1
|
Himura R, Kawano S, Nagata Y, Kawai M, Ota A, Kudo Y, Yoshino Y, Fujimoto N, Miyamoto H, Endo S, Ikari A. Inhibition of aldo-keto reductase 1C3 overcomes gemcitabine/cisplatin resistance in bladder cancer. Chem Biol Interact 2024; 388:110840. [PMID: 38122923 DOI: 10.1016/j.cbi.2023.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Systemic chemotherapy with gemcitabine and cisplatin (GC) has been used for the treatment of bladder cancer in which androgen receptor (AR) signaling is suggested to play a critical role. However, its efficacy is often limited, and the prognosis of patients who develop resistance is extremely poor. Aldo-keto reductase 1C3 (AKR1C3), which is responsible for the production of a potent androgen, 5α-dihydrotestosterone (DHT), by the reduction of 5α-androstane-3α,17β-dione (5α-Adione), has been attracting attention as a therapeutic target for prostate cancer that shows androgen-dependent growth. By contrast, the role of AKR1C3 in bladder cancer remains unclear. In this study, we examined the effect of an AKR1C3 inhibitor on androgen-dependent proliferation and GC sensitivity in bladder cancer cells. 5α-Adione treatment induced the expression of AR and its downstream factor ETS-domain transcription factor (ELK1) in both T24 cells and newly established GC-resistant T24GC cells, while it did not alter AKR1C3 expression. AKR1C3 inhibitor 2j significantly suppressed 5α-Adione-induced AR and ELK1 upregulation, as did an AR antagonist apalutamide. Moreover, the combination of GC and 2j in T24GC significantly induced apoptotic cell death, suggesting that 2j could enhance GC sensitivity. Immunohistochemical staining in surgical specimens further revealed that strong expression of AKR1C3 was associated with significantly higher risks of tumor progression and cancer-specific mortality in patients with muscle-invasive bladder cancer. These results suggest that AKR1C3 inhibitors as adjunctive agents enhance the efficacy of GC therapy for bladder cancer.
Collapse
Affiliation(s)
- Rin Himura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Shinya Kawano
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yujiro Nagata
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Atsumi Ota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Hiroshi Miyamoto
- Departments of Pathology & Laboratory Medicine and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu Pharmaceutical University, Gifu, 501-1193, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|
2
|
Banibakhsh A, Sidhu D, Khan S, Haime H, Foster PA. Sex steroid metabolism and action in colon health and disease. J Steroid Biochem Mol Biol 2023; 233:106371. [PMID: 37516405 DOI: 10.1016/j.jsbmb.2023.106371] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
The colon is the largest hormonally active tissue in the human body. It has been known for over a hundred years that various hormones and bioactive peptides play important roles in colon function. More recently there is a growing interest in the role the sex steroids, oestrogens and androgens, may play in both normal colon physiology and colon pathophysiology. In this review, we examine the potential role oestrogens and androgens play in the colon. The metabolism and subsequent action of sex steroids in colonic tissue is discussed and how these hormones impact colon motility is investigated. Furthermore, we also determine how oestrogens and androgens influence colorectal cancer incidence and development and highlight potential new therapeutic targets for this malignancy. This review also examines how sex steroids potentially impact the severity and progression of other colon disease, such as diverticulitis, irritable bowel syndrome, and polyp formation.
Collapse
Affiliation(s)
- Afnan Banibakhsh
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Daljit Sidhu
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Sunera Khan
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Hope Haime
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul A Foster
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK.
| |
Collapse
|
3
|
Syamprasad NP, Jain S, Rajdev B, Prasad N, Kallipalli R, Naidu VGM. Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochem Pharmacol 2023; 211:115528. [PMID: 37011733 DOI: 10.1016/j.bcp.2023.115528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Ravindra Kallipalli
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India.
| |
Collapse
|
4
|
Pei M, Liu K, Qu X, Wang K, Chen Q, Zhang Y, Wang X, Wang Z, Li X, Chen F, Qin H, Zhang Y. Enzyme-catalyzed synthesis of selenium-doped manganese phosphate for synergistic therapy of drug-resistant colorectal cancer. J Nanobiotechnology 2023; 21:72. [PMID: 36859296 PMCID: PMC9976439 DOI: 10.1186/s12951-023-01819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The development of multidrug resistance (MDR) during postoperative chemotherapy for colorectal cancer substantially reduces therapeutic efficacy. Nanostructured drug delivery systems (NDDSs) with modifiable chemical properties are considered promising candidates as therapies for reversing MDR in colorectal cancer cells. Selenium-doped manganese phosphate (Se-MnP) nanoparticles (NPs) that can reverse drug resistance through sustained release of selenium have the potential to improve the chemotherapy effect of colorectal cancer. RESULTS Se-MnP NPs had an organic-inorganic hybrid composition and were assembled from smaller-scale nanoclusters. Se-MnP NPs induced excessive ROS production via Se-mediated activation of the STAT3/JNK pathway and a Fenton-like reaction due to the presence of manganese ions (Mn2+). Moreover, in vitro and in vivo studies demonstrated Se-MnP NPs were effective drug carriers of oxaliplatin (OX) and reversed multidrug resistance and induced caspase-mediated apoptosis in colorectal cancer cells. OX@Se-MnP NPs reversed MDR in colorectal cancer by down-regulating the expression of MDR-related ABC (ATP binding cassette) transporters proteins (e.g., ABCB1, ABCC1 and ABCG2). Finally, in vivo studies demonstrated that OX-loaded Se-MnP NPs significantly inhibited proliferation of OX-resistant HCT116 (HCT116/DR) tumor cells in nude mice. CONCLUSIONS OX@Se-MnP NPs with simple preparation and biomimetic chemical properties represent promising candidates for the treatment of colorectal cancer with MDR.
Collapse
Affiliation(s)
- Manman Pei
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China.,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Kaiyuan Liu
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xiao Qu
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Kairuo Wang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Qian Chen
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Yuanyuan Zhang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xinyue Wang
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Zheng Wang
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China.,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Xinyao Li
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Feng Chen
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China. .,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China.
| | - Huanlong Qin
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China.
| | - Yang Zhang
- School of Medicine, Anhui University of Science and Technology, 168 Taifeng Street, Shannan New District, Huainan, 232000, Anhui Province, People's Republic of China. .,Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, People's Republic of China. .,Precision Medicine Center, Taizhou Central Hospital, 999 Donghai Road, Taizhou, 318000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
5
|
Pan D, Yang W, Zeng Y, Qin H, Xu Y, Gui Y, Fan X, Tian G, Wu Y, Sun H, Ye Y, Yang S, Zhou J, Guo Q, Zhao L. AKR1C3 regulated by NRF2/MAFG complex promotes proliferation via stabilizing PARP1 in hepatocellular carcinoma. Oncogene 2022; 41:3846-3858. [PMID: 35773412 DOI: 10.1038/s41388-022-02379-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Abstract
Aldo-keto reductase family 1 member C3 (AKR1C3) serves as a contributor to numerous kinds of tumors, and its expression is elevated in patients with hepatocellular carcinoma (HCC). However, the biological function of AKR1C3 in HCC remains unclear. Here we investigated the role of AKR1C3 in liver carcinogenesis using in vitro and in vivo models. We determined that AKR1C3 is frequently increased in HCC tissues with poor prognosis. Genetically manipulated cells with AKR1C3 construction were examined to highlight the pro-tumoral growth of both wild-type AKR1C3 and mutant in vitro and in vivo. We observed promising treatment effects of AKR1C3 shRNA by intratumoral injection in mice. Mechanically, we demonstrated that the transcription factor heterodimer NRF2/MAFG was able to bind directly to AKR1C3 promoter to activate its transcription. Further, AKR1C3 stabilized PARP1 by decreasing its ubiquitination, which resulted in HCC cell proliferation and low sensitivity of Cisplatin. Moreover, we discovered that the tumorigenic role of AKR1C3 was non-catalytic dependent and the NRF2/MAFG-AKR1C3-PARP1 axis might be one of the important proliferation pathways in HCC. In conclusion, blockage of AKR1C3 expression provides potential therapeutic benefits against HCC.
Collapse
Affiliation(s)
- Di Pan
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Wanwan Yang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yao Zeng
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Hongkun Qin
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yuting Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yanping Gui
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Xiangshan Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, 210000, Jiangsu, China
| | - Geng Tian
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yujia Wu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Haopeng Sun
- Department of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yuting Ye
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Shihe Yang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Jieying Zhou
- Department of chemistry and biochemistry, Florida International University, Miami, FL, USA
| | - Qinglong Guo
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China. .,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Li Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
6
|
Kobayashi M, Yonezawa A, Takasawa H, Nagao Y, Iguchi K, Endo S, Ikari A, Matsunaga T. Development of cisplatin resistance in breast cancer MCF7 cells by up-regulating aldo-keto reductase 1C3 expression, glutathione synthesis, and proteasomal proteolysis. J Biochem 2021; 171:97-108. [PMID: 34676395 DOI: 10.1093/jb/mvab117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023] Open
Abstract
Cisplatin (CDDP) is widely prescribed for the treatment of various cancers including bladder cancers, whereas its clinical use for breast cancer chemotherapy is restricted owing to easy acquisition of the chemoresistance. Here, we established a highly CDDP-resistant variant of human breast cancer MCF7 cells and found that procuring the resistance aberrantly elevates the expression of aldo-keto reductase (AKR) 1C3. Additionally, MCF7 cell sensitivity to CDDP was decreased and increased by overexpression and knockdown, respectively, of AKR1C3, clearly inferring that the enzyme plays a crucial role in acquiring the CDDP resistance. The CDDP-resistant cells suppressed the formation of cytotoxic reactive aldehydes by CDDP treatment, and the suppressive effects were almost completely abolished by pretreating with AKR1C3 inhibitor. The resistant cells also exhibited the elevated glutathione amount and 26S proteasomal proteolytic activities, and their CDDP sensitivity was significantly augmented by pretreatment with an inhibitor of glutathione synthesis or proteasomal proteolysis. Moreover, the combined treatment with inhibitors of AKR1C3, glutathione synthesis, and/or proteasomal proteolysis potently overcame the CDDP resistance and docetaxel cross-resistance. Taken together, our results suggest that the combination of inhibitors of AKR1C3, glutathione synthesis, and/or proteasomal proteolysis is effective as an adjuvant therapy to enhance CDDP sensitivity of breast cancer cells.
Collapse
Affiliation(s)
- Mio Kobayashi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Ayano Yonezawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroaki Takasawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yukino Nagao
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| |
Collapse
|
7
|
Leeuwenburgh VC, Urzúa-Traslaviña CG, Bhattacharya A, Walvoort MTC, Jalving M, de Jong S, Fehrmann RSN. Robust metabolic transcriptional components in 34,494 patient-derived cancer-related samples and cell lines. Cancer Metab 2021; 9:35. [PMID: 34565468 PMCID: PMC8474886 DOI: 10.1186/s40170-021-00272-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background Patient-derived bulk expression profiles of cancers can provide insight into the transcriptional changes that underlie reprogrammed metabolism in cancer. These profiles represent the average expression pattern of all heterogeneous tumor and non-tumor cells present in biopsies of tumor lesions. Hence, subtle transcriptional footprints of metabolic processes can be concealed by other biological processes and experimental artifacts. However, consensus independent component analyses (c-ICA) can capture statistically independent transcriptional footprints of both subtle and more pronounced metabolic processes. Methods We performed c-ICA with 34,494 bulk expression profiles of patient-derived tumor biopsies, non-cancer tissues, and cell lines. Gene set enrichment analysis with 608 gene sets that describe metabolic processes was performed to identify the transcriptional components enriched for metabolic processes (mTCs). The activity of these mTCs was determined in all samples to create a metabolic transcriptional landscape. Results A set of 555 mTCs was identified of which many were robust across different datasets, platforms, and patient-derived tissues and cell lines. We demonstrate how the metabolic transcriptional landscape defined by the activity of these mTCs in samples can be used to explore the associations between the metabolic transcriptome and drug sensitivities, patient outcomes, and the composition of the immune tumor microenvironment. Conclusions To facilitate the use of our transcriptional metabolic landscape, we have provided access to all data via a web portal (www.themetaboliclandscapeofcancer.com). We believe this resource will contribute to the formulation of new hypotheses on how to metabolically engage the tumor or its (immune) microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00272-7.
Collapse
Affiliation(s)
- V C Leeuwenburgh
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - C G Urzúa-Traslaviña
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A Bhattacharya
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M T C Walvoort
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - M Jalving
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - S de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R S N Fehrmann
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Penning TM, Jonnalagadda S, Trippier PC, Rižner TL. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol Rev 2021; 73:1150-1171. [PMID: 34312303 DOI: 10.1124/pharmrev.120.000122] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human aldo-keto reductases (AKRs) catalyze the NADPH-dependent reduction of carbonyl groups to alcohols for conjugation reactions to proceed. They are implicated in resistance to cancer chemotherapeutic agents either because they are directly involved in their metabolism or help eradicate the cellular stress created by these agents (e.g., reactive oxygen species and lipid peroxides). Furthermore, this cellular stress activates the Nuclear factor-erythroid 2 p45-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 pathway. As many human AKR genes are upregulated by the NRF2 transcription factor, this leads to a feed-forward mechanism to enhance drug resistance. Resistance to major classes of chemotherapeutic agents (anthracyclines, mitomycin, cis-platin, antitubulin agents, vinca alkaloids, and cyclophosphamide) occurs by this mechanism. Human AKRs also catalyze the synthesis of androgens and estrogens and the elimination of progestogens and are involved in hormonal-dependent malignancies. They are upregulated by antihormonal therapy providing a second mechanism for cancer drug resistance. Inhibitors of the NRF2 system or pan-AKR1C inhibitors offer promise to surmount cancer drug resistance and/or synergize the effects of existing drugs. SIGNIFICANCE STATEMENT: Aldo-keto reductases (AKRs) are overexpressed in a large number of human tumors and mediate resistance to cancer chemotherapeutics and antihormonal therapies. Existing drugs and new agents in development may surmount this resistance by acting as specific AKR isoforms or AKR pan-inhibitors to improve clinical outcome.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Sravan Jonnalagadda
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Paul C Trippier
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Tea Lanišnik Rižner
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| |
Collapse
|
9
|
Aldo-Keto Reductase 1C3 Mediates Chemotherapy Resistance in Esophageal Adenocarcinoma via ROS Detoxification. Cancers (Basel) 2021; 13:cancers13102403. [PMID: 34065695 PMCID: PMC8156851 DOI: 10.3390/cancers13102403] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary The multidrug resistance of EAC is one of the major obstacles to chemotherapeutic efficiency. Our study aims to explore the molecular mechanism of AKR1C3 as a novel therapeutic target to overcome chemotherapy resistance for EAC patients. We demonstrate that AKR1C3 renders chemotherapy resistance through controlling cellular ROS levels via AKT signaling in EAC cells. Modulation of intracellular GSH levels by AKR1C3 could scavenge the intracellular ROS, thus regulating apoptosis. Targeting AKR1C3 may represent a novel strategy to sensitize EAC cells to conventional chemotherapy treatment and benefit the overall survival of patients diagnosed with EAC. Abstract Esophageal adenocarcinoma (EAC) is one of the most lethal malignancies, and limits promising treatments. AKR1C3 represents a therapeutic target to combat the resistance in many cancers. However, the molecular mechanism of AKR1C3 in the chemotherapy resistance of EAC is still unclear. We found that the mRNA level of AKR1C3 was higher in EAC tumor tissues, and that high AKR1C3 expression might be associated with poor overall survival of EAC patients. AKR1C3 overexpression decreased cell death induced by chemotherapeutics, while knockdown of AKR1C3 attenuated the effect. Furthermore, we found AKR1C3 was inversely correlated with ROS production. Antioxidant NAC rescued chemotherapy-induced apoptosis in AKR1C3 knockdown cells, while the GSH biosynthesis inhibitor BSO reversed a protective effect of AKR1C3 against chemotherapy. AKT phosphorylation was regulated by AKR1C3 and might be responsible for eliminating over-produced ROS in EAC cells. Intracellular GSH levels were modulated by AKR1C3 and the inhibition of AKT could reduce GSH level in EAC cells. Here, we reported for the first time that AKR1C3 renders chemotherapy resistance through controlling ROS levels via AKT signaling in EAC cells. Targeting AKR1C3 may represent a novel strategy to sensitize EAC cells to conventional chemotherapy.
Collapse
|