for health. In addition, we describe how a reduction in WD consumption may help improve dietary treatment of diseases associated with IIP. Research has shown that some of these components can cause changes in the gut microbiota, leading to dysbiosis, which can promote greater intestinal permeability and displacement of endotoxins into the bloodstream. These endotoxins include lipopolysaccharides derived from gram-negative bacteria, and their presence has been associated with various diseases, such as autoimmune, neurological, and metabolic diseases like diabetes and cardiovascular disease. Therefore, nutrition professionals should promote the reduction of WD consumption and consider the inclusion of healthy diet components as part of the nutritional treatment for diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- Gilberto Jaquez-Durán
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| | - Ana Lidia Arellano-Ortiz
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| |
Collapse
|
5
|
Song R, Yao X, Jing F, Yang W, Wu J, Zhang H, Zhang P, Xie Y, Pan X, Zhao L, Wu C. Effects of Five Lipid Sources on Growth, Hematological Parameters, Immunity and Muscle Quality in Juvenile Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2024; 14:781. [PMID: 38473166 DOI: 10.3390/ani14050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigated the effects of fish oil (FO), soybean oil (SO), rapeseed oil (RO), peanut oil (PO) and lard oil (LO) on growth, immunity and muscle quality in juvenile largemouth bass. After 8 weeks, the results showed that FO and RO could increase weight gain and serum alkaline phosphatase and apelin values compared with LO (p < 0.05). Except lower crude lipid contents, higher amounts of n-3 polyunsaturated fatty acids (15.83% and 14.64%) were present in the dorsal muscle of the FO and RO groups. Meanwhile, FO and RO could heighten mRNA levels of immune defense molecules (lysozyme, hepcidin, and transforming growth factor β1) compared with PO (p < 0.05). While SO could increase potential inflammatory risk via rising counts of white blood cells, platelets, neutrophils and monocytes, and mRNA levels of interleukins (IL-1β, IL-8, IL-12 and IL-15), FO and RO could improve hardness, chewiness and springiness through increasing amounts of hydroxyproline, collagen and lysyl oxidase, and mRNA levels of collagen 1α2 and prolyl hydroxylase in the fish dorsal muscle. Moreover, FO and RO could improve firmness through increasing glycogen and glycogen synthase 1 levels when compared with LO (p < 0.05). Therefore, these results could provide dietary lipid source references during the feeding process of adult largemouth bass.
Collapse
Affiliation(s)
- Rui Song
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Xinfeng Yao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Futao Jing
- Shandong Fisheries Development and Resources Conservation Center, 162 Jiefang Road, Jinan 250013, China
| | - Wenxue Yang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Jiaojiao Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Hao Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Penghui Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Yuanyuan Xie
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Xuewen Pan
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Long Zhao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China
| |
Collapse
|
6
|
Guillas I, Lhomme M, Pionneau C, Matheron L, Ponnaiah M, Galier S, Lebreton S, Delbos M, Ma F, Darabi M, Khoury PE, Abifadel M, Couvert P, Giral P, Lesnik P, Guerin M, Le Goff W, Kontush A. Identification of the specific molecular and functional signatures of pre-beta-HDL: relevance to cardiovascular disease. Basic Res Cardiol 2023; 118:33. [PMID: 37639039 DOI: 10.1007/s00395-023-01004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
While low concentrations of high-density lipoprotein-cholesterol (HDL-C) are widely accepted as an independent cardiovascular risk factor, HDL-C-rising therapies largely failed, suggesting the importance of both HDL functions and individual subspecies. Indeed HDL particles are highly heterogeneous, with small, dense pre-beta-HDLs being considered highly biologically active but remaining poorly studied, largely reflecting difficulties for their purification. We developed an original experimental approach allowing the isolation of sufficient amounts of human pre-beta-HDLs and revealing the specificity of their proteomic and lipidomic profiles and biological activities. Pre-beta-HDLs were enriched in highly poly-unsaturated species of phosphatidic acid and phosphatidylserine, and in an unexpectedly high number of proteins implicated in the inflammatory response, including serum paraoxonase/arylesterase-1, vitronectin and clusterin, as well as in complement regulation and immunity, including haptoglobin-related protein, complement proteins and those of the immunoglobulin class. Interestingly, amongst proteins associated with lipid metabolism, phospholipid transfer protein, cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase were strongly enriched in, or restricted to, pre-beta-HDL. Furthermore, pre-beta-HDL potently mediated cellular cholesterol efflux and displayed strong anti-inflammatory activities. A correlational network analysis between lipidome, proteome and biological activities highlighted 15 individual lipid and protein components of pre-beta-HDL relevant to cardiovascular disease, which may constitute novel diagnostic targets in a pathological context of altered lipoprotein metabolism.
Collapse
Affiliation(s)
- Isabelle Guillas
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France.
| | - Marie Lhomme
- Institute of Cardiometabolism and Nutrition (ICAN), ICANalytics Lipidomic, Paris, France
| | - Cédric Pionneau
- Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-Génomique de la Pitié-Salpêtrière, P3S, Sorbonne Université, 75013, Paris, France
| | - Lucrèce Matheron
- Institut de Biologie Paris-Seine, Sorbonne Université, 75005, Paris, France
| | - Maharajah Ponnaiah
- Institute of Cardiometabolism and Nutrition (ICAN), ICANalytics Lipidomic, Paris, France
| | - Sophie Galier
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Sandrine Lebreton
- Université Paris Est Créteil, Université Paris Diderot, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, 75005, Paris, France
| | - Marie Delbos
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Feng Ma
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Maryam Darabi
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Petra El Khoury
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon
- INSERM LVTS U1148, Hôpital Bichat-Claude Bernard, Paris, France
| | - Philippe Couvert
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
- Pôle de Biologie Médicale et Pathologie, Centre de Génétique Moléculaire et Chromosomique, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Philippe Giral
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Philippe Lesnik
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Maryse Guerin
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Wilfried Le Goff
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Anatol Kontush
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| |
Collapse
|
7
|
Saejung C, Lomthaisong K, Kotthale P. Alternative microbial-based functional ingredient source for lycopene, beta-carotene, and polyunsaturated fatty acids. Heliyon 2023; 9:e13828. [PMID: 36873505 PMCID: PMC9981927 DOI: 10.1016/j.heliyon.2023.e13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The acquisition of carotenoids and polyunsaturated fatty acids (PUFAs) from plants and animals for use as functional ingredients raises concerns regarding productivity and cost; utilization of microorganisms as alternative sources is an option. We proposed to evaluate the production of carotenoids and PUFAs by Rhodopseudomonas faecalis PA2 using different vegetable oils (rice bran oil, palm oil, coconut oil, and soybean oil) as carbon source, different concentrations of yeast extract as nitrogen source at different cultivation time to ensure the best production. Cultivation with soybean oil as source of carbon led to the most significant changes in the fatty acid profile. Compared to the initial condition, the strain cultivated in the optimal conditions (4% soybean oil, 0.35% yeast extract, and 14 days of incubation) showed an increase in μmax, biomass, carotenoid productivity, and microbial lipids by 102.5%, 52.7%, 33.82%, and 34.78%, respectively. The unsaturated fatty acids content was raised with additional types of PUFAs; omega-3 [alpha-linolenic acid and eicosapentaenoic acid] and omega-6 [linoleic acid and eicosatrienoic acid] fatty acids were identified. The results of ultra high-performance liquid chromatography-electrospray ionization-quadrupole time of flight-mass spectrometry (UHPLC-ESI-QTOF-MS/MS) indicated the molecular formula and mass of bacterial metabolites were identical to those of lycopene and beta-carotene. The untargeted metabolomics revealed functional lipids and several physiologically bioactive compounds. The outcome provides scientific reference regarding carotenoids, PUFAs, and useful metabolites that have not yet been reported in the species Rhodopseudomonas faecalis for further use as a microbial-based functional ingredient.
Collapse
Affiliation(s)
- Chewapat Saejung
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Khomsorn Lomthaisong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prawphan Kotthale
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
8
|
Kubo Y, Ikeya M, Sugiyama S, Takachu R, Tanaka M, Sugiura T, Kobori K, Kobori M. Effects of n-3 polyunsaturated fatty acid supplementation on quadriceps weakness immediately after total knee arthroplasty: a pilot, randomized, open-label clinical trial. J Phys Ther Sci 2023; 35:93-98. [PMID: 36744193 PMCID: PMC9889211 DOI: 10.1589/jpts.35.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/09/2022] [Indexed: 02/04/2023] Open
Abstract
[Purpose] Severe quadriceps weakness immediately after total knee arthroplasty can be problematic. The n-3 long-chain polyunsaturated fatty acids have antioxidant and anti-inflammatory effects against ischemia-reperfusion injury, whereas n-6 long-chain polyunsaturated fatty acids exert pro-inflammatory effects, thereby promoting ischemia-reperfusion injury. [Participants and Methods] We explored the efficacy of preoperative n-3 long-chain polyunsaturated fatty acid supplementation against early quadriceps weakness among 20 patients scheduled for total knee arthroplasty (intervention group, n=10; control group, n=10). The intervention group received 645 mg of eicosapentaenoic acid) and 215 mg of docosahexaenoic acid daily for 30 days preoperatively. Serum eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid levels were measured preoperatively. We compared serum derivatives of reactive oxygen metabolites as oxidative stress biomarkers, knee circumference, thigh volume, knee pain during the quadriceps strength test, and quadriceps strength preoperatively and 4 days postoperatively to quantify the change. [Results] Preoperative n-3 long-chain polyunsaturated fatty acid supplementation significantly increased the (eicosapentaenoic acid+docosahexaenoic acid)/arachidonic acid ratio in the intervention group. A significantly lower increase in quadriceps weakness was exhibited in the intervention group than in the control group. However, changes in oxidative stress, knee/thigh swelling, and knee pain during strength testing did not significantly differ between the two groups. [Conclusion] Preoperative n-3 long-chain polyunsaturated fatty acid supplementation exhibited beneficial effects on quadriceps weakness immediately after total knee arthroplasty.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan,Corresponding author. Yusuke Kubo (E-mail: )
| | - Masae Ikeya
- Department of Health and Nutrition Sciences, Tokoha
University, Japan
| | - Shuhei Sugiyama
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan
| | - Rie Takachu
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan
| | - Maki Tanaka
- Rehabilitation Sciences, Seirei Christopher University,
Japan
| | - Takeshi Sugiura
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan
| | - Kaori Kobori
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan
| | - Makoto Kobori
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan
| |
Collapse
|
9
|
Liu X, Zhang X, Ding L, Jin H, Chen N, Huang X, Jin Y, Cai Z. Natural egg yolk emulsion as wall material to encapsulate DHA by two-stage homogenization: emulsion stability, rheology analysis and powder properties. Food Res Int 2023; 167:112658. [PMID: 37087208 DOI: 10.1016/j.foodres.2023.112658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/31/2022] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
The use of safe physical means to achieve egg yolk as natural carrier for active ingredients plays an important role in increasing the added value of egg yolk. In this paper, we prepared DHA-fortified egg yolk emulsion using high-speed shearing (HSS) only and HSS combined with high-pressure homogenization (HPH), respectively. HPH reduced particle size and zeta potential, allowing for better emulsion stability. After 14 days of storage, the encapsulation efficiency was 93.88% even with 15% (w/w) algae oil addition. Rheology analysis presented that HPH improve the viscoelasticity, indicating the enhancement of interaction force between droplets. Then, vaccum low-temperature spray drying (VLTSD) was used to produce powder, which allowed for minimal damage to the encapsulation structure according to scanning electron microscopy and the hydration properties of powder was improved. This work provides a new idea for using egg yolk to encapsulate DHA and improving the properties of egg yolk powder.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xinyue Zhang
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lixian Ding
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Haobo Jin
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nan Chen
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xi Huang
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
10
|
Jaworowska A, Murtaza A. Seaweed Derived Lipids Are a Potential Anti-Inflammatory Agent: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:730. [PMID: 36613050 PMCID: PMC9819613 DOI: 10.3390/ijerph20010730] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Chronic, low-grade inflammation is linked to the development of non-communicable diseases, including cancer, cardiovascular disease, obesity, insulin resistance, diabetes, and others which together contribute to more than 50% of deaths globally. Modulation of inflammatory responses may be a promising strategy, and n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) may offer a new therapeutic option in inflammatory conditions. Seaweeds are characterised by high nutritional quality and are a good source of many bioactive compounds, including n-3 LC-PUFA. This review addresses the potential anti-inflammatory properties of seaweed derived lipids, and their immunomodulating mechanisms in order to identify the possible applications of seaweed as an anti-inflammatory functional food ingredient or dietary supplement. A few studies have evaluated the anti-inflammatory activity of seaweed lipids using crude lipid extracts, lipid fractions and isolated complex lipids from several seaweeds belonging to the Ochrophyta and Rhodophyta phyla, with only three Ulva rigida, Ulva sp. and Codium tomentosum within the Chlorophyta phylum. It was reported that seaweed derived lipids suppress inducible nitric oxide synthase and cyclooxygenase-2 expression and reduce nuclear factor κB p100 and myeloid differentiation primary response 88 protein levels leading to the downregulation of the production of several pro-inflammatory cytokines and nitric oxide. Further investigations are required to unravel the complex mechanisms underlying their preventive action against chronic inflammation and their potential use as a new functional food ingredient and/or health supplement.
Collapse
Affiliation(s)
| | - Aliza Murtaza
- School of Science, University of Greenwich, Chatham ME4 4TG, UK
| |
Collapse
|
11
|
Seo B, Yang K, Kahe K, Qureshi AA, Chan AT, De Vivo I, Cho E, Giovannucci EL, Nan H. Association of omega-3 and omega-6 fatty acid intake with leukocyte telomere length in US males. Am J Clin Nutr 2022; 116:1759-1766. [PMID: 36130216 PMCID: PMC9761772 DOI: 10.1093/ajcn/nqac263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Omega-3 (n-3) and omega-6 (n-6) fatty acids may contribute to oxidative stress and inflammation, which are related to telomere shortening. Evidence supporting an association between intake of n-3 or n-6 fatty acids and leukocyte telomere length (LTL) in males has been limited. OBJECTIVES We conducted a cross-sectional study to examine the associations of total or individual n-3 or total n-6 fatty acid intake with LTL in US males. METHODS We included 2,494 US males with LTL measurement from 4 nested case-control studies within the Health Professionals Follow-Up Study. Individuals with previous histories of cancers, diabetes, and cardiovascular diseases at or before blood collection were excluded. Blood collection was performed between 1993 and 1995, and relevant information including n-3 and n-6 intake was collected in 1994 by questionnaire. The LTL was log-transformed and Z scores of the LTL were calculated for statistical analyses by standardizing the LTL in comparison with the mean within each selected nested case-control study. RESULTS We found that consumption of DHA (22:6n-3) was positively associated with LTL. In the multivariable-adjusted model, compared with individuals who had the lowest intake of DHA (i.e., first quartile group), the percentage differences (95% CIs) of LTL were -3.7 (-13.7, 7.5), 7.0 (-4.3, 19.7), and 8.2 (-3.5, 21.3) for individuals in the second, third, and fourth quartiles of consumption, respectively (P-trend = 0.0498). We did not find significant associations between total n-3 or total n-6 fatty acid intakes and LTL. In addition, we found that males who consumed canned tuna had longer LTL than those who did not; in the multivariable-adjusted model, the percentage difference of LTL was 10.5 (95% CI: 1.3, 20.4) (P = 0.02). CONCLUSIONS Our results suggest that higher intakes of DHA and canned tuna consumption are associated with longer LTL.
Collapse
Affiliation(s)
- Bojung Seo
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Keming Yang
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Abrar A Qureshi
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hongmei Nan
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Department of Global Health, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
12
|
Sosnowski DK, Jamieson KL, Darwesh AM, Zhang H, Keshavarz-Bahaghighat H, Valencia R, Viveiros A, Edin ML, Zeldin DC, Oudit GY, Seubert JM. Changes in the Left Ventricular Eicosanoid Profile in Human Dilated Cardiomyopathy. Front Cardiovasc Med 2022; 9:879209. [PMID: 35665247 PMCID: PMC9160304 DOI: 10.3389/fcvm.2022.879209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Metabolites derived from N−3 and N−6 polyunsaturated fatty acids (PUFAs) have both beneficial and detrimental effects on the heart. However, contribution of these lipid mediators to dilated cardiomyopathy (DCM)-associated mitochondrial dysfunction remains unknown. This study aimed to characterize DCM-specific alterations in the PUFA metabolome in conjunction with cardiac mitochondrial quality in human explanted heart tissues. Methods Left ventricular tissues obtained from non-failing control (NFC) or DCM explanted hearts, were assessed for N−3 and N−6 PUFA metabolite levels using LC-MS/MS. mRNA and protein expression of CYP2J2, CYP2C8 and epoxide hydrolase enzymes involved in N−3 and N−6 PUFA metabolism were quantified. Cardiac mitochondrial quality was assessed by transmission electron microscopy, measurement of respiratory chain complex activities and oxygen consumption (respiratory control ratio, RCR) during ADP-stimulated ATP production. Results Formation of cardioprotective CYP-derived lipid mediators, epoxy fatty acids (EpFAs), and their corresponding diols were enhanced in DCM hearts. These findings were corroborated by increased expression of CYP2J2 and CYP2C8 enzymes, as well as microsomal and soluble epoxide hydrolase enzymes, suggesting enhanced metabolic flux and EpFA substrate turnover. DCM hearts demonstrated marked damage to mitochondrial ultrastructure and attenuated mitochondrial function. Incubation of fresh DCM cardiac fibers with the protective EpFA, 19,20-EDP, significantly improved mitochondrial function. Conclusions The current study demonstrates that increased expressions of CYP-epoxygenase enzymes and epoxide hydrolases in the DCM heart correspond with enhanced PUFA-derived EpFA turnover. This is accompanied by severe mitochondrial functional impairment which can be rescued by the administration of exogenous EpFAs.
Collapse
Affiliation(s)
- Deanna K. Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - K. Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Hao Zhang
- Department of Medicine, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | | | - Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anissa Viveiros
- Department of Medicine, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Durham, NC, United States
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Durham, NC, United States
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: John M. Seubert
| |
Collapse
|
13
|
Camelina sativa Oil Treatment Alleviates Castor Oil-Induced Diarrhea in ICR Mice by Regulating Intestinal Flora Composition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5394514. [PMID: 35178105 PMCID: PMC8846971 DOI: 10.1155/2022/5394514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/15/2022] [Indexed: 01/02/2023]
Abstract
Diarrhea, occurring due to intestinal flora disturbance, is potentially lethal, and its current treatments have adverse effects such as constipation and vomiting. Camelina sativa oil (CSO) is a cooking ingredient and natural remedy used in several countries; however, its pharmacological effects on intestinal health remain unknown. Here, we explored the CSO treatment effects on intestinal flora in male ICR mice with castor oil-induced diarrhea. The rate and degree of loose stools, the diarrhea index, serum inflammatory indices, fecal short-chain fatty acids (SCFAs), and the diversity and abundance of intestinal flora were measured. Castor oil-administered mice experienced diarrhea, reduced intestinal flora diversity and fecal SCFAs concentrations, altered intestinal flora composition, and increased serum proinflammatory indices. In contrast, CSO treatment relieved diarrhea, improved intestinal flora composition, and increased the relative abundance of Lactobacillus and Lachnospiraceae. Additionally, CSO significantly increased the concentrations of fecal propionic acid, valeric acid, isovaleric acid, and serum sIgA, while it reduced those of serum interleukin-17. These findings suggest that CSO could be a promising preventive agent against diarrhea.
Collapse
|
14
|
Adibnia S, Zarei A, Sadeghi AA, Chamani M. Effect of palmitic, linoleic and α-linolenic acids on blood cells count and interleukin-4, 8 genes expression in lambs experimentally infected with foot and mouth disease virus. Anim Biotechnol 2022; 33:571-578. [DOI: 10.1080/10495398.2021.2013855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Saba Adibnia
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Zarei
- Department of Animal Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ali-Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Wakita K, Kadota K, Kawabata D, Yoshida M, Shirakawa Y. Development of a nozzleless electrostatic atomization equipment for the mass production of encapsulated oil powders in the liquid phase. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kazuki Wakita
- Department of Chemical Engineering and Material Science Doshisha University Kyotanabe Japan
| | | | - Daichi Kawabata
- Department of Chemical Engineering and Material Science Doshisha University Kyotanabe Japan
| | - Mikio Yoshida
- Department of Chemical Engineering and Material Science Doshisha University Kyotanabe Japan
| | - Yoshiyuki Shirakawa
- Department of Chemical Engineering and Material Science Doshisha University Kyotanabe Japan
| |
Collapse
|
16
|
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie 2021; 187:94-109. [PMID: 34082041 PMCID: PMC8166046 DOI: 10.1016/j.biochi.2021.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the development of a number of vaccines for COVID-19, there remains a need for prevention and treatment of the virus SARS-CoV-2 and the ensuing disease COVID-19. This report discusses the key elements of SARS-CoV-2 and COVID-19 that can be readily treated: viral entry, the immune system and inflammation, and the cytokine storm. It is shown that the essential nutrients zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium provide the ideal combination for prevention and treatment of COVID-19: prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of SARS-CoV-2, inhibition of excessive inflammation, improved control of the regulation of the immune system, inhibition of the cytokine storm, and reduction in the effects of acute respiratory distress syndrome (ARDS) and associated non-communicable diseases. It is emphasized that the non-communicable diseases associated with COVID-19 are inherently more prevalent in the elderly than the young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium is essential for the elderly to prevent the occurrence of non-communicable diseases such as diabetes, cardiovascular diseases, lung diseases and cancer. Annual checking of levels of these essential nutrients is recommended for those over 65 years of age, together with appropriate adjustments in their intake, with these services and supplies being at government cost. The cost:benefit ratio would be huge as the cost of the nutrients and the testing of their levels would be very small compared with the cost savings of specialists and hospitalization.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
17
|
Kubo Y, Ikeya M, Sugiyama S, Takachu R, Tanaka M, Sugiura T, Kobori K, Kobori M. Association between Preoperative Long-Chain Polyunsaturated Fatty Acids and Oxidative Stress Immediately after Total Knee Arthroplasty: A Pilot Study. Nutrients 2021; 13:nu13062093. [PMID: 34205251 PMCID: PMC8235381 DOI: 10.3390/nu13062093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Quadriceps muscle atrophy following total knee arthroplasty (TKA) can be caused by tourniquet-induced ischemia–reperfusion (IR) injury, which is often accompanied by oxidative stress and inflammatory responses. n-3 long-chain polyunsaturated fatty acids (LCPUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exert antioxidant and anti-inflammatory effects against IR injury, whereas n-6 LCPUFAs, particularly arachidonic acid (AA), exhibit pro-inflammatory effects and promote IR injury. This study aimed to examine whether preoperative serum EPA + DHA levels and the (EPA + DHA)/AA ratio are associated with oxidative stress immediately after TKA. Fourteen eligible patients with knee osteoarthritis scheduled for unilateral TKA participated in this study. The levels of serum EPA, DHA, and AA were measured immediately before surgery. Derivatives of reactive oxygen metabolites (d-ROMs) were used as biomarkers for oxidative stress. The preoperative serum EPA + DHA levels and the (EPA + DHA)/AA ratio were found to be significantly negatively correlated with the serum d-ROM levels at 96 h after surgery, and the rate of increase in serum d-ROM levels between baseline and 96 h postoperatively. This study suggested the preoperative serum EPA + DHA levels and the (EPA + DHA)/AA ratio can be negatively associated with oxidative stress immediately after TKA.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
- Correspondence:
| | - Masae Ikeya
- Department of Health and Nutrition Sciences, Tokoha University, 1230, Miyakodachou, Kita-ku, Hamamatsu 431-2102, Japan;
| | - Shuhei Sugiyama
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
| | - Rie Takachu
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
| | - Maki Tanaka
- Rehabilitation Sciences, Seirei Christopher University, 3453 Mikataharachou, Kita-ku, Hamamatsu 433-8558, Japan;
| | - Takeshi Sugiura
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
| | - Kaori Kobori
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
| | - Makoto Kobori
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
| |
Collapse
|
18
|
McBurney MI, Tintle NL, Vasan RS, Sala-Vila A, Harris WS. Using an erythrocyte fatty acid fingerprint to predict risk of all-cause mortality: the Framingham Offspring Cohort. Am J Clin Nutr 2021; 114:1447-1454. [PMID: 34134132 PMCID: PMC8488873 DOI: 10.1093/ajcn/nqab195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/18/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND RBC long-chain omega-3 (n-3) fatty acid (FA) percentages (of total fatty acids) are associated with lower risk for total mortality, but it is unknown if a suite of FAs could improve risk prediction. OBJECTIVES The objective of this study was to compare a combination of RBC FA levels with standard risk factors for cardiovascular disease (CVD) in predicting risk of all-cause mortality. METHODS Framingham Offspring Cohort participants without prevalent CVD having RBC FA measurements and relevant baseline clinical covariates (n = 2240) were evaluated during 11 y of follow-up. A forward, stepwise approach was used to systematically evaluate the association of 8 standard risk factors (age, sex, total cholesterol, HDL cholesterol, hypertension treatment, systolic blood pressure, smoking status, and prevalent diabetes) and 28 FA metrics with all-cause mortality. A 10-fold cross-validation process was used to build and validate models adjusted for age and sex. RESULTS Four of 28 FA metrics [14:0, 16:1n-7, 22:0, and omega-3 index (O3I; 20:5n-3 + 22:6n-3)] appeared in ≥5 of the discovery models as significant predictors of all-cause mortality. In age- and sex-adjusted models, a model with 4 FA metrics was at least as good at predicting all-cause mortality as a model including the remaining 6 standard risk factors (C-statistic: 0.778; 95% CI: 0.759, 0.797; compared with C-statistic: 0.777; 95% CI: 0.753, 0.802). A model with 4 FA metrics plus smoking and diabetes (FA + Sm + D) had a higher C-statistic (0.790; 95% CI: 0.770, 0.811) compared with the FA (P < 0.01) or Sm + D models alone (C-statistic: 0.766; 95% CI: 0.739, 0.794; P < 0.001). A variety of other highly correlated FAs could be substituted for 14:0, 16:1n-7, 22:0, or O3I with similar predicted outcomes. CONCLUSIONS In this community-based population in their mid-60s, RBC FA patterns were as predictive of risk for death during the next 11 y as standard risk factors. Replication is needed in other cohorts to validate this FA fingerprint as a predictor of all-cause mortality.
Collapse
Affiliation(s)
| | - Nathan L Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD, USA,Department of Statistics, Dordt University, Sioux Center, IA, USA
| | | | - Aleix Sala-Vila
- The Fatty Acid Research Institute, Sioux Falls, SD, USA,Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - William S Harris
- The Fatty Acid Research Institute, Sioux Falls, SD, USA,Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
19
|
Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nat Commun 2021; 12:2329. [PMID: 33888689 PMCID: PMC8062567 DOI: 10.1038/s41467-021-22370-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/12/2021] [Indexed: 02/02/2023] Open
Abstract
The health effects of omega-3 fatty acids have been controversial. Here we report the results of a de novo pooled analysis conducted with data from 17 prospective cohort studies examining the associations between blood omega-3 fatty acid levels and risk for all-cause mortality. Over a median of 16 years of follow-up, 15,720 deaths occurred among 42,466 individuals. We found that, after multivariable adjustment for relevant risk factors, risk for death from all causes was significantly lower (by 15-18%, at least p < 0.003) in the highest vs the lowest quintile for circulating long chain (20-22 carbon) omega-3 fatty acids (eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids). Similar relationships were seen for death from cardiovascular disease, cancer and other causes. No associations were seen with the 18-carbon omega-3, alpha-linolenic acid. These findings suggest that higher circulating levels of marine n-3 PUFA are associated with a lower risk of premature death.
Collapse
|
20
|
Darwesh AM, Bassiouni W, Sosnowski DK, Seubert JM. Can N-3 polyunsaturated fatty acids be considered a potential adjuvant therapy for COVID-19-associated cardiovascular complications? Pharmacol Ther 2021; 219:107703. [PMID: 33031856 PMCID: PMC7534795 DOI: 10.1016/j.pharmthera.2020.107703] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has currently led to a global pandemic with millions of confirmed and increasing cases around the world. The novel SARS-CoV-2 not only affects the lungs causing severe acute respiratory dysfunction but also leads to significant dysfunction in multiple organs and physiological systems including the cardiovascular system. A plethora of studies have shown the viral infection triggers an exaggerated immune response, hypercoagulation and oxidative stress, which contribute significantly to poor cardiovascular outcomes observed in COVID-19 patients. To date, there are no approved vaccines or therapies for COVID-19. Accordingly, cardiovascular protective and supportive therapies are urgent and necessary to the overall prognosis of COVID-19 patients. Accumulating literature has demonstrated the beneficial effects of n-3 polyunsaturated fatty acids (n-3 PUFA) toward the cardiovascular system, which include ameliorating uncontrolled inflammatory reactions, reduced oxidative stress and mitigating coagulopathy. Moreover, it has been demonstrated the n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors to a group of potent bioactive lipid mediators, generated endogenously, which mediate many of the beneficial effects attributed to their parent compounds. Considering the favorable safety profile for n-3 PUFAs and their metabolites, it is reasonable to consider n-3 PUFAs as potential adjuvant therapies for the clinical management of COVID-19 patients. In this article, we provide an overview of the pathogenesis of cardiovascular complications secondary to COVID-19 and focus on the mechanisms that may contribute to the likely benefits of n-3 PUFAs and their metabolites.
Collapse
Affiliation(s)
- Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
21
|
Ahmed J, Habeebullah SFK, Alagarsamy S, Thomas L, Hussain J, Jacob H. High‐pressure treatment of silver pomfret (
Pampus argenteus
): Inactivation of
Listeria monocytogenes
, impact on amino acid profile, and changes during storage in fatty acid compositions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jasim Ahmed
- Food & Nutrition Program Environment & Life Sciences Research Center Kuwait Institute for Scientific Research Safat Kuwait
| | | | - Surendraraj Alagarsamy
- EBMMR Environment & Life Sciences Research Center Kuwait Institute for Scientific Research Safat Kuwait
| | - Linu Thomas
- Food & Nutrition Program Environment & Life Sciences Research Center Kuwait Institute for Scientific Research Safat Kuwait
| | - Jawad Hussain
- Food & Nutrition Program Environment & Life Sciences Research Center Kuwait Institute for Scientific Research Safat Kuwait
| | - Harsha Jacob
- Food & Nutrition Program Environment & Life Sciences Research Center Kuwait Institute for Scientific Research Safat Kuwait
| |
Collapse
|
22
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
23
|
Omega-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease. Mol Cell Biochem 2020; 476:993-1003. [PMID: 33179122 DOI: 10.1007/s11010-020-03965-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is the world's most recognized and notorious cause of death. It is known that increased triglyceride-rich lipoproteins (TRLs) and remnants of triglyceride-rich lipoproteins (RLP) are the major risk factor for CVD. Furthermore, hypertriglyceridemia commonly leads to a reduction in HDL and an increase in atherogenic small dense low-density lipoprotein (sdLDL or LDL-III) levels. Thus, the evidence shows that Ω-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have a beneficial effect on CVD through reprogramming of TRL metabolism, reducing inflammatory mediators (cytokines and leukotrienes), and modulation of cell adhesion molecules. Therefore, the purpose of this review is to provide the molecular mechanism related to the beneficial effect of Ω-3 PUFA on the lowering of plasma TAG levels and other atherogenic lipoproteins. Taking this into account, this study also provides the TRL lowering and anti-inflammatory mechanism of Ω-3 PUFA metabolites such as RvE1 and RvD2 as a cardioprotective function.
Collapse
|
24
|
Russell JS, Griffith TA, Naghipour S, Vider J, Du Toit EF, Patel HH, Peart JN, Headrick JP. Dietary α-Linolenic Acid Counters Cardioprotective Dysfunction in Diabetic Mice: Unconventional PUFA Protection. Nutrients 2020; 12:nu12092679. [PMID: 32887376 PMCID: PMC7551050 DOI: 10.3390/nu12092679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Whether dietary omega-3 (n-3) polyunsaturated fatty acid (PUFA) confers cardiac benefit in cardiometabolic disorders is unclear. We test whether dietary -linolenic acid (ALA) enhances myocardial resistance to ischemia-reperfusion (I-R) and responses to ischemic preconditioning (IPC) in type 2 diabetes (T2D); and involvement of conventional PUFA-dependent mechanisms (caveolins/cavins, kinase signaling, mitochondrial function, and inflammation). Eight-week male C57Bl/6 mice received streptozotocin (75 mg/kg) and 21 weeks high-fat/high-carbohydrate feeding. Half received ALA over six weeks. Responses to I-R/IPC were assessed in perfused hearts. Localization and expression of caveolins/cavins, protein kinase B (AKT), and glycogen synthase kinase-3 β (GSK3β); mitochondrial function; and inflammatory mediators were assessed. ALA reduced circulating leptin, without affecting body weight, glycemic dysfunction, or cholesterol. While I-R tolerance was unaltered, paradoxical injury with IPC was reversed to cardioprotection with ALA. However, post-ischemic apoptosis (nucleosome content) appeared unchanged. Benefit was not associated with shifts in localization or expression of caveolins/cavins, p-AKT, p-GSK3β, or mitochondrial function. Despite mixed inflammatory mediator changes, tumor necrosis factor-a (TNF-a) was markedly reduced. Data collectively reveal a novel impact of ALA on cardioprotective dysfunction in T2D mice, unrelated to caveolins/cavins, mitochondrial, or stress kinase modulation. Although evidence suggests inflammatory involvement, the basis of this "un-conventional" protection remains to be identified.
Collapse
Affiliation(s)
- Jake S. Russell
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - Tia A. Griffith
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - Saba Naghipour
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - Jelena Vider
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - Eugene F. Du Toit
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - Hemal H. Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, CA 92093, USA;
| | - Jason N. Peart
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
| | - John P. Headrick
- School of Medical Science, Griffith University Gold Coast, Southport QLD 4217, Australia; (J.S.R.); (T.A.G.); (S.N.); (J.V.); (E.F.D.T.); (J.N.P.)
- Correspondence: ; Tel.: +61-7-5552-8292
| |
Collapse
|
25
|
O'Mahoney LL, Dunseath G, Churm R, Holmes M, Boesch C, Stavropoulos-Kalinoglou A, Ajjan RA, Birch KM, Orsi NM, Mappa G, Price OJ, Campbell MD. Omega-3 polyunsaturated fatty acid supplementation versus placebo on vascular health, glycaemic control, and metabolic parameters in people with type 1 diabetes: a randomised controlled preliminary trial. Cardiovasc Diabetol 2020; 19:127. [PMID: 32787879 PMCID: PMC7425064 DOI: 10.1186/s12933-020-01094-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background The role of omega-3 polyunsaturated fatty acids (n-3PUFA), and the potential impact of n-3PUFA supplementation, in the treatment and management of type 1 diabetes (T1D) remains unclear and controversial. Therefore, this study aimed to examine the efficacy of daily high-dose-bolus n-3PUFA supplementation on vascular health, glycaemic control, and metabolic parameters in subjects with T1D. Methods Twenty-seven adults with T1D were recruited to a 6-month randomised, double-blind, placebo-controlled trial. Subjects received either 3.3 g/day of encapsulated n-3PUFA or encapsulated 3.0 g/day corn oil placebo (PLA) for 6-months, with follow-up at 9-months after 3-month washout. Erythrocyte fatty acid composition was determined via gas chromatography. Endpoints included inflammation-associated endothelial biomarkers (vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], E-selectin, P-selectin, pentraxin-3, vascular endothelial growth factor [VEGF]), and their mediator tumor necrosis factor alpha [TNFα] analysed via immunoassay, vascular structure (carotid intima-media thickness [CIMT]) and function (brachial artery flow mediated dilation [FMD]) determined via ultrasound technique, blood pressure, glycosylated haemoglobin (HbA1c), fasting plasma glucose (FPG), and postprandial metabolism. Results Twenty subjects completed the trial in full. In the n-3PUFA group, the mean ± SD baseline n-3PUFA index of 4.93 ± 0.94% increased to 7.67 ± 1.86% (P < 0.001) after 3-months, and 8.29 ± 1.45% (P < 0.001) after 6-months. Total exposure to n-3PUFA over the 6-months (area under the curve) was 14.27 ± 3.05% per month under n-3PUFA, and 9.11 ± 2.74% per month under PLA (P < 0.001). VCAM-1, ICAM-1, E-selectin, P-selectin, pentraxin-3, VEGF, TNFα, CIMT, FMD, blood pressure, HbA1c, FPG, and postprandial metabolism did not differ between or within groups after treatment (P > 0.05). Conclusions This study indicates that daily high-dose-bolus of n-3PUFA supplementation for 6-months does not improve vascular health, glucose homeostasis, or metabolic parameters in subjects with T1D. The findings from this preliminary RCT do not support the use of therapeutic n-3PUFA supplementation in the treatment and management of T1D and its associated complications. Trial Registration ISRCTN, ISRCTN40811115. Registered 27 June 2017, http://www.isrctn.com/ISRCTN40811115.
Collapse
Affiliation(s)
| | - Gareth Dunseath
- Diabetes Research Group, Swansea University Medical School, Swansea University, Swansea, UK
| | - Rachel Churm
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea, UK
| | - Mel Holmes
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Karen M Birch
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Nicolas M Orsi
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Georgia Mappa
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Oliver J Price
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Matthew D Campbell
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
26
|
Deep frying cooking oils promote the high risk of metastases in the breast-A critical review. Food Chem Toxicol 2020; 144:111648. [PMID: 32745572 DOI: 10.1016/j.fct.2020.111648] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Deep-frying is the most common food preparation method, manifestations of color, taste, flavor, and fried consistency. The beneficial role of vegetable oils become deteriorate when repeatedly treated with higher temperature and air. Repeatedly heated cooking oils (RCO) produce various byproducts, containing polycyclic aromatic hydrocarbons (PAHs) and aldehydes, well-known to be a carcinogenic, mutagenic, and tumorigenic properties. RCO is nowadays one of the often consumed media for cooking and frying, which intake can cause various unhealthy adverse effects including various cancer in the multiple organs. Hence, the present comprehensive study targets to provide the intake of RCO elevate the risks of human breast cancer. The data on RCO and its impacts were obtained via various electronic findings and library databases. Notable studies have confirmed that the effects of RCO have been attributed to their unfavorable effects, and underlying molecular mechanisms can also strongly promoting tumorigenic effects in the mammary organ.
Collapse
|
27
|
Darwesh AM, Bassiouni W, Adebesin AM, Mohammad AS, Falck JR, Seubert JM. A Synthetic Epoxydocosapentaenoic Acid Analogue Ameliorates Cardiac Ischemia/Reperfusion Injury: The Involvement of the Sirtuin 3-NLRP3 Pathway. Int J Mol Sci 2020; 21:ijms21155261. [PMID: 32722183 PMCID: PMC7432620 DOI: 10.3390/ijms21155261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
While survival rates have markedly improved following cardiac ischemia-reperfusion (IR) injury, the resulting heart damage remains an important issue. Preserving mitochondrial quality and limiting NLRP3 inflammasome activation is an approach to limit IR injury, in which the mitochondrial deacetylase sirtuin 3 (SIRT3) has a role. Recent data demonstrate cytochrome P450 (CYP450)-derived epoxy metabolites, epoxydocosapentaenoic acids (EDPs), of docosahexaenoic acid (DHA), attenuate cardiac IR injury. EDPs undergo rapid removal and inactivation by enzymatic and non-enzymatic processes. The current study hypothesizes that the cardioprotective effects of the synthetic EDP surrogates AS-27, SA-26 and AA-4 against IR injury involve activation of SIRT3. Isolated hearts from wild type (WT) mice were perfused in the Langendorff mode with vehicle, AS-27, SA-26 or AA-4. Improved postischemic functional recovery, maintained cardiac ATP levels, reduced oxidative stress and attenuation of NLRP3 activation were observed in hearts perfused with the analogue SA-26. Assessment of cardiac mitochondria demonstrated SA-26 preserved SIRT3 activity and reduced acetylation of manganese superoxide dismutase (MnSOD) suggesting enhanced antioxidant capacity. Together, these data demonstrate that the cardioprotective effects of the EDP analogue SA-26 against IR injury involve preservation of mitochondrial SIRT3 activity, which attenuates a detrimental innate NLRP3 inflammasome response.
Collapse
Affiliation(s)
- Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada;
| | - Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Adeniyi Michael Adebesin
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.M.A.); (A.S.M.); (J.R.F.)
| | - Abdul Sattar Mohammad
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.M.A.); (A.S.M.); (J.R.F.)
| | - John R. Falck
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.M.A.); (A.S.M.); (J.R.F.)
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Correspondence: ; Tel.: +1-780-492-0007; Fax: +1-780-492-1217
| |
Collapse
|
28
|
Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Mitochondrial Dysfunction and Inflammaging in Heart Failure: Novel Roles of CYP-Derived Epoxylipids. Cells 2020; 9:E1565. [PMID: 32604981 PMCID: PMC7408578 DOI: 10.3390/cells9071565] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Age-associated changes leading to a decline in cardiac structure and function contribute to the increased susceptibility and incidence of cardiovascular diseases (CVD) in elderly individuals. Indeed, age is considered a risk factor for heart failure and serves as an important predictor for poor prognosis in elderly individuals. Effects stemming from chronic, low-grade inflammation, inflammaging, are considered important determinants in cardiac health; however, our understanding of the mechanisms involved remains unresolved. A steady decline in mitochondrial function is recognized as an important biological consequence found in the aging heart which contributes to the development of heart failure. Dysfunctional mitochondria contribute to increased cellular stress and an innate immune response by activating the NLRP-3 inflammasomes, which have a role in inflammaging and age-related CVD pathogenesis. Emerging evidence suggests a protective role for CYP450 epoxygenase metabolites of N-3 and N-6 polyunsaturated fatty acids (PUFA), epoxylipids, which modulate various aspects of the immune system and protect mitochondria. In this article, we provide insight into the potential roles N-3 and N-6 PUFA have modulating mitochondria, inflammaging and heart failure.
Collapse
Affiliation(s)
- Hedieh Keshavarz-Bahaghighat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Deanna K. Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta 2020-M Katz Group Centre for Pharmacy and Health Research 11361-87 Avenue, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
29
|
Jamieson KL, Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Age and Sex Differences in Hearts of Soluble Epoxide Hydrolase Null Mice. Front Physiol 2020; 11:48. [PMID: 32116760 PMCID: PMC7019103 DOI: 10.3389/fphys.2020.00048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Biological aging is an inevitable part of life that has intrigued individuals for millennia. The progressive decline in biological systems impacts cardiac function and increases vulnerability to stress contributing to morbidity and mortality in aged individuals. Yet, our understanding of the molecular, biochemical and physiological mechanisms of aging as well as sex differences is limited. There is growing evidence indicating CYP450 epoxygenase-mediated metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) are active lipid mediators regulating cardiac homeostasis. These epoxy metabolites are rapidly hydrolyzed and inactivated by the soluble epoxide hydrolase (sEH). The current study characterized cardiac function in young and aged sEH null mice compared to the corresponding wild-type (WT) mice. All aged mice had significantly increased cardiac hypertrophy, except in aged female sEH null mice. Cardiac function as assessed by echocardiography demonstrated a marked decline in aged WT mice, notably significant decreases in ejection fraction and fractional shortening in both sexes. Interestingly, aged female sEH null mice had preserved systolic function, while aged male sEH null mice had preserved diastolic function compared to aged WT mice. Assessment of cardiac mitochondria demonstrated an increased expression of acetyl Mn-SOD levels that correlated with decreased Sirt-3 activity in aged WT males and females. Conversely, aged sEH null mice had preserved Sirt-3 activity and better mitochondrial ultrastructure compared to WT mice. Consistent with these changes, the activity level of SOD significantly decreased in WT animals but was preserved in aged sEH null animals. Markers of oxidative stress demonstrated age-related increase in protein carbonyl levels in WT and sEH null male mice. Together, these data highlight novel cardiac phenotypes from sEH null mice demonstrating a sexual dimorphic pattern of aging in the heart.
Collapse
Affiliation(s)
- K Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Coltell O, Sorlí JV, Asensio EM, Barragán R, González JI, Giménez-Alba IM, Zanón-Moreno V, Estruch R, Ramírez-Sabio JB, Pascual EC, Ortega-Azorín C, Ordovas JM, Corella D. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients 2020; 12:E310. [PMID: 31991592 PMCID: PMC7071282 DOI: 10.3390/nu12020310] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Many early studies presented beneficial effects of polyunsaturated fatty acids (PUFA) on cardiovascular risk factors and disease. However, results from recent meta-analyses indicate that this effect would be very low or nil. One of the factors that may contribute to the inconsistency of the results is that, in most studies, genetic factors have not been taken into consideration. It is known that fatty acid desaturase (FADS) gene cluster in chromosome 11 is a very important determinant of plasma PUFA, and that the prevalence of the single nucleotide polymorphisms (SNPs) varies greatly between populations and may constitute a bias in meta-analyses. Previous genome-wide association studies (GWAS) have been carried out in other populations and none of them have investigated sex and Mediterranean dietary pattern interactions at the genome-wide level. Our aims were to undertake a GWAS to discover the genes most associated with serum PUFA concentrations (omega-3, omega-6, and some fatty acids) in a scarcely studied Mediterranean population with metabolic syndrome, and to explore sex and adherence to Mediterranean diet (MedDiet) interactions at the genome-wide level. Serum PUFA were determined by NMR spectroscopy. We found strong robust associations between various SNPs in the FADS cluster and omega-3 concentrations (top-ranked in the adjusted model: FADS1-rs174547, p = 3.34 × 10-14; FADS1-rs174550, p = 5.35 × 10-14; FADS2-rs1535, p = 5.85 × 10-14; FADS1-rs174546, p = 6.72 × 10-14; FADS2-rs174546, p = 9.75 × 10-14; FADS2- rs174576, p = 1.17 × 10-13; FADS2-rs174577, p = 1.12 × 10-12, among others). We also detected a genome-wide significant association with other genes in chromosome 11: MYRF (myelin regulatory factor)-rs174535, p = 1.49 × 10-12; TMEM258 (transmembrane protein 258)-rs102275, p = 2.43 × 10-12; FEN1 (flap structure-specific endonuclease 1)-rs174538, p = 1.96 × 10-11). Similar genome-wide statistically significant results were found for docosahexaenoic fatty acid (DHA). However, no such associations were detected for omega-6 PUFAs or linoleic acid (LA). For total PUFA, we observed a consistent gene*sex interaction with the DNTTIP2 (deoxynucleotidyl transferase terminal interacting protein 2)-rs3747965 p = 1.36 × 10-8. For adherence to MedDiet, we obtained a relevant interaction with the ME1 (malic enzyme 1) gene (a gene strongly regulated by fat) in determining serum omega-3. The top-ranked SNP for this interaction was ME1-rs3798890 (p = 2.15 × 10-7). In the regional-wide association study, specifically focused on the FADS1/FASD2/FADS3 and ELOVL (fatty acid elongase) 2/ELOVL 5 regions, we detected several statistically significant associations at p < 0.05. In conclusion, our results confirm a robust role of the FADS cluster on serum PUFA in this population, but the associations vary depending on the PUFA. Moreover, the detection of some sex and diet interactions underlines the need for these associations/interactions to be studied in all specific populations so as to better understand the complex metabolism of PUFA.
Collapse
Affiliation(s)
- Oscar Coltell
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
| | - Jose V. Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Eva M. Asensio
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Rocío Barragán
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - José I. González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Ignacio M. Giménez-Alba
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Vicente Zanón-Moreno
- Area of Health Sciences, Valencian International University, 46002 Valencia, Spain;
- Red Temática de Investigación Cooperativa en Patología Ocular (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Ophthalmology Research Unit “Santiago Grisolia”, Dr. Peset University Hospital, 46017 Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | | | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Assisted Reproduction Unit of the University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ortega-Azorín
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 USA;
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
31
|
Siraki AG, Babu D. Introduction to the special issue from the 10th meeting of the Canadian Oxidative Stress Consortium. Chem Biol Interact 2019; 312:108800. [PMID: 31449778 DOI: 10.1016/j.cbi.2019.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy & Health Research, University of Alberta, Edmonton, Alberta, Canada.
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy & Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Genetic Deletion or Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Cardiac Ischemia/Reperfusion Injury by Attenuating NLRP3 Inflammasome Activation. Int J Mol Sci 2019; 20:ijms20143502. [PMID: 31319469 PMCID: PMC6678157 DOI: 10.3390/ijms20143502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Activation of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome cascade has a role in the pathogenesis of ischemia/reperfusion (IR) injury. There is growing evidence indicating cytochrome p450 (CYP450)-derived metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) possess both adverse and protective effects in the heart. CYP-derived epoxy metabolites are rapidly hydrolyzed by the soluble epoxide hydrolase (sEH). The current study hypothesized that the cardioprotective effects of inhibiting sEH involves limiting activation of the NLRP3 inflammasome. Isolated hearts from young wild-type (WT) and sEH null mice were perfused in the Langendorff mode with either vehicle or the specific sEH inhibitor t-AUCB. Improved post-ischemic functional recovery and better mitochondrial respiration were observed in both sEH null hearts or WT hearts perfused with t-AUCB. Inhibition of sEH markedly attenuated the activation of the NLRP3 inflammasome complex and limited the mitochondrial localization of the fission protein dynamin-related protein-1 (Drp-1) triggered by IR injury. Cardioprotective effects stemming from the inhibition of sEH included preserved activities of both cytosolic thioredoxin (Trx)-1 and mitochondrial Trx-2 antioxidant enzymes. Together, these data demonstrate that inhibiting sEH imparts cardioprotection against IR injury via maintaining post-ischemic mitochondrial function and attenuating a detrimental innate inflammatory response.
Collapse
|
33
|
Parolini C. Effects of Fish n-3 PUFAs on Intestinal Microbiota and Immune System. Mar Drugs 2019; 17:E374. [PMID: 31234533 PMCID: PMC6627897 DOI: 10.3390/md17060374] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Studies over several decades have documented the beneficial actions of n-3 polyunsaturated fatty acids (PUFAs), which are plentiful in fish oil, in different disease states. Mechanisms responsible for the efficacy of n-3 PUFAs include: (1) Reduction of triglyceride levels; (2) anti-arrhythmic and antithrombotic effects, and (3) resolution of inflammatory processes. The human microbiota project and subsequent studies using next-generation sequencing technology have highlighted that thousands of different microbial species are present in the human gut, and that there has been a significant variability of taxa in the microbiota composition among people. Several factors (gestational age, mode of delivery, diet, sanitation and antibiotic treatment) influence the bacterial community in the human gastrointestinal tract, and among these diet habits play a crucial role. The disturbances in the gut microbiota composition, i.e., gut dysbiosis, have been associated with diseases ranging from localized gastrointestinal disorders to neurologic, respiratory, metabolic, ocular, and cardiovascular illnesses. Many studies have been published about the effects of probiotics and prebiotics on the gut microbiota/microbioma. On the contrary, PUFAs in the gut microbiota have been less well defined. However, experimental studies suggested that gut microbiota, n-3 PUFAs, and host immune cells work together to ensure the intestinal wall integrity. This review discussed current evidence concerning the links among gut microbiota, n-3 PUFAs intake, and human inflammatory disease.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20122 Milano, Italy.
| |
Collapse
|