1
|
Manhas D, Dhiman S, Kour H, Kour D, Sharma K, Wazir P, Vij B, Kumar A, Sawant SD, Ahmed Z, Nandi U. ADME/PK Insights of Crocetin: A Molecule Having an Unusual Chemical Structure with Druglike Features. ACS OMEGA 2024; 9:21494-21509. [PMID: 38764638 PMCID: PMC11097163 DOI: 10.1021/acsomega.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 05/21/2024]
Abstract
Crocetin is a promising phyto-based molecule to treat Alzheimer's disease (AD). The chemical structure of crocetin is incongruent with various standard structural features of CNS drugs. As poor pharmacokinetic behavior is the major hurdle for any candidate to become a drug, we elucidated its druggable characteristics by implementing in silico, in vitro, and in vivo approaches, as limited ADME/PK information is available. Results demonstrate several attributes of crocetin based on rules of drug-likeness, lipophilicity, pKa, P-gp inhibitory activity, plasma stability, RBC partitioning, metabolic stability, CYP inhibitory action, blood-brain barrier (BBB) permeability, oral bioavailability, and pharmacokinetic interaction with marketed anti-Alzheimer's drugs (memantine, donepezil, galantamine, and rivastigmine). However, aqueous solubility, chemical stability, plasma protein binding, and P-gp induction are some concerns associated with this molecule that should be taken into consideration during its further development. Overall results indicate favorable ADME/PK behavior and potential druggable candidature of crocetin.
Collapse
Affiliation(s)
- Diksha Manhas
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harpreet Kour
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Dilpreet Kour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuhu Sharma
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Wazir
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Bhavna Vij
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanghapal D. Sawant
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Zabeer Ahmed
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Song XQ, Guo X, Ding YX, Han YX, You ZH, Song Y, Yuan Y, Li L. Gemfibrozil-Platinum(IV) Precursors for New Enhanced-Starvation and Chemotherapy In Vitro and In Vivo. J Med Chem 2024; 67:7033-7047. [PMID: 38634331 DOI: 10.1021/acs.jmedchem.3c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
A brand-new enhanced starvation is put forward to trigger sensitized chemotherapy: blocking tumor-relation blood vessel formation and accelerating nutrient degradation and efflux. Following this concept, two cisplatin-like gemfibrozil-derived Pt(IV) prodrugs, GP and GPG, are synthesized. GP and GPG had nanomolar IC50 against A2780 cells and higher selectivity against normal cells than cisplatin. Bioactivity results confirmed that GP and GPG highly accumulated in cells and induced DNA damage, G2-phase arrest, and p53 expression. Besides, they could increase ROS and MDA levels and reduce mitochondrial membrane potential and Bcl-2 expression to promote cell apoptosis. In vivo, GP showed superior antitumor activity in A2780 tumor-bearing mice with no observable tissue damage. Mechanistic studies suggested that highly selective chemotherapy could be due to the new enhanced starvation effect: blocking vasculature formation via inhibiting the CYP2C8/EETs pathway and VEGFR2, NF-κB, and COX-2 expression and cholesterol efflux and degradation acceleration via increasing ABCA1 and PPARα.
Collapse
Affiliation(s)
- Xue-Qing Song
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Xu Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yi-Xin Ding
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yi-Xuan Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Zhi-Hao You
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yali Song
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yanan Yuan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Longfei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| |
Collapse
|
3
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Bhardwaj M, Kour D, Rai G, Bhattacharya S, Manhas D, Vij B, Kumar A, Mukherjee D, Ahmed Z, Gandhi SG, Nandi U. EIDD-1931 Treatment Tweaks CYP3A4 and CYP2C8 in Arthritic Rats to Expedite Drug Interaction: Implication in Oral Therapy of Molnupiravir. ACS OMEGA 2024; 9:13982-13993. [PMID: 38559969 PMCID: PMC10976394 DOI: 10.1021/acsomega.3c09287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
EIDD-1931 is the active form of molnupiravir, an orally effective drug approved by the United States Food and Drug Administration (USFDA) against COVID-19. Pharmacokinetic alteration can cause untoward drug interaction (drug-drug/disease-drug), but hardly any information is known about this recently approved drug. Therefore, we first investigated the impact of the arthritis state on the oral pharmacokinetics of EIDD-1931 using a widely accepted complete Freund's adjuvant (CFA)-induced rat model of rheumatoid arthritis (RA) after ascertaining the disease occurrence by paw swelling measurement and X-ray examination. Comparative oral pharmacokinetic assessment of EIDD-1931 (normal state vs arthritis state) showed that overall plasma exposure was augmented (1.7-fold) with reduced clearance (0.54-fold), suggesting its likelihood of dose adjustment in arthritis conditions. In order to elucidate the effect of EIDD-1931 treatment at a therapeutic regime (normal state vs arthritis state) on USFDA-recommended panel of cytochrome P450 (CYP) enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) for drug interaction using the same disease model, we monitored protein and mRNA expressions (rat homologs) in liver tissue by western blotting (WB) and real time-polymerase chain reaction (RT-PCR), respectively. Results reveal that EIDD-1931 treatment could strongly influence CYP3A4 and CYP2C8 among experimental proteins/mRNAs. Although CYP2C8 regulation upon EIDD-1931 treatment resembles similar behavior under the arthritis state, results dictate a potentially reverse phenomenon for CYP3A4. Moreover, the lack of any CYP inhibitory effect by EIDD-1931 in human/rat liver microsomes (HLM/RLM) helps to ascertain EIDD-1931 treatment-mediated disease-drug interaction and the possibility of drug-drug interaction with disease-modifying antirheumatic drugs (DMARDs) upon coadministration. As elevated proinflammatory cytokine levels are prevalent in RA and nuclear factor-kappa B (NF-kB) and nuclear receptors control CYP expressions, further studies should focus on understanding the regulation of affected CYPs to subside unexpected drug interaction.
Collapse
Affiliation(s)
- Mahir Bhardwaj
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilpreet Kour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Garima Rai
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Srija Bhattacharya
- Natural
Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavna Vij
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debaraj Mukherjee
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural
Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Department
of Chemical Sciences, Bose institute, Kolkata 700091, India
| | - Zabeer Ahmed
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit G. Gandhi
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Infectious
Diseases Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|