1
|
Jeong HJ, Kang YH, Song AY, Park HI, Seo M, Park YJ. Integrative assessment of mixture toxicity of household chemicals using the toxic unit approach and mode of action. Toxicology 2025; 511:154060. [PMID: 39826869 DOI: 10.1016/j.tox.2025.154060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Household chemicals used daily are often combined, leading to inhalation exposure to mixtures. However, methods for assessing their toxic effects are limited. This study proposes an in vitro assay strategy for evaluating household chemical mixtures using benzalkonium chloride (BKC) and didecyldimethylammonium chloride (DDAC), a common disinfectant. Our approach utilizes the mode of action (MOA) of chemicals by applying toxicity units (TU) to assess the key events related to lung disease, such as reactive oxygen species (ROS) production and cell death. The TU (EC50) values for BKC and DDAC were 3.97 µg/mL and 1.89 µg/mL, respectively, from cytotoxicity results. The TU value of the mixture (5:5 ratio of BKC to DDAC) was calculated as 2.56 µg/mL. Using the OpenMRA platform, the TU values were predicted as 2.37 µg/mL with the concentration addition (CA) model and 11.26 µg/mL with the independent action (IA) model, indicating that the mixture effects were additive and closer to that predicted using the CA model. Both BKC and DDAC induced apoptosis and ROS production in human epithelial cells in a dose-dependent manner, suggesting similar modes of action in promoting cell death. Our results suggested that BKC and DDAC exhibited additive toxicity when combined. Our results demonstrate the utility of the TU-based approach, which combines cytotoxicity, ROS induction, and apoptosis measurements to evaluate mixture toxicity. This approach may be beneficial for assessing early key events relevant to lung diseases and offers a practical strategy for evaluating the inhalation toxicity of household chemical mixtures.
Collapse
Affiliation(s)
- Hye-Jin Jeong
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Yeon-Ho Kang
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Ah-Yoon Song
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Hye-In Park
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Myungwon Seo
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea.
| |
Collapse
|
2
|
Kim JW, Kim MS, Kim HR. Research review and transcriptomic insights into Benzalkonium chloride inhalation and disease association. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117610. [PMID: 39752919 DOI: 10.1016/j.ecoenv.2024.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
The widespread use of disinfectants, particularly during the coronavirus disease (COVID-19) pandemic, has significantly increased human exposure to biocides, raising concerns about their potential health risks, especially when inhaled. Benzalkonium chloride (BKC), a quaternary ammonium compound commonly used as a disinfectant and preservative, is a notable example because it is frequently used in household products and medical settings. Despite its broad usage, limited research has been conducted on the respiratory and systemic toxicities of BKC. Here, we conducted a research review of the literature on the respiratory toxicity of BKC. This research review suggests that, while current studies imply that BKC may induce respiratory diseases, the evidence remains insufficient. We employed an aerosol exposure model using primary bronchial epithelial cells to simulate inhalation exposure to BKC in humans. Transcriptomic analysis was performed to identify differentially expressed genes (DEGs) associated with toxicological pathways, including endoplasmic reticulum (ER) stress, apoptosis, mitochondrial dysfunction, and epithelial-mesenchymal transition (EMT). The results were integrated with gene-disease association databases to explore the links between BKC exposure and respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. Our study also examined the systemic effects of BKC by analysing the secreted proteins, suggesting possible cardiovascular implications. These findings highlight the need for further research on the health impacts of BKC, particularly its long-term effects, and underscore the importance of regulating its use to minimise the potential health risks associated with exposure via inhalation.
Collapse
Affiliation(s)
- Jun Woo Kim
- Center for Respiratory Safety Research, Korea Institute of Toxicology, Jeongeup 56212, South Korea
| | - Min Seok Kim
- Center for Respiratory Safety Research, Korea Institute of Toxicology, Jeongeup 56212, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong 30019, South Korea.
| |
Collapse
|
3
|
Zhao H, Wang W, Yang Y, Feng C, Lin T, Gong L. Norepinephrine Attenuates Benzalkonium Chloride-Induced Dry Eye Disease by Regulating the PINK1/Parkin Mitophagy Pathway. Ocul Immunol Inflamm 2024:1-15. [PMID: 39731302 DOI: 10.1080/09273948.2024.2447816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye. PURPOSE This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease. METHODS BAC-pretreated human corneal epithelial cells (HCEpiC) were cultured with various concentrations of NE. A BAC-induced dry eye mice model was established to explore the role of NE. Alterations in mice corneal tissues, ROS levels, mitochondrial function, and mitophagy levels were analyzed. RESULTS In vitro, our results revealed that BAC-exposed HCEpiC led to mitochondrial malfunction, which involved excessive ROS production, decreased mitochondrial membrane potential (MMP), and promoted mitochondrial fragmentation through increased DRP1 and fission protein 1 (Fis1) expression and reduced mitofusin 2 (Mfn2) expression. Moreover, topical BAC application induced excessive mitophagy. These effects were reversed by NE. Additionally, the increased expression of LC3B, SQSTM1/p62, PINK1, and Parkin, which control mitophagy, in BAC-exposed HCEpiC was suppressed by NE. In BAC-induced C57BL/6J mice, NE resulted in lower fluorescein staining scores, decreased TUNEL-positive cells, and decreased mitochondrial fragmentation. CONCLUSIONS In conclusion, our findings showed that NE therapy prevented HCEpiC following BAC application by regulating mitochondrial quality control, which is controlled by PINK1/Parkin-dependent mitophagy. Our research suggests a potential targeted treatment for dry eye disease.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Changming Feng
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
4
|
Elizalde-Velázquez GA, Gómora-Martínez O, Raldua D, Herrera-Vázquez SE, Gómez-Oliván LM. Understanding the impact of environmentally relevant alkyl C12-16 dimethylbenzyl ammonium chloride concentrations on zebrafish health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175984. [PMID: 39244042 DOI: 10.1016/j.scitotenv.2024.175984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alkyldimethylbenzylammonium chlorides (ADBACs), classified as second-generation quaternary ammonium compounds, are extensively employed across various sectors, encompassing veterinary medicine, food production, pharmaceuticals, cosmetics, ophthalmology, and agriculture. Consequently, significant volumes of ADBAC C12-C16 are discharged into the environment, posing a threat to aquatic organisms. Regrettably, comprehensive data regarding the toxicological characteristics of these compounds remain scarce. This research aimed to determine whether or not ADBAC C12-C16, at environmentally relevant concentrations (0.4, 0.8, and 1.6 μg/L), may instigate oxidative stress and alter the expression of apoptosis-related genes in the liver, brain, gut, and gills of Danio rerio adults (5-6 months). The findings revealed that ADBAC C12-C16 elicited an oxidative stress response across all examined organs following 96 h of exposure. Nonetheless, the magnitude of this response varied among organs, with the gills exhibiting the highest degree of susceptibility, followed by the gut, liver, and brain, in descending order. Only the gut and gills of the examined organs displayed a concentration-dependent reduction in the activity of superoxide dismutase (SOD) and catalase (CAT). Akin to the oxidative stress response, all organs exhibited a marked increase in bax, blc2, casp3, and p53 expression levels. However, the gills and gut manifested a distinctive suppression in the expression of nrf1 and nrf2. Our Principal Component Analysis (PCA) confirmed that SOD, CAT, nrf1, and nrf2 were negatively correlated to oxidative damage biomarkers and apoptosis-related genes in the gills and gut; meanwhile, in the remaining organs, all biomarkers were extensively correlated. From the above, it can be concluded that ADBAC C12-C16 in low and environmental concentrations may threaten the health of freshwater fish.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Omar Gómora-Martínez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Demetrio Raldua
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
5
|
Bae E, Beil S, König M, Stolte S, Escher BI, Markiewicz M. The mode of toxic action of ionic liquids: Narrowing down possibilities using high-throughput, in vitro cell-based bioassays. ENVIRONMENT INTERNATIONAL 2024; 193:109089. [PMID: 39500119 DOI: 10.1016/j.envint.2024.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/25/2024]
Abstract
Growing concerns about the environmental impact of ionic liquids (ILs) have spurred research into their (eco)toxic effects, but studies on their mode of toxic action (MOA) still remain limited. However, understanding the MOA and identifying structural features responsible for enhanced toxicity is crucial for characterising the hazard and designing safer alternatives. Therefore, 45 ILs, with systematically varied chemical structures, were tested for cytotoxicity and two specific endpoints in reporter gene assays targeting the Nrf2-ARE mediated oxidative stress response (AREc32) and aryl hydrocarbon receptor activation (AhR-CALUX). While none of the ILs activated the reporter genes, cytotoxicity was high and markedly different between cell lines. Seven and 25 ILs proved more cytotoxic than predicted by baseline toxicity model in the AREc32 and the AhR-CALUX assays, respectively. The length of the side chain and headgroup structures of ILs altered the MOA of ILs. Cellular metabolism of the ILs, investigated by LC-MS/MS, showed side-chain oxidation of the long-chain quaternary ammonium compounds in AhR-CALUX cells and, to a lower extent, in AREc32 cells, however, this transformation could not explain the high cytotoxicity. Effect data for 72 ILs for ten endpoints retrieved from the Tox21 database identified the inhibition of aromatase activity and of mitochondrial membrane potential as potential MOAs. However, in vitro fluorimetric assays for these endpoints demonstrated that effects were activated in a non-specific manner, probably through cytotoxicity. Although many of the ILs tested induced cytotoxicity at concentrations lower than baseline toxicity, the specific MOAs responsible could not be identified. Alternatively, we suggest that the descriptors currently used may fail to define the affinity of ILs for cells. Testing of the affinity of ILs for a diverse range of biomolecules is needed to accurately describe their interactions with cells.
Collapse
Affiliation(s)
- Eunhye Bae
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, D-72076 Tübingen, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany.
| |
Collapse
|
6
|
Jung W, Yang MJ, Kang MS, Pyo G, Choi H, Li K, Park EJ. The formation of lamellar body-like structures may be a trigger of cetylpyridinium chloride-induced cell death and inflammatory response. Toxicology 2024; 506:153877. [PMID: 38969275 DOI: 10.1016/j.tox.2024.153877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Cetylpyridinium chloride (CPC) is a quaternary ammonium compound used widely in health and personal care products. Meanwhile, due to its increasing use, its potential adverse health effects are emerging as a topic of public concern. In this study, we first administered CPC by pharyngeal aspiration to determine the survival level (the maximum concentration at which no death is observed) and then administered CPC to mice repeatedly for 28 days using the survival level as the highest concentration. CPC increased the total number of pulmonary cells secreting pro- and anti-inflammatory cytokines and chemokines. Infiltration of inflammatory cells, production of foamy alveolar macrophages, and chronic inflammatory lesions were found in the lung tissue of male and female mice exposed to the highest dose of CPC. We also investigated the toxicity mechanism using BEAS-2B cells isolated from normal human bronchial epithelium. At 6 h after exposure to CPC, the cells underwent non-apoptotic cell death, especially at concentrations greater than 2 μg/mL. The expression of the transferrin receptor was remarkably enhanced, and the expression of proteins that contribute to intracellular iron storage was inhibited. The expression of both mitochondrial SOD and catalase increased with CPC concentration, and PARP protein was cleaved, suggesting possible DNA damage. In addition, the internal structure of mitochondria was disrupted, and fusion between damaged organelles was observed in the cytoplasm. Most importantly, lamellar body-like structures and autophagosome-like vacuoles were found in CPC-treated cells, with enhanced expression of ABCA3 protein, a marker for lamellar body, and a docking score between ABCA3 protein and CPC was considered to be approximately -6.8969 kcal/mol. From these results, we propose that mitochondrial damage and iron depletion may contribute to CPC-induced non-apoptotic cell death and that pulmonary accumulation of cell debris may be closely associated with the inflammatory response. Furthermore, we hypothesize that the formation of lamellar body-like structures may be a trigger for CPC-induced cell death.
Collapse
Affiliation(s)
- Wonkyun Jung
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Min-Sung Kang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Geonwoo Pyo
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyosun Choi
- National Instrumentation Center for Environmental management, Seoul National University, Republic of Korea
| | - Kexin Li
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Eun-Jung Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea.
| |
Collapse
|
7
|
Heise NV, Heisig J, Meier K, Csuk R, Mueller T. F16 Hybrids Derived from Steviol or Isosteviol Are Accumulated in the Mitochondria of Tumor Cells and Overcome Drug Resistance. Molecules 2024; 29:381. [PMID: 38257294 PMCID: PMC10821019 DOI: 10.3390/molecules29020381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Steviol and isosteviol were prepared from the commercially available sweetener stevioside and converted into lipophilic F16 hybrids. Their cytotoxicity was determined in SRB assays and showed to depend on both the substitution pattern of the aromatic substituent as well as on the spacer length. Therefore, compound 25 held an IC50 (A2780) of 180 nM, thus surpassing the activity of comparable rhodamine hybrids. Several of the compounds were also able to overcome drug resistance in the A2780/A2780cis model. Extra staining experiments showed a similar subcellular accumulation pattern of the F16 hybrids as a well-established mitocan, hence proving preferential mitochondrial accumulation but also some other accumulation in other cellular areas.
Collapse
Affiliation(s)
- Niels V. Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany; (N.V.H.); (J.H.)
| | - Julia Heisig
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany; (N.V.H.); (J.H.)
| | - Kristof Meier
- Hematology/Oncology, Medical Faculty, University Clinic for Internal Medicine IV, Martin-Luther University Halle-Wittenberg, Ernst-Grube Str. 40, D-06120 Halle (Saale), Germany; (K.M.); (T.M.)
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany; (N.V.H.); (J.H.)
| | - Thomas Mueller
- Hematology/Oncology, Medical Faculty, University Clinic for Internal Medicine IV, Martin-Luther University Halle-Wittenberg, Ernst-Grube Str. 40, D-06120 Halle (Saale), Germany; (K.M.); (T.M.)
| |
Collapse
|
8
|
Petit M, Tessier J, Sahli C, Schmitzer AR. Confronting the Threat: Designing Highly Effective bis-Benzimidazolium Agents to Overcome Biofilm Persistence and Antimicrobial Resistance. ACS Infect Dis 2023; 9:2202-2214. [PMID: 37882623 DOI: 10.1021/acsinfecdis.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The objective of this study is to take the initial steps toward developing novel antibiotics to counteract the escalating problem of antimicrobial and bacterial persistence, particularly in relation to biofilms. Our approach involves emulating the structural characteristics of cationic antimicrobial peptides. To circumvent resistance development, we have designed a library of bis-benzimidazolium salts that selectively target the microbial membranes in a nonspecific manner. To explore their structure-activity relationship, we conducted experiments using these compounds on various pathogens known for their resistance to conventional antibiotics, including Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and Gram-negative Escherichia coli (E. coli). Notably, two bis-benzimidazolium salts exhibited robust antimicrobial activity while maintaining a high level of selectivity compared with mammalian cells. Our investigations revealed significant antibiofilm activity, as these compounds rapidly acted against established biofilms. In addition, bis-benzimidazolium compounds exhibited consistent results in resistance development and cross-resistance studies. Consequently, amphiphilic bis-benzimidazolium salts hold promise as potential candidates to combat resistance-associated infections.
Collapse
Affiliation(s)
- Maude Petit
- Département de Chimie, Faculté des Arts et des Sciences, Université de Montréal, Campus MIL, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
| | - Jérémie Tessier
- Département de Chimie, Faculté des Arts et des Sciences, Université de Montréal, Campus MIL, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
- Collège Bois-de-Boulogne, 10555 Ave. de Bois-de-Boulogne, Montréal H4N 1L4, Canada
| | - Célia Sahli
- Département de Chimie, Faculté des Arts et des Sciences, Université de Montréal, Campus MIL, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
- CNRS-UMR 7086, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), Université Paris Cité, Paris 75013 , France
| | - Andreea R Schmitzer
- Département de Chimie, Faculté des Arts et des Sciences, Université de Montréal, Campus MIL, 1375, Ave. Thérèse Lavoie-Roux, Montréal, Québec H2 V 0B3, Canada
| |
Collapse
|
9
|
Liao M, Wei S, Zhao J, Wang J, Fan G. Risks of benzalkonium chlorides as emerging contaminants in the environment and possible control strategies from the perspective of ecopharmacovigilance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115613. [PMID: 37862750 DOI: 10.1016/j.ecoenv.2023.115613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
An unprecedented increase in the use of disinfection products triggered by the coronavirus disease 2019 (COVID-19) pandemic is resulting in aggravating environmental loads of disinfectants as emerging contaminants, which has been considered a cause for worldwide secondary disasters. This review analyzed the literature published in the last decade about occurrence, bioaccumulation, and possible environmental risks of benzalkonium chlorides (BKCs) as emerging contaminants. Results indicated that BKCs globally occurred in municipal wastewater, surface water, groundwater, reclaimed water, sludge, sediment, soil, roof runoff, and residential dust samples across 13 countries. The maximum residual levels of 30 mg/L and 421 μg/g were reported in water and solid environmental samples, respectively. Emerging evidences suggested possible bioaccumulation of BKCs in plants, even perhaps humans. Environmentally relevant concentrations of BKCs exert potential adverse impacts on aquatic and terrestrial species, including genotoxicity, respiratory toxicity, behavioural effects and neurotoxicity, endocrine disruption and reproductive impairment, phytotoxicity, etc. Given the intrinsic biocidal and preservative properties of disinfectants, the inductive effects of residual BKCs in environment in terms of resistance and imbalance of microorganisms have been paid special attention. Considering the similarities of disinfectants to pharmaceuticals, from the perspective of ecopharmacovigilance (EPV), a well-established strategy for pharmaceutical emerging contaminants, we use the control of BKC pollution as a case, and provide some recommendations for employing the EPV measures to manage environmental risks posed by disinfectant emerging contaminants.
Collapse
Affiliation(s)
- Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Songyi Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jinru Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Guangquan Fan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
10
|
Sekijima H, Oshima T, Ueji Y, Kuno N, Kondo Y, Nomura S, Asakura T, Sakai-Sugino K, Kawano M, Komada H, Kotani H. Toxicologic pathological mechanism of acute lung injury induced by oral administration of benzalkonium chloride in mice. Toxicol Res 2023; 39:409-418. [PMID: 37398570 PMCID: PMC10313593 DOI: 10.1007/s43188-023-00178-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 07/04/2023] Open
Abstract
Benzalkonium chloride (BAC) intoxication causes fatal lung injuries, such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the pathogenesis of ALI/ARDS induced by BAC ingestion is poorly understood. This study aimed to clarify the mechanism of lung toxicity after BAC ingestion in a mouse model. BAC was orally administered to C57BL/6 mice at doses of 100, 250, and 1250 mg/kg. After administration, BAC concentrations in the blood and lungs were evaluated via liquid chromatography with tandem mass spectrometry. Lung tissue injury was evaluated via histological and protein analyses. Blood and lung BAC concentration levels after oral administration increased in a dose-dependent manner, with the concentrations directly proportional to the dose administered. The severity of lung injury worsened over time after the oral administration of 1250 mg/kg BAC. An increase in the terminal transferase dUTP nick end labeling-positive cells and cleaved caspase-3 levels was observed in the lungs after 1250 mg/kg BAC administration. In addition, increased cleaved caspase-9 levels and mitochondrial cytochrome c release into the cytosol were observed. These results suggest that lung tissue injury with excessive apoptosis contributes to BAC-induced ALI development and exacerbation. Our findings provide useful information for developing an effective treatment for ALI/ARDS induced by BAC ingestion.
Collapse
Affiliation(s)
- Hidehisa Sekijima
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Toru Oshima
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Yuno Ueji
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Naoko Kuno
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Yukino Kondo
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Saera Nomura
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Tomomi Asakura
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Kae Sakai-Sugino
- Department of Food and Nutrition, Tsu City College, 157 Isshinden-Nakano, Tsu, Mie 514-0112 Japan
| | - Mitsuo Kawano
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Hiroshi Komada
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Hirokazu Kotani
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| |
Collapse
|
11
|
Lou Q, Pan L, Xiang S, Li Y, Jin J, Tan J, Huang B, Nan K, Lin S. Suppression of NLRP3/Caspase-1/GSDMD Mediated Corneal Epithelium Pyroptosis Using Melatonin-Loaded Liposomes to Inhibit Benzalkonium Chloride-Induced Dry Eye Disease. Int J Nanomedicine 2023; 18:2447-2463. [PMID: 37192892 PMCID: PMC10182801 DOI: 10.2147/ijn.s403337] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Introduction Benzalkonium chloride (BAC) is widely employed as a preservative in eye drops, which will cause the death of corneal epithelial cells due to ROS production, DNA strand breakage, and mitochondrial dysfunction, resulting in dry eye disease (DED)-like changes in ocular surface tissues. In this study, Melatonin (MT) liposomes (TAT-MT-LIPs) designed by loading MT into TAT-modified liposomes have been developed, characterized, and used for inhibiting BAC-induced DED (BAC-DED). Methods The TAT was chemically grafted onto the Mal-PEG2000-DSPE by Michael's addition between the sulfhydryl group in TAT and the maleimide group in Mal-PEG2000-DSPE. TAT-MT-LIPs were prepared using film dispersion followed by the extrusion method and topically treated in rats once a day. BAC-DED was induced in rats by topical administration with 0.2% BAC twice daily. Defects, edema, and inflammation of the corneas, as well as IOP, were examined. Histologic analyses of corneas were performed to assess the change of mitochondrial DNA oxidation and NLRP3/Caspase-1/GSDMD signaling transduction. Results After topical administration, TAT-MT-LIPs significantly alleviated DED-clinical symptoms of experimental animals by inhibiting tissue inflammation and preventing the loss of the corneal epithelium and conjunctival goblet cells. Our data suggested continuous ocular surface exposure of BAC-induced NLRP3/Caspase-1/GSDMD mediated corneal epithelium pyroptosis, which was not reported before. BAC caused substantial mt-DNA oxidation, which promoted the transduction of NLRP3/Caspase-1/GSDMD and consequent corneal epithelium pyroptosis. TAT-MT-LIPs could efficiently suppress the BAC-induced corneal epithelium pyroptosis and inflammation by inhibiting mt-DNA oxidation and the subsequent signal transmission. Conclusion NLRP3/Caspase-1/GSDMD mediated corneal epithelium pyroptosis is involved in the development of BAC-DED. The present study provided new insights into the adverse effects of BAC, which can serve as a new target for protecting corneal epithelium when applying BAC as a preservative in eye drops. The developed TAT-MT-LIPs can efficiently inhibit BAC-DED and give great potential to be developed as a new DED treatment.
Collapse
Affiliation(s)
- Qi Lou
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Lu Pan
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Shengjin Xiang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Yueting Li
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Jiahui Jin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Jingyang Tan
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Baoshan Huang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Kaihui Nan
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- Correspondence: Kaihui Nan; Sen Lin, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China, Tel +86-577-88067962, Email ;
| | - Sen Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| |
Collapse
|
12
|
Stachurová T, Rybková Z, Škrlová K, Malachová K, Havlíček M, Plachá D. Biocompatibility and biocidal effects of modified polylactide composites. Front Microbiol 2022; 13:1031783. [PMID: 36504788 PMCID: PMC9731850 DOI: 10.3389/fmicb.2022.1031783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Polylactide (PLA) materials treated with antimicrobial fillers represent a suitable alternative to the production of medical devices. Their advantage is that they can prevent the growth of microorganisms and the formation of microbial biofilms on the surface and around composites. The work is focused on the evaluation of biocompatibility and biocide effect of PLA composite films filled with vermiculite and graphene oxide modified with silver (Ag+ and Ag nanoparticles), hexadecylpyridinium (HDP) and hexadecyltrimethylammonium (HDTMA) cations and their degradation leachates monitored at 1-3-6-month intervals. The antimicrobial effect of the leachates was detected by microdilution methods on gram-negative (Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis), gram-positive (Staphylococcus aureus, Streptococcus salivarius) bacteria and yeast (Candida albicans). The biocidal effect of composites on biofilm formation on the surface of composites was monitored by Christensen method and autoaggregation and motility tests. The biocompatibility of the composite and the leachates was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cytotoxicity assay. The evaluation of the antimicrobial effect of the leachates demonstrated that leachates of PLA composite filled with graphene oxide and Ag+ showed a stronger antimicrobial effect than leachates of PLA composite filled with vermiculite and Ag+ and Ag nanoparticles. The leachates of PLA composites containing vermiculite with HDP and HDTMA cations had a higher antimicrobial effect on G+ bacteria and yeast than G- bacteria. Bacterial growth, biofilm formation, autoaggregation and motility of the tested bacteria were most inhibited by the composite with vermiculite and Ag+ and Ag nanoparticles. Even after a 6-month degradation of this composite, bacterial growth and biofilm formation continued to be strongly inhibited up to 42 and 91%, respectively. The cytotoxic effect was proved only in the leachate of the composite with vermiculite containing HDP after 6 months of its degradation. Tests evaluating the biocompatibility of materials have shown that the vermiculite is the most preferred carrier and can be used in the future to bind other compounds. The study confirmed that PLA composite filled with vermiculite and Ag+ and Ag nanoparticles was the most stable and effective composite with the best biocompatible and biocidal properties.
Collapse
Affiliation(s)
- Tereza Stachurová
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia,*Correspondence: Tereza Stachurová,
| | - Zuzana Rybková
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia
| | - Kateřina Škrlová
- Nanotechnology Centre, VSB–Technical University of Ostrava, Ostrava, Czechia,Center of Advanced Innovation Technologies, VSB–Technical University of Ostrava, Ostrava-Poruba, Czechia
| | - Kateřina Malachová
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia,Kateřina Malachová,
| | | | - Daniela Plachá
- Nanotechnology Centre, VSB–Technical University of Ostrava, Ostrava, Czechia,Energy Units for Utilization of Non-Traditional Energy Source (ENET) Centre, Center for Energy and Environmental Technologies (CEET), VSB–Technical University of Ostrava, Ostrava, Czechia
| |
Collapse
|
13
|
Kim J, Baek YW, Kim C, Nam YJ, Lee YS, Lee H, Kang JY, Lee H, Choi JY, Park YH, Park SA, Park EK, Jeong SH, Lee JH. Evaluating the comparative MT1B, MT1F, MT1G, and MT1H expression in human pulmonary alveolar epithelial cells treated with polyhexamethylene guanidine-phosphate, chloromethylisothiazolinone/methylisothiazolinone, oligo(2-(2-ethoxy)ethoxyethyl guanidinium chloride, benzalkonium chloride, and sodium dichloroisocyanurate. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Souza EM, Ferreira MR, Soares LA. Pickering emulsions stabilized by zein particles and their complexes and possibilities of use in the food industry: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Peyneau M, de Chaisemartin L, Gigant N, Chollet-Martin S, Kerdine-Römer S. Quaternary ammonium compounds in hypersensitivity reactions. FRONTIERS IN TOXICOLOGY 2022; 4:973680. [PMID: 36211198 PMCID: PMC9534575 DOI: 10.3389/ftox.2022.973680] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Quaternary ammonium compounds (QAC) are commonly used disinfectants, antiseptics, preservatives, and detergents due to their antibacterial property and represent the first used biocides before phenolic or nitrogen products. Their common structure consists of one or more quaternary ammonium bound with four lateral substituents. Their amphiphilic structure allows them to intercalate into microorganism surfaces which induces an unstable and porous membrane that explains their antimicrobial activity towards bacteria, fungi, and viruses. QAC are thus found in many areas, such as household products, medicines, hygiene products, cosmetics, agriculture, or industrial products but are also used in medical practice as disinfectants and antiseptics and in health care facilities where they are used for cleaning floors and walls. QAC exposure has already been involved in occupational asthma in healthcare workers or professional cleaners by many authors. They also have been suggested to play a role in contact dermatitis (CD) and urticaria in workers using cosmetics such as hairdressers or healthcare workers, inciting reglementary agencies to make recommendations regarding those products. However, distinguishing the irritant or sensitizing properties of chemicals is complex and as a result, the sensitizing property of QAC is still controverted. Moreover, the precise mechanisms underlying the possible sensitization effect are still under investigation, and to date, only a few studies have documented an immunological mechanism. Besides, QAC have been suggested to be responsible for neuromuscular blocking agents (NMBA) sensitization by cross-reactivity. This hypothesis is supported by a higher prevalence of quaternary ammonium (QA)-specific IgE in the professionally exposed populations, such as hairdressers, cleaners, or healthcare workers, suggesting that the sensitization happens with structurally similar compounds present in the environment. This review summarizes the newest knowledge about QAC and their role in hypersensitivities. After describing the different QAC, their structure and use, the most relevant studies about the effects of QAC on the immune system will be reviewed and discussed.
Collapse
Affiliation(s)
- Marine Peyneau
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
- Department « Autoimmunité, Hypersensibilités et Biothérapies », DMU BioGeM, APHP, Hôpital Bichat, Paris, France
- *Correspondence: Marine Peyneau,
| | - Luc de Chaisemartin
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
- Department « Autoimmunité, Hypersensibilités et Biothérapies », DMU BioGeM, APHP, Hôpital Bichat, Paris, France
| | - Nicolas Gigant
- CNRS, BioCIS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
- Department « Autoimmunité, Hypersensibilités et Biothérapies », DMU BioGeM, APHP, Hôpital Bichat, Paris, France
| | - Saadia Kerdine-Römer
- Université Paris-Saclay, Inserm, Inflammation microbiome immunosurveillance, Châtenay-Malabry, France
| |
Collapse
|
16
|
Arafa KK, Ibrahim A, Mergawy R, El-Sherbiny IM, Febbraio F, Hassan RYA. Advances in Cancer Diagnosis: Bio-Electrochemical and Biophysical Characterizations of Cancer Cells. MICROMACHINES 2022; 13:mi13091401. [PMID: 36144024 PMCID: PMC9504238 DOI: 10.3390/mi13091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 05/09/2023]
Abstract
Cancer is a worldwide leading cause of death, and it is projected that newly diagnosed cases globally will reach 27.5 million each year by 2040. Cancers (malignant tumors), unlike benign tumors are characterized by structural and functional dedifferentiation (anaplasia), breaching of the basement membrane, spreading to adjacent tissues (invasiveness), and the capability to spread to distant sites (metastasis). In the cancer biology research field, understanding and characterizing cancer metastasis as well as features of cell death (apoptosis) is considered a technically challenging subject of study and clinically is very critical and necessary. Therefore, in addition to the cytochemical methods traditionally used, novel biophysical and bioelectrochemical techniques (e.g., cyclic voltammetry and electrochemical impedance spectroscopy), atomic force microscopy, and electron microscopic methods are increasingly being deployed to better understand these processes. Implementing those methods at the preclinical level enables the rapid screening of new anticancer drugs with understanding of their central mechanism for cancer therapy. In this review, principles and basic concepts of new techniques suggested for metastasis, and apoptosis examinations for research purposes are introduced, along with examples of each technique. From our recommendations, the privilege of combining the bio-electrochemical and biosensing techniques with the conventional cytochemical methods either for research or for biomedical diagnosis should be emphasized.
Collapse
Affiliation(s)
- Kholoud K. Arafa
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Alaa Ibrahim
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Reem Mergawy
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ibrahim M. El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Rabeay Y. A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
- Correspondence: ; Tel.: +20-1129216152
| |
Collapse
|
17
|
Park EJ, Jin SW, Kang MS, Yang MJ, Kim SH, Han HY, Kang JW. Pulmonary inflammation and cellular responses following exposure to benzalkonium chloride: Potential impact of disrupted pulmonary surfactant homeostasis. Toxicol Appl Pharmacol 2022; 440:115930. [PMID: 35202710 DOI: 10.1016/j.taap.2022.115930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
Benzalkonium chloride (BKC) is a prototypical quaternary ammonium disinfectant. Previously, we suggested a no lethal dose level (0.005%) and an LD50 range (0.5-0.05%) of BKC following a single pharyngeal aspiration. Herein, we exposed BKC repeatedly by pharyngeal aspiration for 14 days (0.005 and 0.01%, female mice, total five times with interval of two days, 5 mice/group) and 28 days (0, 0.001, 0.005, and 0.01%, male and female mice, weekly, 16 mice/sex/group). Death following 14 days-repeated exposure did not occur. Meanwhile, chronic pathological lesions were observed in the lung tissues of mice exposed to BKC for 28 days. The total number of bronchial alveolar lavage cells increased, and pulmonary homeostasis of immunologic messenger molecules was disturbed. Following, we investigated BKC-induced cellular responses using human bronchial epithelial cells. The cytotoxicity increased rapidly with concentration. Lysosomal volume, NO production, and lipid peroxidation increased in BKC-treated cells, whereas intracellular ROS level decreased accompanying structural and functional damage of mitochondria. We also found that BKC affected the expression level of immune response, DNA damage, and amino acid biosynthesis-related molecules. More interestingly, lamellar body- and autophagosome-like structures were notably observed in cells exposed to BKC, and necrotic and apoptotic cell death were identified accompanying cell accumulation in the G2/M phase. Therefore, we suggest that repeated respiratory exposure of BKC causes pulmonary inflammation and lung tissue damage and that dead and damaged cells may contribute to the inflammatory response. In addition, the formation process of lamellar body-like structures may function as a key toxicity mechanism.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea; Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Republic of Korea.
| | - Seung-Woo Jin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Republic of Korea
| | - Min-Sung Kang
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Republic of Korea; Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Hyoung-Yun Han
- Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jeong Won Kang
- Department of Chemical and Biological Engineering, Korea University, 0284, Republic of Korea; Graduate School of Energy and Environment, Korea University, 0284, Republic of Korea
| |
Collapse
|
18
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
19
|
García-Cuellar CM, Hernández-Delgadillo R, Solis-Soto JM, Meester I, Sánchez-Pérez Y, Nakagoshi-Cepeda SE, Nakagoshi-Cepeda MAA, Chellam S, Cabral-Romero C. Cetylpyridinium chloride inhibits human breast tumor cells growth in a no-selective way. J Appl Biomater Funct Mater 2022; 20:22808000221092157. [PMID: 35485910 DOI: 10.1177/22808000221092157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Analyze the antitumor capacity of cetylpyridinium chloride (CPC) on human breast tumor cells, and the possible action mechanism. MATERIAL AND METHODS The human breast tumor cells MCF-7 and no-tumor breast cells MCF-10A were exposed to CPC under various condition (concentration and duration). Cell viability was measured with MTT assay, the LIVE/DEAD assay, and fluorescence microscopy. Membrane permeability after CPC exposure was evaluated by Calcein AM assay, mitochondrial morphology with a MitoView staining, and genotoxicity with the comet assay and fluorescence microscopy. RESULTS CPC was cytotoxic to both MCF-7 and MCF-10A as of a 24-h exposure to 0.1 µM. Cytotoxicity was dose-dependent and reached 91% for MCF-7 and 78% for MCF-10A after a 24-h exposure to 100 µM CPC, which outperformed the positive control doxorubicin in effectiveness and selectivity. The LD50 of CPC on was 6 µM for MCF-7 and 8 µM for MCF-10A, yielding a selectivity index of 1.41. A time response analysis revealed 64% dead cells after only 5 min of exposure to 100 µM CPC. With respect to the action mechanisms, the comet assay did not reveal genome fragmentation. On the other hand, membrane damage was dose-dependent and may also affect mitochondrial morphology. CONCLUSION Cetylpyridinium chloride inhibits MCF-7 cell growing in a non-selective way as of 5 min of exposure. The action mechanism of CPC on tumor cells involves cell membrane damage without change neither mitochondrial morphology nor genotoxicity.
Collapse
Affiliation(s)
| | - Rene Hernández-Delgadillo
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Juan Manuel Solis-Soto
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Irene Meester
- Departamento de Ciencias Básicas, Universidad de Monterrey, San Pedro Garza García, México
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Sergio Eduardo Nakagoshi-Cepeda
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | | | | | - Claudio Cabral-Romero
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| |
Collapse
|
20
|
López-García S, Pecci-Lloret MP, Pecci-Lloret MR, Guerrero-Gironés J, Rodríguez-Lozano FJ, García-Bernal D. Topical fluoride varnishes promote several biological responses on human gingival cells. Ann Anat 2021; 237:151723. [PMID: 33857632 DOI: 10.1016/j.aanat.2021.151723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To compare the in vitro cytotoxicity of four commercial topical fluoride varnishes widely used in daily dental practice for the prevention of caries on human fibroblasts: Cervitec F, Fixofluor, Fluor Protector S and Duraphat. MATERIAL AND METHODS Human gingival fibroblasts (hGF) were exposed to different concentrations of fluoride varnishes extracts. Biological assays, including MTT and IC50 value determination, annexin-V/7-AAD staining, cell migration and F-actin staining with phalloidin were carried out. Statistical analyses were performed using one-way ANOVA and Tukey's post hoc test. RESULTS At 4% concentration, all of the fluoride varnishes extracts affected fibroblasts metabolic activity, exhibiting a high degree of cytotoxicity at all measured time points. At 0.1% and 1%, Duraphat and Fixofluor or Fluor Protector S and Cervitec F exerted the lowest or highest cytotoxic effects, respectively. Similar effects were evidenced when induction of apoptosis/necrosis and cell migration assays were analyzed. Immunocytochemical assays revealed a similar number of fibroblasts, without changes in the morphology and F-actin content at 0.1% concentration of all tested materials, while at 1% concentration, Fluor Protector S and Cervitec F showed few cells with aberrant morphology or non-adhered cells, respectively. CONCLUSIONS Different commercial topical fluoride varnishes with the same therapeutic indication may exhibit different biological effects and cytotoxicity on fibroblasts.
Collapse
Affiliation(s)
- Sergio López-García
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute of Murcia, Clinical University Hospital Virgen de la Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - María P Pecci-Lloret
- Gerodontology and Special Care Dentistry Unit, Hospital Morales Meseguer, Medicine School, University of Murcia, 30100 Murcia, Spain
| | - Miguel R Pecci-Lloret
- Gerodontology and Special Care Dentistry Unit, Hospital Morales Meseguer, Medicine School, University of Murcia, 30100 Murcia, Spain
| | - Julia Guerrero-Gironés
- Gerodontology and Special Care Dentistry Unit, Hospital Morales Meseguer, Medicine School, University of Murcia, 30100 Murcia, Spain.
| | - Francisco J Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute of Murcia, Clinical University Hospital Virgen de la Arrixaca, University of Murcia, 30120 Murcia, Spain; Gerodontology and Special Care Dentistry Unit, Hospital Morales Meseguer, Medicine School, University of Murcia, 30100 Murcia, Spain
| | - David García-Bernal
- Cellular Therapy and Hematopoietic Transplant Research Group, Biomedical Research Institute of Murcia, Clinical University Hospital Virgen de la Arrixaca, University of Murcia, 30120 Murcia, Spain; Internal Medicine Department, Medicine School, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
21
|
Novel QSAR Models for Molecular Initiating Event Modeling in Two Intersecting Adverse Outcome Pathways Based Pulmonary Fibrosis Prediction for Biocidal Mixtures. TOXICS 2021; 9:toxics9030059. [PMID: 33809804 PMCID: PMC8002424 DOI: 10.3390/toxics9030059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
The adverse outcome pathway (AOP) was introduced as an alternative method to avoid unnecessary animal tests. Under the AOP framework, an in silico methods, molecular initiating event (MIE) modeling is used based on the ligand-receptor interaction. Recently, the intersecting AOPs (AOP 347), including two MIEs, namely peroxisome proliferator-activated receptor-gamma (PPAR-γ) and toll-like receptor 4 (TLR4), associated with pulmonary fibrosis was proposed. Based on the AOP 347, this study developed two novel quantitative structure-activity relationship (QSAR) models for the two MIEs. The prediction performances of different MIE modeling methods (e.g., molecular dynamics, pharmacophore model, and QSAR) were compared and validated with in vitro test data. Results showed that the QSAR method had high accuracy compared with other modeling methods, and the QSAR method is suitable for the MIE modeling in the AOP 347. Therefore, the two QSAR models based on the AOP 347 can be powerful models to screen biocidal mixture related to pulmonary fibrosis.
Collapse
|
22
|
Kera H, Fuke C, Usumoto Y, Nasu A, Maeda K, Mukai M, Sato W, Tanabe M, Kuninaka H, Ihama Y. Kinetics and distribution of benzalkonium compounds with different alkyl chain length following intravenous administration in rats. Leg Med (Tokyo) 2021; 48:101821. [PMID: 33348260 DOI: 10.1016/j.legalmed.2020.101821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022]
Abstract
Benzalkonium chloride is widely used in disinfectants. Several toxicological and fatal cases have been reported; however, little is known about its kinetics and distribution. We investigated the kinetic characteristics and distribution of benzalkonium cation (BZK) based on the length of the alkyl chains C12, C14, and C16. Rats were treated intravenously with BZK solution (dose, 13.9 mg/kg) containing equal amounts of the three homologues. Kinetic parameters in the blood were assessed, and BZK distribution in the blood and tissues was examined both in rapid intravenous (IV) and drip intravenous (DIV) administrations. BZK concentrations were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). BZK with longer alkyl chains showed lower elimination tendencies and remained in the blood for a longer duration. Concentrations of BZK were higher in the heart, lung, spleen, and kidney than those in the blood, and lower in the brain and fat. In both the IV and DIV groups, the lung, liver, spleen, and fat samples showed higher concentrations of the longer alkyl chains (BZK-C12 < -C14 < -C16), and the opposite trend was observed in the kidney (BZK-C16 < -C14 < -C12). Only the heart and muscle samples displayed the homologues in ratios comparable to the original administered solutions. Differences between IV and DIV groups could be identified by comparing concentrations of BZK homologues in the heart, lung, spleen, and kidney samples. We found that the kinetics and distribution of BZK were influenced by the alkyl chain length, and analysing each BZK homologues in blood and tissue samples may provide useful information.
Collapse
Affiliation(s)
- Hitomi Kera
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan
| | - Chiaki Fuke
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan.
| | - Yosuke Usumoto
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan
| | - Ayako Nasu
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan
| | - Kazuho Maeda
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan
| | - Moe Mukai
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan
| | - Wakana Sato
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan
| | - Momoka Tanabe
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan
| | - Hikaru Kuninaka
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan
| | - Yoko Ihama
- Department of Legal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
23
|
Abbott T, Kor-Bicakci G, Islam MS, Eskicioglu C. A Review on the Fate of Legacy and Alternative Antimicrobials and Their Metabolites during Wastewater and Sludge Treatment. Int J Mol Sci 2020; 21:ijms21239241. [PMID: 33287448 PMCID: PMC7729486 DOI: 10.3390/ijms21239241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial compounds are used in a broad range of personal care, consumer and healthcare products and are frequently encountered in modern life. The use of these compounds is being reexamined as their safety, effectiveness and necessity are increasingly being questioned by regulators and consumers alike. Wastewater often contains significant amounts of these chemicals, much of which ends up being released into the environment as existing wastewater and sludge treatment processes are simply not designed to treat many of these contaminants. Furthermore, many biotic and abiotic processes during wastewater treatment can generate significant quantities of potentially toxic and persistent antimicrobial metabolites and byproducts, many of which may be even more concerning than their parent antimicrobials. This review article explores the occurrence and fate of two of the most common legacy antimicrobials, triclosan and triclocarban, their metabolites/byproducts during wastewater and sludge treatment and their potential impacts on the environment. This article also explores the fate and transformation of emerging alternative antimicrobials and addresses some of the growing concerns regarding these compounds. This is becoming increasingly important as consumers and regulators alike shift away from legacy antimicrobials to alternative chemicals which may have similar environmental and human health concerns.
Collapse
Affiliation(s)
- Timothy Abbott
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
| | - Gokce Kor-Bicakci
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
- Institute of Environmental Sciences, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Mohammad S. Islam
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (T.A.); (G.K.-B.); (M.S.I.)
- Correspondence: ; Tel.: +1-250-807-8544 (C.E)
| |
Collapse
|
24
|
Yamasaki R, Kawano A, Yoshioka Y, Ariyoshi W. Rhamnolipids and surfactin inhibit the growth or formation of oral bacterial biofilm. BMC Microbiol 2020; 20:358. [PMID: 33228524 PMCID: PMC7684882 DOI: 10.1186/s12866-020-02034-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background Bacteria survive in various environments by forming biofilms. Bacterial biofilms often cause significant problems to medical instruments and industrial processes. Techniques to inhibit biofilm formation are essential and have wide applications. In this study, we evaluated the ability of two types of biosurfactants (rhamnolipids and surfactin) to inhibit growth and biofilm formation ability of oral pathogenic bacteria such as Aggregatibacter actinomycetemcomitans, Streptococcus mutans, and Streptococcus sanguinis. Results Rhamnolipids inhibited the growth and biofilm formation ability of all examined oral bacteria. Surfactin showed effective inhibition against S. sanguinis ATCC10556, but lower effects toward A. actinomycetemcomitans Y4 and S. mutans UA159. To corroborate these results, biofilms were observed by scanning electron microscopy (SEM) and confocal microscopy. The observations were largely in concordance with the biofilm assay results. We also attempted to determine the step in the biofilm formation process that was inhibited by biosurfactants. The results clearly demonstrated that rhamnolipids inhibit biofilm formation after the initiation process, however, they do not affect attachment or maturation. Conclusions Rhamnolipids inhibit oral bacterial growth and biofilm formation by A. actinomycetemcomitans Y4, and may serve as novel oral drug against localized invasive periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02034-9.
Collapse
Affiliation(s)
- Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Aki Kawano
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Yoshie Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| |
Collapse
|
25
|
Araujo HC, Arias LS, Caldeirão ACM, Assumpção LCDF, Morceli MG, de Souza Neto FN, de Camargo ER, Oliveira SHP, Pessan JP, Monteiro DR. Novel Colloidal Nanocarrier of Cetylpyridinium Chloride: Antifungal Activities on Candida Species and Cytotoxic Potential on Murine Fibroblasts. J Fungi (Basel) 2020; 6:jof6040218. [PMID: 33053629 PMCID: PMC7712500 DOI: 10.3390/jof6040218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Nanocarriers have been used as alternative tools to overcome the resistance of Candida species to conventional treatments. This study prepared a nanocarrier of cetylpyridinium chloride (CPC) using iron oxide nanoparticles (IONPs) conjugated with chitosan (CS), and assessed its antifungal and cytotoxic effects. CPC was immobilized on CS-coated IONPs, and the nanocarrier was physico-chemically characterized. Antifungal effects were determined on planktonic cells of Candida albicans and Candida glabrata (by minimum inhibitory concentration (MIC) assays) and on single- and dual-species biofilms of these strains (by quantification of cultivable cells, total biomass and metabolic activity). Murine fibroblasts were exposed to different concentrations of the nanocarrier, and the cytotoxic effect was evaluated by MTT reduction assay. Characterization methods confirmed the presence of a nanocarrier smaller than 313 nm. IONPs-CS-CPC and free CPC showed the same MIC values (0.78 µg mL−1). CPC-containing nanocarrier at 78 µg mL−1 significantly reduced the number of cultivable cells for all biofilms, surpassing the effect promoted by free CPC. For total biomass, metabolic activity, and cytotoxic effects, the nanocarrier and free CPC produced statistically similar outcomes. In conclusion, the IONPs-CS-CPC nanocarrier was more effective than CPC in reducing the cultivable cells of Candida biofilms without increasing the cytotoxic effects of CPC, and may be a useful tool for the treatment of oral fungal infections.
Collapse
Affiliation(s)
- Heitor Ceolin Araujo
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Laís Salomão Arias
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Anne Caroline Morais Caldeirão
- Graduate Program in Dentistry (GPD—Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil;
| | - Lanay Caroline de Freitas Assumpção
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
| | - Marcela Grigoletto Morceli
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
| | - Francisco Nunes de Souza Neto
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | | | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil;
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD—Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil;
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
- Correspondence: or ; Tel.: +55-18-3229-1000
| |
Collapse
|
26
|
Kim H, Yoo J, Lim YM, Kim EJ, Yoon BI, Kim P, Yu SD, Eom IC, Shim I. Comprehensive pulmonary toxicity assessment of cetylpyridinium chloride using A549 cells and Sprague-Dawley rats. J Appl Toxicol 2020; 41:470-482. [PMID: 33022792 DOI: 10.1002/jat.4058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
Cetylpyridinium chloride (CPC), a quaternary ammonium compound and cationic surfactant, is used in personal hygiene products such as toothpaste, mouthwash, and nasal spray. Although public exposure to CPC is frequent, its pulmonary toxicity has yet to be fully characterized. Due to high risks of CPC inhalation, we aimed to comprehensively elucidate the in vitro and in vivo toxicity of CPC. The results demonstrated that CPC is highly cytotoxic against the A549 cells with a half-maximal inhibitory concentration (IC50 ) of 5.79 μg/ml. Following CPC exposure, via intratracheal instillation (ITI), leakage of lactate dehydrogenase, a biomarker of cell injury, was significantly increased in all exposure groups. Further, repeated exposure of rats to CPC for 28 days caused a decrease in body weight of the high-exposure group and the relative weights of the lungs and kidneys of the high recovery group, but no changes were evident in the histological and serum chemical analyses. The bronchoalveolar lavage fluid (BALF) analysis showed a significant increase in proinflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α levels. ITI of CPC induced focal inflammation of the pulmonary parenchyma in rats' lungs. Our study demonstrated that TNF-α was the most commonly secreted proinflammatory cytokine during CPC exposure in both in vitro and in vivo models. Polymorphonuclear leukocytes in the BALF, which are indicators of pulmonary inflammation, significantly increased in a concentration-dependent manner in all in vivo studies including the ITI, acute, and subacute inhalation assays, demonstrating that PMNs are the most sensitive parameters of pulmonary toxicity.
Collapse
Affiliation(s)
- Haewon Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Jean Yoo
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Yeon-Mi Lim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Eun-Ji Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Seung Do Yu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Ig-Chun Eom
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| |
Collapse
|
27
|
Zheng T, Ji G, Chen J, Lai J, Liu T, Mo J, Jin Q. MicroRNA-142 protects MC3T3-E1 cells against high glucose-induced apoptosis by targeting β-catenin. Exp Ther Med 2020; 20:125. [PMID: 33005251 PMCID: PMC7523292 DOI: 10.3892/etm.2020.9253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis, characterized by decreased mineral density and bone mass, is triggered by various detrimental factors and often causes further complications, including fractures. Aberrant expression of microRNAs (miRs) has been associated with the pathogenesis of osteoporosis. Recently, miR-142 was reported to be downregulated in osteoblasts; however, the underlying mechanism of miR-142 in mediating the development of osteoporosis remains unclear. In the present study, high glucose induced the downregulation of miR-142 mRNA expression and promoted the apoptosis of MC3T3-E1 cells. miR-142-mimics significantly protected against high glucose-induced apoptosis, upregulated the expression levels of B-cell lymphoma 2 (Bcl-2) and downregulated the protein expression levels of β-catenin, Bcl-2 associated X (Bax) and caspase-3. Furthermore, β-catenin was identified as a direct target of miR-142 using luciferase reporter assays. Similar to the effects of miR-142 inhibitors, overexpression of β-catenin aggravated the apoptosis of MC3T3-E1 cells, as demonstrated by the upregulation of Bax and caspase-3, and the downregulation of Bcl-2 expression levels. In conclusion, miR-142 protects MC3T3-E1 cells against high glucose-induced apoptosis by targeting β-catenin.
Collapse
Affiliation(s)
- Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Guanglin Ji
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jincai Chen
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jinliang Lai
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Tong Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jianwen Mo
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Qi Jin
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
28
|
Alvarez DM, Duarte LF, Corrales N, Smith PC, González PA. Cetylpyridinium chloride blocks herpes simplex virus replication in gingival fibroblasts. Antiviral Res 2020; 179:104818. [PMID: 32423887 DOI: 10.1016/j.antiviral.2020.104818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 11/16/2022]
Abstract
Infections with herpes simplex viruses are lifelong and highly prevalent worldwide. Individuals with clinical symptoms elicited by HSVs may suffer from occasional or recurrent herpetic lesions in the orofacial and genital areas. Despite the existence of nucleoside analogues that interfere with HSV replication, such as acyclovir, these drugs are somewhat ineffective in treating skin lesions as topical formulations only reduce in one or few days the duration of the herpetic ulcers. Cetylpyridinium chloride (CPC) is a quaternary ammonium compound present in numerous hygiene products, such as mouthwashes, deodorants, aphtae-treating formulations and oral tablets as an anti-septic to limit bacterial growth. Some reports indicate that CPC can also modulate host signaling pathways, namely NF-κB signaling. Because HSV infection is modulated by NF-κB, we sought to assess whether CPC has antiviral effects against HSVs. Using wild-type HSV-1 and HSV-2, as well as viruses that are acyclovir-resistant or encode GFP reporter genes, we assessed the antiviral capacity of CPC in epithelial cells and human gingival fibroblasts expanded from the oral cavity and its mechanism of action. We found that a short, 10-min exposure to CPC added after HSV entry into the cells, significantly limited viral replication in both cell types by impairing viral gene expression. Interestingly, our results suggest that CPC blocks HSV replication by interfering with the translocation of NF-κB into the nucleus of HSV-infected cells. Taken together, these findings suggest that formulations containing CPC may help limit HSV replication in infected tissues and consequently reduce viral shedding.
Collapse
Affiliation(s)
- Diana M Alvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricio C Smith
- Escuela de Odontología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
29
|
Kim SH, Kwon D, Lee S, Son SW, Kwon JT, Kim PJ, Lee YH, Jung YS. Concentration- and Time-Dependent Effects of Benzalkonium Chloride in Human Lung Epithelial Cells: Necrosis, Apoptosis, or Epithelial Mesenchymal Transition. TOXICS 2020; 8:toxics8010017. [PMID: 32121658 PMCID: PMC7151738 DOI: 10.3390/toxics8010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Benzalkonium chloride (BAC), an antimicrobial agent in inhalable medications and household sprays, has been reported to be toxic to pulmonary organs. Although cell membrane damage has been considered as the main cytotoxic mechanism of BAC, its concentration- and time-dependent cellular effects on lung epithelium have not been fully understood. In the present study, human lung epithelial (H358) cells were exposed to 0.2–40 μg/mL of BAC for 30 min or 21 days. Cell membranes were rapidly disrupted by 30 min exposure, but 24 h incubation of BAC (4–40 μg/mL) predominantly caused apoptosis rather than necrosis. BAC (2–4 μg/mL) induced mitochondrial depolarization, which may be associated with increased expression of pro-apoptotic proteins (caspase-3, PARP, Bax, p53, and p21), and decreased levels of the anti-apoptotic protein Bcl-2. The protein expression levels of IRE1α, BiP, CHOP, and p-JNK were also elevated by BAC (2–4 μg/mL) suggesting the possible involvement of endoplasmic reticulum stress in inducing apoptosis. Long-term (7–21 days) incubation with BAC (0.2–0.6 μg/mL) did not affect cell viability but led to epithelial-mesenchymal transition (EMT) as shown by the decrease of E-cadherin and the increase of N-cadherin, fibronectin, and vimentin, caused by the upregulation of EMT transcription factors, such as Snail, Slug, Twist1, Zeb1, and Zeb2. Therefore, we conclude that apoptosis could be an important mechanism of acute BAC cytotoxicity in lung epithelial cells, and chronic exposure to BAC even at sub-lethal doses can promote pulmonary EMT.
Collapse
Affiliation(s)
- Sou Hyun Kim
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Doyoung Kwon
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Seunghyun Lee
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Seung Won Son
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Jung-Taek Kwon
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Pil-Je Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: (Y.-H.L.); (Y.-S.J.); Tel.: +82-2-880-2139 (Y.-H.L.); 82-51-510-2816 (Y.-S.J.)
| | - Young-Suk Jung
- Lab of Molecular Toxicology, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence: (Y.-H.L.); (Y.-S.J.); Tel.: +82-2-880-2139 (Y.-H.L.); 82-51-510-2816 (Y.-S.J.)
| |
Collapse
|