1
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
2
|
Noura M, Matsuo H, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. Suppression of super-enhancer-driven TAL1 expression by KLF4 in T-cell acute lymphoblastic leukemia. Oncogene 2024; 43:447-456. [PMID: 38102337 DOI: 10.1038/s41388-023-02913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
TAL1 is one of the most frequently dysregulated genes in T-ALL and is overexpressed in about 50% of T-ALL cases. One of the molecular mechanisms of TAL1 overexpression is abnormal mutations in the upstream region of the TAL1 promoter that introduce binding motifs for the MYB transcription factor. MYB binding at this location creates a 5' TAL1 super-enhancer (SE), which leads to aberrant expression of TAL1 and is associated with unfavorable clinical outcomes. Although targeting TAL1 is considered to be an attractive therapeutic strategy for patients with T-ALL, direct inhibition of transcription factors is challenging. Here, we show that KLF4, a known tumor suppressor in leukemic cells, suppresses SE-driven TAL1 expression in T-ALL cells. Mechanistically, KLF4 downregulates MYB expression by directly binding to its promoter and inhibits the formation of 5' TAL1 SE. In addition, we found that APTO-253, a small molecule inducer of KLF4, exerts an anti-leukemic effect by targeting SE-driven TAL1 expression in T-ALL cells. Taken together, our results suggest that the induction of KLF4 is a promising strategy to control TAL1 expression and could be a novel treatment for T-ALL patients with a poor prognosis.
Collapse
Affiliation(s)
- Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hidemasa Matsuo
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Martinsen E, Jinnurine T, Subramani S, Rogne M. Advances in RNA therapeutics for modulation of 'undruggable' targets. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:249-294. [PMID: 38458740 DOI: 10.1016/bs.pmbts.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Over the past decades, drug discovery utilizing small pharmacological compounds, fragment-based therapeutics, and antibody therapy have significantly advanced treatment options for many human diseases. However, a major bottleneck has been that>70% of human proteins/genomic regions are 'undruggable' by the above-mentioned approaches. Many of these proteins constitute essential drug targets against complex multifactorial diseases like cancer, immunological disorders, and neurological diseases. Therefore, alternative approaches are required to target these proteins or genomic regions in human cells. RNA therapeutics is a promising approach for many of the traditionally 'undruggable' targets by utilizing methods such as antisense oligonucleotides, RNA interference, CRISPR/Cas-based genome editing, aptamers, and the development of mRNA therapeutics. In the following chapter, we will put emphasis on recent advancements utilizing these approaches against challenging drug targets, such as intranuclear proteins, intrinsically disordered proteins, untranslated genomic regions, and targets expressed in inaccessible tissues.
Collapse
Affiliation(s)
| | | | - Saranya Subramani
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Marie Rogne
- Pioneer Research AS, Oslo Science Park, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Current Status of Oligonucleotide-Based Protein Degraders. Pharmaceutics 2023; 15:pharmaceutics15030765. [PMID: 36986626 PMCID: PMC10055846 DOI: 10.3390/pharmaceutics15030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Transcription factors (TFs) and RNA-binding proteins (RBPs) have long been considered undruggable, mainly because they lack ligand-binding sites and are equipped with flat and narrow protein surfaces. Protein-specific oligonucleotides have been harnessed to target these proteins with some satisfactory preclinical results. The emerging proteolysis-targeting chimera (PROTAC) technology is no exception, utilizing protein-specific oligonucleotides as warheads to target TFs and RBPs. In addition, proteolysis by proteases is another type of protein degradation. In this review article, we discuss the current status of oligonucleotide-based protein degraders that are dependent either on the ubiquitin–proteasome system or a protease, providing a reference for the future development of degraders.
Collapse
|
5
|
Shiah JV, Johnson DE, Grandis JR. Transcription Factors and Cancer: Approaches to Targeting. Cancer J 2023; 29:38-46. [PMID: 36693157 PMCID: PMC9881838 DOI: 10.1097/ppo.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABSTRACT Cancer is defined by the presence of uncontrollable cell growth, whereby improper proliferative signaling has overcome regulation by cellular mechanisms. Transcription factors are uniquely situated at the helm of signaling, merging extracellular stimuli with intracellular responses. Therefore, this class of proteins plays a pivotal role in coordinating the correct gene expression levels for maintaining normal cellular functions. Dysregulation of transcription factor activity unsurprisingly drives tumorigenesis and oncogenic transformation. Although this imparts considerable therapeutic potential to targeting transcription factors, their lack of enzymatic activity renders intervention challenging and has contributed to a sense that transcription factors are "undruggable." Yet, enduring efforts to elucidate strategies for targeting transcription factors as well as a deeper understanding of their interactions with binding partners have led to advancements that are emerging to counter this narrative. Here, we highlight some of these approaches, focusing primarily on therapeutics that have advanced to the clinic.
Collapse
Affiliation(s)
- Jamie V Shiah
- From the Department Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA
| | | | | |
Collapse
|
6
|
Bahl S, Carroll JS, Lupien M. Chromatin Variants Reveal the Genetic Determinants of Oncogenesis in Breast Cancer. Cold Spring Harb Perspect Med 2022; 12:a041322. [PMID: 36041880 PMCID: PMC9524388 DOI: 10.1101/cshperspect.a041322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Breast cancer presents as multiple distinct disease entities. Each tumor harbors diverse cell populations defining a phenotypic heterogeneity that impinges on our ability to treat patients. To date, efforts mainly focused on genetic variants to find drivers of inter- and intratumor phenotypic heterogeneity. However, these efforts have failed to fully capture the genetic basis of breast cancer. Through recent technological and analytical approaches, the genetic basis of phenotypes can now be decoded by characterizing chromatin variants. These variants correspond to polymorphisms in chromatin states at DNA sequences that serve a distinct role across cell populations. Here, we review the function and causes of chromatin variants as they relate to breast cancer inter- and intratumor heterogeneity and how they can guide the development of treatment alternatives to fulfill the goal of precision cancer medicine.
Collapse
Affiliation(s)
- Shalini Bahl
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| |
Collapse
|
7
|
Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, Hardes J, Hartmann W, Kovar H, Metzler M, Shulman DS, Streitbürger A, Timmermann B, Toretsky JA, Uhlenbruch Y, Vieth V, Grünewald TGP, Dirksen U. Ewing Sarcoma-Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med 2021; 10:1685. [PMID: 33919988 PMCID: PMC8071040 DOI: 10.3390/jcm10081685] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ewing sarcoma, a highly aggressive bone and soft-tissue cancer, is considered a prime example of the paradigms of a translocation-positive sarcoma: a genetically rather simple disease with a specific and neomorphic-potential therapeutic target, whose oncogenic role was irrefutably defined decades ago. This is a disease that by definition has micrometastatic disease at diagnosis and a dismal prognosis for patients with macrometastatic or recurrent disease. International collaborations have defined the current standard of care in prospective studies, delivering multiple cycles of systemic therapy combined with local treatment; both are associated with significant morbidity that may result in strong psychological and physical burden for survivors. Nevertheless, the combination of non-directed chemotherapeutics and ever-evolving local modalities nowadays achieve a realistic chance of cure for the majority of patients with Ewing sarcoma. In this review, we focus on the current standard of diagnosis and treatment while attempting to answer some of the most pressing questions in clinical practice. In addition, this review provides scientific answers to clinical phenomena and occasionally defines the resulting translational studies needed to overcome the hurdle of treatment-associated morbidities and, most importantly, non-survival.
Collapse
Affiliation(s)
- Stefan K. Zöllner
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| | - James F. Amatruda
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| | - Sebastian Bauer
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, Sarcoma Center, University Hospital Essen, 45147 Essen, Germany
| | - Stéphane Collaud
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Thoracic Surgery, Ruhrlandklinik, University of Essen-Duisburg, 45239 Essen, Germany
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IbiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBERONC, 41013 Seville, Spain;
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Jendrik Hardes
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany;
- West German Cancer Center (WTZ), Network Partner Site, University Hospital Münster, 48149 Münster, Germany
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute and Medical University Vienna, 1090 Vienna, Austria;
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Arne Streitbürger
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Beate Timmermann
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre, 45147 Essen, Germany
| | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA;
| | - Yasmin Uhlenbruch
- St. Josefs Hospital Bochum, University Hospital, 44791 Bochum, Germany;
| | - Volker Vieth
- Department of Radiology, Klinikum Ibbenbüren, 49477 Ibbenbühren, Germany;
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, Hopp-Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center, 69120 Heidelberg, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
8
|
Ashrafizaveh S, Ashrafizadeh M, Zarrabi A, Husmandi K, Zabolian A, Shahinozzaman M, Aref AR, Hamblin MR, Nabavi N, Crea F, Wang Y, Ahn KS. Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Lett 2021; 508:104-114. [PMID: 33766750 DOI: 10.1016/j.canlet.2021.03.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is the main treatment used for cancer patients failing surgery. Doxorubicin (DOX) is a well-known chemotherapeutic agent capable of suppressing proliferation in cancer cells and triggering apoptosis via inhibiting topoisomerase II activity and producing DNA breaks. This activity of DOX restrains mitosis and cell cycle progression. However, frequent application of DOX results in the emergence of resistance in the cancer cells. It seems that genetic and epigenetic factors can provide DOX resistance of cancer cells. Long non-coding RNAs (lncRNAs) are a subcategory of non-coding RNAs with role in the regulation of several cellular processes such as proliferation, migration, differentiation and apoptosis. LncRNA dysregulation has been associated with chemoresistance, and this profile occurs upon DOX treatment of cancer. In the present review, we focus on the role of lncRNAs in mediating DOX resistance and discuss the molecular pathways and mechanisms. LncRNAs can drive DOX resistance via activating pathways such as NF-κB, PI3K/Akt, Wnt, and FOXC2. Some lncRNAs can activate protective autophagy in response to the stress caused by DOX, which mediates resistance. In contrast, there are other lncRNAs involved in the sensitivity of cancer cells to DOX, such as GAS5, PTCSC3 and FENDRR. Some anti-tumor agents such as polydatin can regulate the expression of lncRNAs, enhancing DOX sensitivity. Overall, lncRNAs are potential players in DOX resistance, and their identification and targeting are of importance in chemosensitivity. Furthermore, these findings can be translated into clinical for treatment of cancer patients.
Collapse
Affiliation(s)
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Husmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
Shiroma Y, Fujita G, Yamamoto T, Takahashi RU, Kumar A, Zhang KYJ, Ito A, Osada H, Yoshida M, Tahara H. Identification of a Selective RelA Inhibitor Based on DSE-FRET Screening Methods. Int J Mol Sci 2020; 21:ijms21239150. [PMID: 33266352 PMCID: PMC7734590 DOI: 10.3390/ijms21239150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023] Open
Abstract
Nuclear factor-κB (NF-κB) is an important transcription factor involved in various biological functions, including tumorigenesis. Hence, NF-κB has attracted attention as a target factor for cancer treatment, leading to the development of several inhibitors. However, existing NF-κB inhibitors do not discriminate between its subunits, namely, RelA, RelB, cRel, p50, and p52. Conventional methods used to evaluate interactions between transcription factors and DNA, such as electrophoretic mobility shift assay and luciferase assays, are unsuitable for high-throughput screening (HTS) and cannot distinguish NF-κB subunits. We developed a HTS method named DNA strand exchange fluorescence resonance energy transfer (DSE-FRET). This assay is suitable for HTS and can discriminate a NF-κB subunit. Using DSE-FRET, we searched for RelA-specific inhibitors and verified RelA inhibition for 32,955 compounds. The compound A55 (2-(3-carbamoyl-6-hydroxy-4-methyl-2-oxopyridin-1(2H)-yl) acetic acid) selectively inhibited RelA–DNA binding. We propose that A55 is a seed compound for RelA-specific inhibition and could be used in clinical applications.
Collapse
Affiliation(s)
- Yoshitomo Shiroma
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (Y.S.); (G.F.); (T.Y.); (R.-uT.)
| | - Go Fujita
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (Y.S.); (G.F.); (T.Y.); (R.-uT.)
| | - Takuya Yamamoto
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (Y.S.); (G.F.); (T.Y.); (R.-uT.)
| | - Ryou-u Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (Y.S.); (G.F.); (T.Y.); (R.-uT.)
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; (A.K.); (K.Y.J.Z.)
| | - Kam Y. J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; (A.K.); (K.Y.J.Z.)
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan.;
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Seed Compounds Exploratory Unit for Drug Discovery Platform, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (Y.S.); (G.F.); (T.Y.); (R.-uT.)
- The Research Center for Drug Development and Biomarker Discovery, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Correspondence: ; Tel.: +81-082-257-5290 (ext. 5290)
| |
Collapse
|
10
|
Ashrafizadeh M, Taeb S, Hushmandi K, Orouei S, Shahinozzaman M, Zabolian A, Moghadam ER, Raei M, Zarrabi A, Khan H, Najafi M. Cancer and SOX proteins: New insight into their role in ovarian cancer progression/inhibition. Pharmacol Res 2020; 161:105159. [PMID: 32818654 DOI: 10.1016/j.phrs.2020.105159] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Transcription factors are potential targets in disease therapy, particularly in cancer. This is due to the fact that transcription factors regulate a variety of cellular events, and their modulation has opened a new window in cancer therapy. Sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are potential transcription factors that are involved in developmental processes such as embryogenesis. It has been reported that abnormal expression of SOX proteins is associated with development of different cancers, particularly ovarian cancer (OC). In the present review, our aim is to provide a mechanistic review of involvement of SOX members in OC. SOX members may suppress and/or promote aggressiveness and proliferation of OC cells. Clinical studies have also confirmed the potential of transcription factors as diagnostic and prognostic factors in OC. Notably, studies have demonstrated the relationship between SOX members and other molecular pathways such as ST6Ga1-I, PI3K, ERK and so on, leading to more complexity. Furthermore, SOX members can be affected by upstream mediators such as microRNAs, long non-coding RNAs, and so on. It is worth mentioning that the expression of each member of SOX proteins is corelated with different stages of OC. Furthermore, their expression determines the response of OC cells to chemotherapy. These topics are discussed in this review to shed some light on role of SOX transcription factors in OC.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The current review focuses on recent insights into the development of small molecule therapeutics to treat the β-globinopathies. RECENT FINDINGS Recent studies of fetal γ-globin gene regulation reveal multiple insights into how γ-globin gene reactivation may lead to novel treatment for β-globinopathies. SUMMARY We summarize current information regarding the binding of transcription factors that appear to be impeded or augmented by different hereditary persistence of fetal hemoglobin (HPFH) mutations. As transcription factors have historically proven to be difficult to target for therapeutic purposes, we next address the contributions of protein complexes associated with these HPFH mutation-affected transcription factors with the aim of defining proteins that might provide additional targets for chemical molecules to inactivate the corepressors. Among the enzymes associated with the transcription factor complexes, a group of corepressors with currently available inhibitors were initially thought to be good candidates for potential therapeutic purposes. We discuss possibilities for pharmacological inhibition of these corepressor enzymes that might significantly reactivate fetal γ-globin gene expression. Finally, we summarize the current clinical trial data regarding the inhibition of select corepressor proteins for the treatment of sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Lei Yu
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| | - Greggory Myers
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| | - James Douglas Engel
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| |
Collapse
|
12
|
González A, Casado J, Chueca E, Salillas S, Velázquez-Campoy A, Sancho J, Lanas Á. Small Molecule Inhibitors of the Response Regulator ArsR Exhibit Bactericidal Activity against Helicobacter pylori. Microorganisms 2020; 8:E503. [PMID: 32244717 PMCID: PMC7232201 DOI: 10.3390/microorganisms8040503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is considered the most prevalent bacterial pathogen in humans. The increasing antibiotic resistance evolved by this microorganism has raised alarm bells worldwide due to the significant reduction in the eradication rates of traditional standard therapies. A major challenge in this antibiotic resistance crisis is the identification of novel microbial targets whose inhibitors can overcome the currently circulating resistome. In the present study, we have validated the use of the essential response regulator ArsR as a novel and promising therapeutic target against H. pylori infections. A high-throughput screening of a repurposing chemical library using a fluorescence-based thermal shift assay identified several ArsR binders. At least four of these low-molecular weight compounds noticeably inhibited the DNA binding activity of ArsR and showed bactericidal effects against antibiotic-resistant strains of H. pylori. Among the ArsR inhibitors, a human secondary bile acid, lithocholic acid, quickly destroyed H. pylori cells and exhibited partial synergistic action in combination with clarithromycin or levofloxacin, while the antimicrobial effect of this compound against representative members of the normal human microbiota such as Escherichia coli and Staphylococcus epidermidis appeared irrelevant. Our results enhance the battery of novel therapeutic tools against refractory infections caused by multidrug-resistant H. pylori strains.
Collapse
Affiliation(s)
- Andrés González
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
| | - Javier Casado
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Eduardo Chueca
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Sandra Salillas
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Government of Aragon, Ranillas 1-D, 50018 Zaragoza, Spain
| | - Javier Sancho
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ángel Lanas
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, San Juan Bosco 15, 50009 Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Moustaqil M, Gambin Y, Sierecki E. Biophysical Techniques for Target Validation and Drug Discovery in Transcription-Targeted Therapy. Int J Mol Sci 2020; 21:E2301. [PMID: 32225120 PMCID: PMC7178067 DOI: 10.3390/ijms21072301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
In the post-genome era, pathologies become associated with specific gene expression profiles and defined molecular lesions can be identified. The traditional therapeutic strategy is to block the identified aberrant biochemical activity. However, an attractive alternative could aim at antagonizing key transcriptional events underlying the pathogenesis, thereby blocking the consequences of a disorder, irrespective of the original biochemical nature. This approach, called transcription therapy, is now rendered possible by major advances in biophysical technologies. In the last two decades, techniques have evolved to become key components of drug discovery platforms, within pharmaceutical companies as well as academic laboratories. This review outlines the current biophysical strategies for transcription manipulation and provides examples of successful applications. It also provides insights into the future development of biophysical methods in drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, UNSW Sydney, NSW 2052, Australia;
| | | | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, UNSW Sydney, NSW 2052, Australia;
| |
Collapse
|
14
|
Chen A, Koehler AN. Transcription Factor Inhibition: Lessons Learned and Emerging Targets. Trends Mol Med 2020; 26:508-518. [PMID: 32359481 DOI: 10.1016/j.molmed.2020.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Transcription factors have roles at focal points in signaling pathways, controlling many normal cellular processes, such as cell growth and proliferation, metabolism, apoptosis, immune responses, and differentiation. Their activity is frequently deregulated in disease and targeting this class of proteins is a major focus of interest. However, the structural disorder and lack of binding pockets have made design of small molecules for transcription factors challenging. Here, we review some of the most recent developments for small molecule inhibitors of transcription factors emphasized in James Darnell's vision 17 years ago. We also discuss the progress so far on transcription factors recently nominated by genome-scale loss-of-function screens from the cancer dependency map project.
Collapse
Affiliation(s)
- Andrew Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, MA 02142, USA.
| |
Collapse
|
15
|
Abstract
Mutated or dysregulated transcription factors represent a unique class of drug targets that mediate aberrant gene expression, including blockade of differentiation and cell death gene expression programmes, hallmark properties of cancers. Transcription factor activity is altered in numerous cancer types via various direct mechanisms including chromosomal translocations, gene amplification or deletion, point mutations and alteration of expression, as well as indirectly through non-coding DNA mutations that affect transcription factor binding. Multiple approaches to target transcription factor activity have been demonstrated, preclinically and, in some cases, clinically, including inhibition of transcription factor-cofactor protein-protein interactions, inhibition of transcription factor-DNA binding and modulation of levels of transcription factor activity by altering levels of ubiquitylation and subsequent proteasome degradation or by inhibition of regulators of transcription factor expression. In addition, several new approaches to targeting transcription factors have recently emerged including modulation of auto-inhibition, proteolysis targeting chimaeras (PROTACs), use of cysteine reactive inhibitors, targeting intrinsically disordered regions of transcription factors and combinations of transcription factor inhibitors with kinase inhibitors to block the development of resistance. These innovations in drug development hold great promise to yield agents with unique properties that are likely to impact future cancer treatment.
Collapse
Affiliation(s)
- John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Li BB, Wang B, Zhu CM, Tang D, Pang J, Zhao J, Sun CH, Qiu MJ, Qian ZR. Cyclin-dependent kinase 7 inhibitor THZ1 in cancer therapy. Chronic Dis Transl Med 2019; 5:155-169. [PMID: 31891127 PMCID: PMC6926117 DOI: 10.1016/j.cdtm.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Current cancer therapies have encountered adverse response due to poor therapeutic efficiency, severe side effects and acquired resistance to multiple drugs. Thus, there are urgent needs for finding new cancer-targeted pharmacological strategies. In this review, we summarized the current understanding with THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), which demonstrated promising anti-tumor activity against different cancer types. By introducing the anti-tumor behaviors and the potential targets for different cancers, this review aims to provide more effective approaches to CDK7 inhibitor-based therapeutic agents and deeper insight into the diverse tumor proliferation mechanisms.
Collapse
Affiliation(s)
- Bin-Bin Li
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bo Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Cheng-Ming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Di Tang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jun Pang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chun-Hui Sun
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), College de France, Paris 75005, France
| | - Miao-Juan Qiu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Rong Qian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
17
|
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
18
|
Kadia TM, Kantarjian HM, Konopleva M. Myeloid cell leukemia-1 dependence in acute myeloid leukemia: a novel approach to patient therapy. Oncotarget 2019; 10:1250-1265. [PMID: 30815228 PMCID: PMC6383813 DOI: 10.18632/oncotarget.26579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/16/2018] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults, affecting approximately 21,000 people annually (nearly 11,000 deaths) in the United States. B-cell lymphoma 2 (BCL-2) family proteins, notably myeloid cell leukemia-1 (MCL-1), have been associated with both the development and persistence of AML. MCL-1 is one of the predominant BCL-2 family members expressed in samples from patients with untreated AML. MCL-1 is a critical cell survival factor for cancer and contributes to chemotherapy resistance by directly affecting cell death pathways. Here, we review the role of MCL-1 in AML and the mechanisms by which the potent cyclin-dependent kinase 9 inhibitor alvocidib, through regulation of MCL-1, may serve as a rational therapeutic approach against the disease.
Collapse
Affiliation(s)
| | | | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
19
|
Karagiota A, Kourti M, Simos G, Mylonis I. HIF-1α-derived cell-penetrating peptides inhibit ERK-dependent activation of HIF-1 and trigger apoptosis of cancer cells under hypoxia. Cell Mol Life Sci 2019; 76:809-825. [PMID: 30535970 PMCID: PMC11105304 DOI: 10.1007/s00018-018-2985-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Hypoxia is frequently encountered in the microenvironment of solid tumors. Hypoxia-inducible factors (HIFs), the main effectors of cell response to hypoxia, promote cancer cell survival and progression. HIF-1α, the oxygen-regulated subunit of HIF-1, is often correlated with oncogenesis and represents an attractive therapeutic target. We have previously reported that activation HIF-1α by ERK involves modification of two serine residues and masking of a nuclear export signal (NES), all inside a 43-amino acid domain termed ERK Targeted Domain (ETD). Overexpression of ETD variants including wild-type, phospho-mimetic (SE) or NES-less (IA) mutant forms caused HIF-1 inactivation in two hepatocarcinoma cell lines, while a phospho-deficient (SA) form was ineffective and acted as a sequence-specific negative control. To deliver these ETD forms directly into cancer cells, they were fused to the HIV TAT-sequence and produced as cell-permeable peptides. When the TAT-ETD peptides were added to the culture medium of Huh7 cells, they entered the cells and, with the exception of ETD-SA, accumulated inside the nucleus, caused mislocalization of endogenous HIF-1α to the cytoplasm, significant reduction of HIF-1 activity and inhibition of expression of specific HIF-1, but not HIF-2, gene targets under hypoxia. More importantly, transduced nuclear TAT-ETD peptides restricted migration, impaired colony formation and triggered apoptotic cell death of cancer cells grown under hypoxia, while they produced no effects in normoxic cells. These data demonstrate the importance of ERK-mediated activation of HIF-1 for low oxygen adaptation and the applicability of ETD peptide derivatives as sequence-specific HIF-1 and cancer cell growth inhibitors under hypoxia.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Maria Kourti
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada.
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
20
|
Sharifnia T, Wawer MJ, Chen T, Huang QY, Weir BA, Sizemore A, Lawlor MA, Goodale A, Cowley GS, Vazquez F, Ott CJ, Francis JM, Sassi S, Cogswell P, Sheppard HE, Zhang T, Gray NS, Clarke PA, Blagg J, Workman P, Sommer J, Hornicek F, Root DE, Hahn WC, Bradner JE, Wong KK, Clemons PA, Lin CY, Kotz JD, Schreiber SL. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med 2019; 25:292-300. [PMID: 30664779 PMCID: PMC6633917 DOI: 10.1038/s41591-018-0312-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Chordoma is a primary bone cancer with no approved therapy1. The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors2,3. Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors4,5. In chordoma, we find that T is associated with a 1.5-Mb region containing 'super-enhancers' and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers.
Collapse
Affiliation(s)
| | | | - Ting Chen
- New York University Langone Medical Center, New York, NY, USA
| | - Qing-Yuan Huang
- New York University Langone Medical Center, New York, NY, USA
- Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Barbara A Weir
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Janssen R&D, Cambridge, MA, USA
| | - Ann Sizemore
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew A Lawlor
- Dana-Farber Cancer Institute, Boston, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
| | - Amy Goodale
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Glenn S Cowley
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Janssen R&D, Spring House, PA, USA
| | | | - Christopher J Ott
- Dana-Farber Cancer Institute, Boston, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
| | - Joshua M Francis
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Gritstone Oncology, Cambridge, MA, USA
| | - Slim Sassi
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | | | - Francis Hornicek
- Massachusetts General Hospital, Boston, MA, USA
- UCLA Medical Center, Santa Monica, CA, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - William C Hahn
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - James E Bradner
- Dana-Farber Cancer Institute, Boston, MA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kwok K Wong
- New York University Langone Medical Center, New York, NY, USA
| | | | | | - Joanne D Kotz
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Jnana Therapeutics, Boston, MA, USA.
| | - Stuart L Schreiber
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
21
|
Modulating transcription factor activity: Interfering with protein-protein interaction networks. Semin Cell Dev Biol 2018; 99:12-19. [PMID: 30172762 DOI: 10.1016/j.semcdb.2018.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/16/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022]
Abstract
Biophysical parameters that govern transcription factors activity are binding locations across the genome, dwelling time at these regulatory elements and specific protein-protein interactions. Most molecular strategies used to develop small compounds that block transcription factors activity have been based on biochemistry and cell biology methods that that do not take into consideration these key biophysical features. Here, we review the advance in the field of transcription factor biology and describe how their interactome and transcriptional regulation on a genome wide scale have been deciphered. We suggest that this new knowledge has the potential to be used to implement innovative research drug discovery program.
Collapse
|
22
|
Tóth R, Cabral V, Thuer E, Bohner F, Németh T, Papp C, Nimrichter L, Molnár G, Vágvölgyi C, Gabaldón T, Nosanchuk JD, Gácser A. Investigation of Candida parapsilosis virulence regulatory factors during host-pathogen interaction. Sci Rep 2018; 8:1346. [PMID: 29358719 PMCID: PMC5777994 DOI: 10.1038/s41598-018-19453-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023] Open
Abstract
Invasive candidiasis is among the most life-threatening infections in patients in intensive care units. Although Candida albicans is the leading cause of candidaemia, the incidence of Candida parapsilosis infections is also rising, particularly among the neonates. Due to differences in their biology, these species employ different antifungal resistance and virulence mechanisms and also induce dissimilar immune responses. Previously, it has been suggested that core virulence effecting transcription regulators could be attractive ligands for future antifungal drugs. Although the virulence regulatory mechanisms of C. albicans are well studied, less is known about similar mechanisms in C. parapsilosis. In order to search for potential targets for future antifungal drugs against this species, we analyzed the fungal transcriptome during host-pathogen interaction using an in vitro infection model. Selected genes with high expression levels were further examined through their respective null mutant strains, under conditions that mimic the host environment or influence pathogenicity. As a result, we identified several mutants with relevant pathogenicity affecting phenotypes. During the study we highlight three potentially tractable signaling regulators that influence C. parapsilosis pathogenicity in distinct mechanisms. During infection, CPAR2_100540 is responsible for nutrient acquisition, CPAR2_200390 for cell wall assembly and morphology switching and CPAR2_303700 for fungal viability.
Collapse
Affiliation(s)
- Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Vitor Cabral
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Ernst Thuer
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Flóra Bohner
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gergő Molnár
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Joshua D Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary.
| |
Collapse
|
23
|
Widen JC, Kempema AM, Baur JW, Skopec HM, Edwards JT, Brown TJ, Brown DA, Meece FA, Harki DA. Helenalin Analogues Targeting NF-κB p65: Thiol Reactivity and Cellular Potency Studies of Varied Electrophiles. ChemMedChem 2018; 13:303-311. [PMID: 29349898 DOI: 10.1002/cmdc.201700752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Helenalin is a pseudoguaianolide natural product that targets Cys38 within the DNA binding domain of NF-κB transcription factor p65 (RelA). Helenalin contains two Michael acceptors that covalently modify cysteines: a α-methylene-γ-butyrolactone and a cyclopentenone. We recently reported two simplified helenalin analogues that mimic the biological activity of helenalin and contain both electrophilic moieties. To determine the individual contributions of the Michael acceptors toward NF-κB inhibition, we synthesized a small library of helenalin-based analogues containing various combinations of α-methylene-γ-butyrolactones and cyclopentenones. The kinetics of thiol addition to a subset of the analogues was measured to determine the relative thiol reactivities of the embedded electrophiles. Additionally, the cellular NF-κB inhibitory activities of the analogues were determined to elucidate the contributions of each Michael acceptor to biological potency. Our studies suggest the α-methylene-γ-butyrolactone contributes most significantly to the NF-κB inhibition of our simplified helenalin analogues.
Collapse
Affiliation(s)
- John C Widen
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Aaron M Kempema
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Jordan W Baur
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Hannah M Skopec
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Jacob T Edwards
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Tenley J Brown
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Dennis A Brown
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Frederick A Meece
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street S.E., Minneapolis, MN, 55455, USA
| |
Collapse
|
24
|
Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. J Control Release 2017; 269:24-35. [PMID: 29113792 DOI: 10.1016/j.jconrel.2017.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are at the center of the broad regulatory network orchestrating gene expression programs that elicit different biological responses. For a long time, TFs have been considered as potent drug targets due to their implications in the pathogenesis of a variety of diseases. At the same time, TFs, located at convergence points of cellular regulatory pathways, are powerful tools providing opportunities both for cell type change and for managing the state of cells. This task formulation requires the TF modulation problem to come to the fore. We review several ways to manage TF activity (small molecules, transfection, nanocarriers, protein-based approaches), analyzing their limitations and the possibilities to overcome them. Delivery of TFs could revolutionize the biomedical field. Whether this forecast comes true will depend on the ability to develop convenient technologies for targeted delivery of TFs.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia.
| |
Collapse
|
25
|
Lee Y, Yoon H, Hwang SM, Shin MK, Lee JH, Oh M, Im SH, Song J, Lim HS. Targeted Inhibition of the NCOA1/STAT6 Protein–Protein Interaction. J Am Chem Soc 2017; 139:16056-16059. [DOI: 10.1021/jacs.7b08972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yeongju Lee
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Heeseok Yoon
- New
Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Sung-Min Hwang
- Division of Integrative Biosciences & Biotechnology, POSTECH, Pohang 37673, South Korea
| | - Min-Kyung Shin
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Ji Hoon Lee
- New
Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Misook Oh
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Sin-Hyeog Im
- Division of Integrative Biosciences & Biotechnology, POSTECH, Pohang 37673, South Korea
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673, South Korea
| | - Jaeyoung Song
- New
Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Hyun-Suk Lim
- Department
of Chemistry and Division of Advanced Material Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
26
|
Métris A, Sudhakar P, Fazekas D, Demeter A, Ari E, Olbei M, Branchu P, Kingsley RA, Baranyi J, Korcsmáros T. SalmoNet, an integrated network of ten Salmonella enterica strains reveals common and distinct pathways to host adaptation. NPJ Syst Biol Appl 2017; 3:31. [PMID: 29057095 PMCID: PMC5647365 DOI: 10.1038/s41540-017-0034-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Salmonella enterica is a prominent bacterial pathogen with implications on human and animal health. Salmonella serovars could be classified as gastro-intestinal or extra-intestinal. Genome-wide comparisons revealed that extra-intestinal strains are closer relatives of gastro-intestinal strains than to each other indicating a parallel evolution of this trait. Given the complexity of the differences, a systems-level comparison could reveal key mechanisms enabling extra-intestinal serovars to cause systemic infections. Accordingly, in this work, we introduce a unique resource, SalmoNet, which combines manual curation, high-throughput data and computational predictions to provide an integrated network for Salmonella at the metabolic, transcriptional regulatory and protein-protein interaction levels. SalmoNet provides the networks separately for five gastro-intestinal and five extra-intestinal strains. As a multi-layered, multi-strain database containing experimental data, SalmoNet is the first dedicated network resource for Salmonella. It comprehensively contains interactions between proteins encoded in Salmonella pathogenicity islands, as well as regulatory mechanisms of metabolic processes with the option to zoom-in and analyze the interactions at specific loci in more detail. Application of SalmoNet is not limited to strain comparisons as it also provides a Salmonella resource for biochemical network modeling, host-pathogen interaction studies, drug discovery, experimental validation of novel interactions, uncovering new pathological mechanisms from emergent properties and epidemiological studies. SalmoNet is available at http://salmonet.org.
Collapse
Affiliation(s)
- Aline Métris
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,Present Address: Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire UK
| | - Padhmanand Sudhakar
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - David Fazekas
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK.,Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1C, H-1117 Budapest, Hungary
| | - Amanda Demeter
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK.,Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1C, H-1117 Budapest, Hungary
| | - Eszter Ari
- Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1C, H-1117 Budapest, Hungary.,Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Marton Olbei
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - Priscilla Branchu
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Rob A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK
| | - Jozsef Baranyi
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK
| | - Tamas Korcsmáros
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| |
Collapse
|
27
|
Tsigelny IF, Mukthavaram R, Kouznetsova VL, Chao Y, Babic I, Nurmemmedov E, Pastorino S, Jiang P, Calligaris D, Agar N, Scadeng M, Pingle SC, Wrasidlo W, Makale MT, Kesari S. Multiple spatially related pharmacophores define small molecule inhibitors of OLIG2 in glioblastoma. Oncotarget 2017; 8:22370-22384. [PMID: 26517684 PMCID: PMC5410230 DOI: 10.18632/oncotarget.5633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023] Open
Abstract
Transcription factors (TFs) are a major class of protein signaling molecules that play key cellular roles in cancers such as the highly lethal brain cancer—glioblastoma (GBM). However, the development of specific TF inhibitors has proved difficult owing to expansive protein-protein interfaces and the absence of hydrophobic pockets. We uniquely defined the dimerization surface as an expansive parental pharmacophore comprised of several regional daughter pharmacophores. We targeted the OLIG2 TF which is essential for GBM survival and growth, we hypothesized that small molecules able to fit each subpharmacophore would inhibit OLIG2 activation. The most active compound was OLIG2 selective, it entered the brain, and it exhibited potent anti-GBM activity in cell-based assays and in pre-clinical mouse orthotopic models. These data suggest that (1) our multiple pharmacophore approach warrants further investigation, and (2) our most potent compounds merit detailed pharmacodynamic, biophysical, and mechanistic characterization for potential preclinical development as GBM therapeutics.
Collapse
Affiliation(s)
- Igor F Tsigelny
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.,San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA.,Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Rajesh Mukthavaram
- Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA.,Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ying Chao
- Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ivan Babic
- Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | - Sandra Pastorino
- Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Pengfei Jiang
- Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - David Calligaris
- Harvard Medical School, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Nathalie Agar
- Harvard Medical School, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Miriam Scadeng
- FMRI Research Center, Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Sandeep C Pingle
- Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Wolfgang Wrasidlo
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.,Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Milan T Makale
- Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Santosh Kesari
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.,Translational Neuro-oncology Laboratories, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Current Address: John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
28
|
Kim MS, Gernapudi R, Choi EY, Lapidus RG, Passaniti A. Characterization of CADD522, a small molecule that inhibits RUNX2-DNA binding and exhibits antitumor activity. Oncotarget 2017; 8:70916-70940. [PMID: 29050333 PMCID: PMC5642608 DOI: 10.18632/oncotarget.20200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/12/2017] [Indexed: 12/29/2022] Open
Abstract
The RUNX2 transcription factor promotes breast cancer growth and metastasis through interactions with a variety of cofactors that activate or repress target genes. Using a direct drug discovery approach we identified CADD522 as a small molecule that inhibits the DNA binding of the runt box domain protein, RUNX2. The current study defines the effect of CADD522 on breast cancer growth and metastasis, and addresses the mechanisms by which it exerts its anti-tumor activity. CADD522 treatment resulted in significant growth inhibition, clonogenic survival, tumorsphere formation, and invasion of breast cancer cells. CADD522 negatively regulated transcription of RUNX2 target genes such as matrix metalloproteinase-13, vascular endothelial growth factor and glucose transporter-1, but upregulated RUNX2 expression by increasing RUNX2 stability. CADD522 reduced RUNX2-mediated increases in glucose uptake and decreased the level of CBF-β and RUNX2 phosphorylation at the S451 residue. These results suggest several potential mechanisms by which CADD522 exerts an inhibitory function on RUNX2-DNA binding; interference with RUNX2 for the DNA binding pocket, inhibition of glucose uptake leading to cell cycle arrest, down-regulation of CBF-β, and reduction of S451-RUNX2 phosphorylation. The administration of CADD522 into MMTV-PyMT mice resulted in significant delay in tumor incidence and reduction in tumor burden. A significant decrease of tumor volume was also observed in a CADD522-treated human triple-negative breast cancer-patient derived xenograft model. CADD522 impaired the lung retention and outgrowth of breast cancer cells in vivo with no apparent toxicity to the mice. Therefore, by inhibiting RUNX2-DNA binding, CADD522 may represent a potential antitumor drug.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,The Veteran's Health Administration Research & Development Service, Baltimore, MD, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eun Yong Choi
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rena G Lapidus
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Antonino Passaniti
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,The Veteran's Health Administration Research & Development Service, Baltimore, MD, USA
| |
Collapse
|
29
|
Elumalai N, Natarajan K, Berg T. Halogen-substituted catechol bisphosphates are potent and selective inhibitors of the transcription factor STAT5b. Bioorg Med Chem 2017; 25:3871-3882. [DOI: 10.1016/j.bmc.2017.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
|
30
|
Simmonds P, Loomis E, Curry E. DNA methylation-based chromatin compartments and ChIP-seq profiles reveal transcriptional drivers of prostate carcinogenesis. Genome Med 2017; 9:54. [PMID: 28592290 PMCID: PMC5463361 DOI: 10.1186/s13073-017-0443-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/23/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Profiles of DNA methylation of many tissues relevant in human disease have been obtained from microarrays and are publicly available. These can be used to generate maps of chromatin compartmentalization, demarcating open and closed chromatin across the genome. Additionally, large sets of genome-wide transcription factor binding profiles have been made available thanks to ChIP-seq technology. METHODS We have identified genomic regions with altered chromatin compartmentalization in prostate adenocarcinoma tissue relative to normal prostate tissue, using DNA methylation microarray data from The Cancer Genome Atlas. DNA binding profiles from the Encyclopedia of DNA Elements (ENCODE) ChIP-seq studies have been systematically screened to find transcription factors with inferred DNA binding sites located in discordantly open/closed chromatin in malignant tissue (compared with non-cancer control tissue). We have combined this with tests for corresponding up-/downregulation of the transcription factors' putative target genes to obtain an integrated measure of cancer-specific regulatory activity to identify likely transcriptional drivers of prostate cancer. RESULTS Generally, we find that the degree to which transcription factors preferentially bind regions of chromatin that become more accessible during prostate carcinogenesis is significantly associated to the level of systematic upregulation of their targets, at the level of gene expression. Our approach has yielded 11 transcription factors that show strong cancer-specific transcriptional activation of targets, including the novel candidates KAT2A and TRIM28, alongside established drivers of prostate cancer MYC, ETS1, GABP and YY1. CONCLUSIONS This approach to integrated epigenetic and transcriptional profiling using publicly available data represents a cheap and powerful technique for identifying potential drivers of human disease. In our application to prostate adenocarcinoma data, the fact that well-known drivers are amongst the top candidates suggests that the discovery of novel candidate drivers may unlock pathways to future medicines. Data download instructions and code to reproduce this work are available at GitHub under 'edcurry/PRAD-compartments'.
Collapse
Affiliation(s)
- Poppy Simmonds
- Division of Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Centre for Cell, Gene & Tissue Therapeutics, UCL Medical School, Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | - Erick Loomis
- Helix, 1 Circle Star Way, San Carlos, CA, 94070, USA
| | - Edward Curry
- Division of Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
31
|
Abstract
Cancer cell hallmarks are underpinned by transcriptional programmes operating in the context of a dynamic and complicit epigenomic environment. Somatic alterations of chromatin modifiers are among the most prevalent cancer perturbations. There is a pressing need for targeted chemical probes to dissect these complex, interconnected gene regulatory circuits. Validated chemical probes empower mechanistic research while providing the pharmacological proof of concept that is required to translate drug-like derivatives into therapy for cancer patients. In this Review, we describe chemical probe development for epigenomic effector proteins that are linked to cancer pathogenesis. By annotating these reagents, we aim to share our perspectives on an informative 'epigenomic toolbox' of broad utility to the research community.
Collapse
Affiliation(s)
- Jake Shortt
- Gene Regulation Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3052, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| | - Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3052, Australia
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
32
|
Ferraz ERA, Fernandes AS, Salviano I, Felzenszwalb I, Mencalha AL. Investigation of the mutagenic and genotoxic activities of LLL-3, a STAT3 inhibitor. Drug Chem Toxicol 2017; 40:30-35. [PMID: 28140701 DOI: 10.3109/01480545.2016.1167901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
LLL-3, an anthracene derived compound, has been shown to be a promising therapeutic agent for the treatment of some kinds of cancer such as chronic myeloid leukemia and glioblastoma. However, no data regarding the toxic properties of this compound have yet been described in the literature. The present work aimed to investigate the mutagenic and genotoxic activities of LLL-3 using the TA97, TA98, TA100, TA102 and TA104 Salmonella/microsome strains for the Ames test and the micronucleus assay with the mouse macrophage cell line RAW 264.7. The findings showed that LLL-3, at doses of 0.001, 0.01, 0.1, 1.0 and 10.0 μg/plate, did not induce mutagenic activity in the Salmonella strains used under the conditions tested, and nor did it present genotoxicity in RAW 264.7 cells, at 10.0, 100.0 and 1000.0 μg/mL doses. Moreover, it is important to point out that the mitotic index of the cells decreased after exposure to LLL-3 under the same conditions tested, which may suggest some cytostatic effect, since this compound acts by inhibiting STAT3. Since most drugs used in the treatment of cancer present mutagenic activity as an adverse effect, these results suggest that LLL-3 is a promising drug for cancer therapy.
Collapse
Affiliation(s)
- E R A Ferraz
- a Environmental Mutagenesis Laboratory, Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil.,b School of Pharmacy, Fluminense Federal University , Niteroi , RJ , Brazil , and
| | - A S Fernandes
- a Environmental Mutagenesis Laboratory, Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - I Salviano
- c Laboratory of Cancer Biology , Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - I Felzenszwalb
- a Environmental Mutagenesis Laboratory, Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - A L Mencalha
- c Laboratory of Cancer Biology , Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
33
|
Widen JC, Kempema AM, Villalta PW, Harki DA. Targeting NF-κB p65 with a Helenalin Inspired Bis-electrophile. ACS Chem Biol 2017; 12:102-113. [PMID: 28103680 DOI: 10.1021/acschembio.6b00751] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The canonical NF-κB signaling pathway is a mediator of the cellular inflammatory response and a target for developing therapeutics for multiple human diseases. The furthest downstream proteins in the pathway, the p50/p65 transcription factor heterodimer, have been recalcitrant toward small molecule inhibition despite the substantial number of compounds known to inhibit upstream proteins in the activation pathway. Given the roles of many of these upstream proteins in multiple biochemical pathways, targeting the p50/p65 heterodimer offers an opportunity for enhanced on-target specificity. Toward this end, the p65 protein presents two nondisulfide cysteines, Cys38 and Cys120, at its DNA-binding interface that are amenable to targeting by covalent molecules. The natural product helenalin, a sesquiterpene lactone, has been previously shown to target Cys38 on p65 and ablate its DNA-binding ability. Using helenalin as inspiration, simplified helenalin analogues were designed, synthesized, and shown to inhibit induced canonical NF-κB signaling in cell culture. Moreover, two simplified helenalin probes were proficient at forming covalent protein adducts, binding to Cys38 on recombinant p65, and targeting p65 in HeLa cells without engaging canonical NF-κB signaling proteins IκBα, p50, and IKKα/β. These studies further support that targeting the p65 transcription factor-DNA interface with covalent small molecule inhibitors is a viable approach toward regulating canonical NF-κB signaling.
Collapse
Affiliation(s)
- John C. Widen
- Department
of Medicinal Chemistry and ‡Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Aaron M. Kempema
- Department
of Medicinal Chemistry and ‡Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Department
of Medicinal Chemistry and ‡Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Daniel A. Harki
- Department
of Medicinal Chemistry and ‡Masonic Cancer Center, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
34
|
Identification of a small molecule that downregulates MITF expression and mediates antimelanoma activity in vitro. Melanoma Res 2017; 26:117-24. [PMID: 26684062 DOI: 10.1097/cmr.0000000000000229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanoma is a type of cancer arising from the melanocytes, which are the cells that make up the pigment melanin and are derived from the neural crest. There is no particularly effective therapy once the disease is metastatic, highlighting the need for discovery of novel potent agents. In this investigation, we adopted a zebrafish embryonic pigmentation model to identify antimelanoma agents by screening an in-house small molecule library. With this assay, we found that a small molecule compound, SKLB226, blocked zebrafish pigmentation and pigment cell migration. Mechanism of action studies showed that SKLB226 downregulated MITF mRNA level in both zebrafish embryos and mammalian melanoma cells. Further studies showed that it could efficiently suppress the viability and migration of mammalian melanoma cells. In summary, SKLB226 can be used as a chemical tool to study melanocyte development as well as an antimelanoma lead compound that should be subjected to further structural optimization.
Collapse
|
35
|
de Araujo PR, Gorthi A, da Silva AE, Tonapi SS, Vo DT, Burns SC, Qiao M, Uren PJ, Yuan ZM, Bishop AJR, Penalva LOF. Musashi1 Impacts Radio-Resistance in Glioblastoma by Controlling DNA-Protein Kinase Catalytic Subunit. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2271-8. [PMID: 27470713 PMCID: PMC5012509 DOI: 10.1016/j.ajpath.2016.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/13/2016] [Indexed: 12/30/2022]
Abstract
The conserved RNA-binding protein Musashi1 (MSI1) has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation and as a key oncogenic factor in numerous solid tumors, including glioblastoma. To explore the potential use of MSI1 targeting in therapy, we studied MSI1 in the context of radiation sensitivity. Knockdown of MSI1 led to a decrease in cell survival and an increase in DNA damage compared to control in cells treated with ionizing radiation. We subsequently examined mechanisms of double-strand break repair and found that loss of MSI1 reduces the frequency of nonhomologous end-joining. This phenomenon could be attributed to the decreased expression of DNA-protein kinase catalytic subunit, which we have previously identified as a target of MSI1. Collectively, our results suggest a role for MSI1 in double-strand break repair and that its inhibition may enhance the effect of radiotherapy.
Collapse
Affiliation(s)
- Patricia Rosa de Araujo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Acarizia E da Silva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Sonal S Tonapi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Dat T Vo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Suzanne C Burns
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Mei Qiao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Philip J Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California
| | - Zhi-Min Yuan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| |
Collapse
|
36
|
Direct inhibition of c-Myc-Max heterodimers by celastrol and celastrol-inspired triterpenoids. Oncotarget 2016; 6:32380-95. [PMID: 26474287 PMCID: PMC4741700 DOI: 10.18632/oncotarget.6116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 01/22/2023] Open
Abstract
Many oncogenic signals originate from abnormal protein-protein interactions that are potential targets for small molecule inhibitors. However, the therapeutic disruption of these interactions has proved elusive. We report here that the naturally-occurring triterpenoid celastrol is an inhibitor of the c-Myc (Myc) oncoprotein, which is over-expressed in many human cancers. Most Myc inhibitors prevent the association between Myc and its obligate heterodimerization partner Max via their respective bHLH-ZIP domains. In contrast, we show that celastrol binds to and alters the quaternary structure of the pre-formed dimer and abrogates its DNA binding. Celastrol contains a reactive quinone methide group that promiscuously forms Michael adducts with numerous target proteins and other free sulfhydryl-containing molecules. Interestingly, triterpenoid derivatives lacking the quinone methide showed enhanced specificity and potency against Myc. As with other Myc inhibitors, these analogs rapidly reduced the abundance of Myc protein and provoked a global energy crisis marked by ATP depletion, neutral lipid accumulation, AMP-activated protein kinase activation, cell cycle arrest and apoptosis. They also inhibited the proliferation of numerous established human cancer cell lines as well as primary myeloma explants that were otherwise resistant to JQ1, a potent indirect Myc inhibitor. N-Myc amplified neuroblastoma cells showed similar responses and, in additional, underwent neuronal differentiation. These studies indicate that certain pharmacologically undesirable properties of celastrol such as Michael adduct formation can be eliminated while increasing selectivity and potency toward Myc and N-Myc. This, together with their low in vivo toxicity, provides a strong rationale for pursuing the development of additional Myc-specific triterpenoid derivatives.
Collapse
|
37
|
Alton G, Kesari S. Novel small molecule inhibitors of the OLIG2 transcription factor: promising new therapeutics for glioblastoma. Future Oncol 2016; 12:1001-4. [DOI: 10.2217/fon-2015-0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Gordon Alton
- Curtana Pharmaceuticals, 1624 Headway Circle, Austin, TX 78754, USA
| | - Santosh Kesari
- John Wayne Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
38
|
Abstract
Glioblastomas are devastating central nervous system tumors with abysmal prognoses. These tumors are often difficult to resect surgically, are highly invasive and proliferative, and are resistant to virtually all therapeutic attempts, making them universally lethal diseases. One key enabling feature of their tumor biology is the engagement of the unfolded protein response (UPR), a stress response originating in the endoplasmic reticulum (ER) designed to handle the pathologies of aggregating malfolded proteins in that organelle. Glioblastomas and other tumors have co-opted this stress response to allow their continued uncontrolled growth by enhanced protein production (maintained by chaperone-assisted protein folding) and lipid biosynthesis driven downstream of the UPR. These features can account for the extensive extracellular remodeling/invasiveness/angiogenesis and proliferative capacity, and ultimately result in tumor phenotypes of chemo- and radio-resistance. The UPR in general, and its chaperoning capacity in particular, are thus putative high-value targets for treatment intervention. Such therapeutic strategies, and potential problems with them, will be discussed and analyzed.
Collapse
|
39
|
Musiani F, Ciurli S. Evolution of Macromolecular Docking Techniques: The Case Study of Nickel and Iron Metabolism in Pathogenic Bacteria. Molecules 2015; 20:14265-92. [PMID: 26251891 PMCID: PMC6332059 DOI: 10.3390/molecules200814265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 11/24/2022] Open
Abstract
The interaction between macromolecules is a fundamental aspect of most biological processes. The computational techniques used to study protein-protein and protein-nucleic acid interactions have evolved in the last few years because of the development of new algorithms that allow the a priori incorporation, in the docking process, of experimentally derived information, together with the possibility of accounting for the flexibility of the interacting molecules. Here we review the results and the evolution of the techniques used to study the interaction between metallo-proteins and DNA operators, all involved in the nickel and iron metabolism of pathogenic bacteria, focusing in particular on Helicobacter pylori (Hp). In the first part of the article we discuss the methods used to calculate the structure of complexes of proteins involved in the activation of the nickel-dependent enzyme urease. In the second part of the article, we concentrate on two applications of protein-DNA docking conducted on the transcription factors HpFur (ferric uptake regulator) and HpNikR (nickel regulator). In both cases we discuss the technical expedients used to take into account the conformational variability of the multi-domain proteins involved in the calculations.
Collapse
Affiliation(s)
- Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna I-40127, Italy.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna I-40127, Italy.
| |
Collapse
|
40
|
Affiliation(s)
- Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
41
|
Chen Y, Ruben EA, Rajadas J, Teng NNH. In silico investigation of FOXM1 binding and novel inhibitors in epithelial ovarian cancer. Bioorg Med Chem 2015; 23:4576-4582. [PMID: 26164623 DOI: 10.1016/j.bmc.2015.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/23/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Using TCGA database, we had demonstrated that aberrantly activated Forkhead box M1 (FOXM1) correlates to worse overall survival in a subgroup of platinum resistant patients. Application of thiostrepton, a natural thiazole antibiotics that inhibits FOXM1 transcription activity in the clinic is hampered by difficulties in synthesis, degradation potential, and solubility. In this study, we aim to identify potential FOXM1 small molecule inhibitors to develop a new class of therapeutic agents to address the challenges in treating chemotherapy resistant EOC. METHODS We used in silico screening of compounds against a solved structure of FOXM1 and subsequently to derive a list of possible compounds that could inhibit FOXM1. Three compounds were tested for in vitro cytotoxicity and FOXM1 expression level was confirmed by RT-PCR and Western blot in EOC cell lines. RESULTS The FOXM1 structure obtained from 3G73 represented the DNA binding region of FOXM1 and possessed the winged helix fold representative of the Forkhead family of enzymes with two wings in direct contact with DNA. For ease of representation, we described both wings as a dimer and a single wing as a monomer. From this structure, we hypothesized two main models of how thiostrepton binding to FOXM1 could possibly curtail its transcriptional activity. In the first model thiostrepton could bind either of the wings or both wings and prevent association to DNA. In the second model thiostrepton bind the FOXM1/DNA complex and weaken association of FOXM1 to DNA. Subsequently, small molecular inhibitors could also use either of the models to inhibit transcription. To account for both models, the NCI diversity set was screened against the FOXM1 dimer:DNA complex (39 hits), dimer (11 hits) and monomer (14 hits). Those hits were further classified by chemical structure, biological function and chemical similarities to known molecules that target FOXM1. In cellular cytotoxicity assays, N-phenylphenanthren-9-amine (related to hit #225) successfully showed cytotoxicity to all three cell lines with IC50 around 1μM, and downregulate FOXM1 and transcription of its downstream molecules such as CCNB1. CONCLUSION By a combination of in silico screening coupled to cellular cytotoxicity studies, we have taken the first step towards identifying potential inhibitors of FOXM1 that can replace thiostrepton.
Collapse
Affiliation(s)
- Yi Chen
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, 300 Pasteur Drive, HH333, Stanford, CA 94305-5317, USA
| | - Eliza A Ruben
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Stanford, CA, USA
| | - Nelson N H Teng
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, 300 Pasteur Drive, HH333, Stanford, CA 94305-5317, USA.
| |
Collapse
|
42
|
Fontaine F, Overman J, François M. Pharmacological manipulation of transcription factor protein-protein interactions: opportunities and obstacles. CELL REGENERATION (LONDON, ENGLAND) 2015; 4:2. [PMID: 25848531 PMCID: PMC4365538 DOI: 10.1186/s13619-015-0015-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/10/2015] [Indexed: 12/19/2022]
Abstract
Much research on transcription factor biology and their genetic pathways has been undertaken over the last 30 years, especially in the field of developmental biology and cancer. Yet, very little is known about the molecular modalities of highly dynamic interactions between transcription factors, genomic DNA, and protein partners. Methodological breakthroughs such as RNA-seq (RNA-sequencing), ChIP-seq (chromatin immunoprecipitation sequencing), RIME (rapid immunoprecipitation mass spectrometry of endogenous proteins), and single-molecule imaging will dramatically accelerate the discovery rate of their molecular mode of action in the next few years. From a pharmacological viewpoint, conventional methods used to target transcription factor activity with molecules mimicking endogenous ligands fail to achieve high specificity and are limited by a lack of identification of new molecular targets. Protein-protein interactions are likely to represent one of the next major classes of therapeutic targets. Transcription factors, known to act mostly via protein-protein interaction, may well be at the forefront of this type of drug development. One hurdle in this field remains the difficulty to collate structural data into meaningful information for rational drug design. Another hurdle is the lack of chemical libraries meeting the structural requirements of protein-protein interaction disruption. As more attempts at modulating transcription factor activity are undertaken, valuable knowledge will be accumulated on the modality of action required to modulate transcription and how these findings can be applied to developing transcription factor drugs. Key discoveries will spawn into new therapeutic approaches not only as anticancer targets but also for other indications, such as those with an inflammatory component including neurodegenerative disorders, diabetes, and chronic liver and kidney diseases.
Collapse
Affiliation(s)
- Frank Fontaine
- Division of Genomics of Development and Diseases, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072 Australia
| | - Jeroen Overman
- Division of Genomics of Development and Diseases, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072 Australia
| | - Mathias François
- Division of Genomics of Development and Diseases, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072 Australia
| |
Collapse
|
43
|
Affiliation(s)
- Andrew Chen
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angela N Koehler
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
44
|
Khedkar SA, Sun X, Rigby AC, Feinberg MW. Discovery of small molecule inhibitors to Krüppel-like factor 10 (KLF10): implications for modulation of T regulatory cell differentiation. J Med Chem 2015; 58:1466-78. [PMID: 25581017 DOI: 10.1021/jm5018187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Krüppel-like family of transcription factors (KLFs) constitute a subfamily of C2H2-type zinc finger proteins with distinct cell-type expression patterns and regulate functional aspects of cell growth and differentiation, activation, or development. KLF10 has been previously shown to critically regulate the acquisition of CD4+CD25+ T regulatory cell differentiation and function, an effect important to the maintenance of self-tolerance, immune suppression, and tumor immunosurveillance. To date, there are no selective pharmacological inhibitors to KLF10. Herein, we report on the discovery of first-in-class small molecule compounds that inhibit the KLF10-DNA interaction interface using computer-aided drug design (CADD) screens of chemical libraries. Interrogation of a "druggable" pocket in the second zinc finger of KLF10 revealed three small molecules, #48, #48-15, and #15-09, with similar scaffolds and binding patterns. Each of these small molecules inhibited KLF10-DNA binding and transcriptional activity, conversion of CD4+CD25- T cells to CD4+CD25+ T regulatory cells, and KLF10 target gene expression. Taken together, these findings support the feasibility of using CADD with functional assays to identify small molecules that target members of the KLF subfamily of transcription factors to regulate biological functions in health and disease. We hope these novel compounds will serve as useful mechanistic probes for KLF10-mediated effects and T regulatory cell biology.
Collapse
Affiliation(s)
- Santosh A Khedkar
- Department of Medicine, Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center , 99 Brookline Avenue, RN-227, Boston, Massachusetts 02215, United States
| | | | | | | |
Collapse
|
45
|
Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition. Nat Commun 2014; 5:5165. [PMID: 25387393 PMCID: PMC4258842 DOI: 10.1038/ncomms6165] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022] Open
Abstract
The transcription factor FOXM1 binds to sequence-specific motifs on DNA (C/TAAACA) through its DNA binding domain (DBD), and activates proliferation- and differentiation-associated genes. Aberrant overexpression of FOXM1 is a key feature in oncogenesis and progression of many human cancers. Here — from a high-throughput screen applied to a library of 54,211 small molecules — we identify novel small molecule inhibitors of FOXM1 that block DNA binding. One of the identified compounds: FDI-6 (NCGC00099374) is characterized in depth and is shown to bind directly to FOXM1 protein, to displace FOXM1 from genomic targets in MCF-7 breast cancer cells, and induce concomitant transcriptional down-regulation. Global transcript profiling of MCF-7 cells by RNA-seq shows that FDI-6 specifically down regulates FOXM1-activated genes with FOXM1 occupancy confirmed by ChIP-seq. This small molecule mediated effect is selective for FOXM1-controlled genes with no effect on genes regulated by homologous forkhead family factors.
Collapse
|
46
|
McKeown MR, Shaw DL, Fu H, Liu S, Xu X, Marineau JJ, Huang Y, Zhang X, Buckley DL, Kadam A, Zhang Z, Blacklow SC, Qi J, Zhang W, Bradner JE. Biased multicomponent reactions to develop novel bromodomain inhibitors. J Med Chem 2014; 57:9019-27. [PMID: 25314271 PMCID: PMC4234447 DOI: 10.1021/jm501120z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BET bromodomain inhibition has contributed new insights into gene regulation and emerged as a promising therapeutic strategy in cancer. Structural analogy of early methyl-triazolo BET inhibitors has prompted a need for structurally dissimilar ligands as probes of bromodomain function. Using fluorous-tagged multicomponent reactions, we developed a focused chemical library of bromodomain inhibitors around a 3,5-dimethylisoxazole biasing element with micromolar biochemical IC50. Iterative synthesis and biochemical assessment allowed optimization of novel BET bromodomain inhibitors based on an imidazo[1,2-a]pyrazine scaffold. Lead compound 32 (UMB-32) binds BRD4 with a Kd of 550 nM and 724 nM cellular potency in BRD4-dependent lines. Additionally, compound 32 shows potency against TAF1, a bromodomain-containing transcription factor previously unapproached by discovery chemistry. Compound 32 was cocrystallized with BRD4, yielding a 1.56 Å resolution crystal structure. This research showcases new applications of fluorous and multicomponent chemical synthesis for the development of novel epigenetic inhibitors.
Collapse
Affiliation(s)
- Michael R McKeown
- Department of Medical Oncology, Dana-Farber Cancer Institute , 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
O'Sullivan KE, Reynolds JV, O'Hanlon C, O'Sullivan JN, Lysaght J. Could signal transducer and activator of transcription 3 be a therapeutic target in obesity-related gastrointestinal malignancy? J Gastrointest Cancer 2014; 45:1-11. [PMID: 24163144 DOI: 10.1007/s12029-013-9555-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION A large body of evidence has implicated the signal transducer and activator of transcription (STAT) family and particularly the ubiquitously expressed STAT3 protein in the pathogenesis of colorectal, hepatocellular, gastric and pancreatic carcinoma. DISCUSSION Concomitantly, an increasing body of epidemiological evidence has linked obesity and its associated pro-inflammatory state with the development of gastrointestinal cancers. Visceral adipose tissue is no longer considered inert and is known to secrete a number of adipocytokines such as leptin, interleukin (IL)-6, IL-8, IL-1β and tumour necrosis factor-alpha (TNF-α) into the surrounding environment. Interestingly, these adipocytokines are strongly linked with the Janus kinase (JAK)/STAT pathway of signal transduction and there is experimental evidence linking IL-1β, IL-8 and TNF-α to JAK/STAT signaling in other tissues. The result is an up-regulation of a wide range of anti-apoptotic, pro-metastatic and pro-angiogenic genes and processes. This is particularly relevant for gastrointestinal malignancy as these factors have the potential to signal adjacent endothelial cells in a paracrine manner. CONCLUSION This review examines the potential role of the STAT3 signaling pathway in the pathogenesis of obesity-related gastrointestinal malignancy and the potential therapeutic role of STAT3 blockade given its status as a signaling hub for a number of inflammatory adipocytokines.
Collapse
Affiliation(s)
- Katie E O'Sullivan
- Department of Surgery, Institute of Molecular Medicine, St. James Hospital, Dublin 8, Ireland,
| | | | | | | | | |
Collapse
|
48
|
Marsico G, Gormally MV. Small molecule inhibition of FOXM1: How to bring a novel compound into genomic context. GENOMICS DATA 2014; 3:19-23. [PMID: 26484143 PMCID: PMC4535965 DOI: 10.1016/j.gdata.2014.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/11/2014] [Indexed: 11/15/2022]
Abstract
Deregulation of transcription factor (TF) networks is emerging as a major pathogenic event in many human cancers (Darnell, 2002 [1]; Libermann and Zerbini, 2006 [2]; Laoukili et al., 2007 [3]). Small molecule intervention is an attractive avenue to understand TF regulatory mechanisms in healthy and disease state, as well as for exploiting these targets therapeutically (Koehler et al., 2003 [4]; Berg, 2008 [5]; Koehler, 2010 [6]). However, because of their physico-chemical properties, TF targeting has been proven to be difficult (Verdine and Walensky, 2007 [7]). The TF FOXM1 is an important mitotic player (Wonsey and Follettie, 2005 [8]; Laoukili et al., 2005 [9]; McDonald, 2005 [10]) also implicated in cancer progression (Laoukili et al., 2007 [3]; Teh, 2011 [11]; Koo, 2012 [12]) and drug resistance development (Kwok et al., 2010 [13]; Carr et al., [14]). Therefore, its inhibition is an attractive goal for cancer therapy. Here, we describe a computational biology approach, by giving detailed insights into methodologies and technical results, which was used to analyze the transcriptional RNA-Seq data presented in our previous work (Gormally et al., 2014 [20]). Our Bioinformatics analysis shed light on the cellular effect of a novel FOXM1 inhibitor (FDI-6) newly identified through a biophysical screen. The data for this report is available at the public GEO repository (accession number http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58626).
Collapse
Affiliation(s)
- Giovanni Marsico
- Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Michael V Gormally
- Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| |
Collapse
|
49
|
Abstract
MYC is a master regulator of stem cell state, embryogenesis, tissue homeostasis, and aging. As in health, in disease MYC figures prominently. Decades of biological research have identified a central role for MYC in the pathophysiology of cancer, inflammation, and heart disease. The centrality of MYC to such a vast breadth of disease biology has attracted significant attention to the historic challenge of developing inhibitors of MYC. This review will discuss therapeutic strategies toward the development of inhibitors of MYC-dependent transcriptional signaling, efforts to modulate MYC stability, and the elusive goal of developing potent, direct-acting inhibitors of MYC.
Collapse
Affiliation(s)
- Michael R McKeown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02141 Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
50
|
Chou CC, Salunke SB, Kulp SK, Chen CS. Prospects on strategies for therapeutically targeting oncogenic regulatory factors by small-molecule agents. J Cell Biochem 2014; 115:611-24. [PMID: 24166934 DOI: 10.1002/jcb.24704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022]
Abstract
Although the Human Genome Project has raised much hope for the identification of druggable genetic targets for cancer and other diseases, this genetic target-based approach has not improved productivity in drug discovery over the traditional approach. Analyses of known human target proteins of currently marketed drugs reveal that these drugs target only a limited number of proteins as compared to the whole proteome. In contrast to genome-based targets, mechanistic targets are derived from empirical research, at cellular or molecular levels, in disease models and/or in patients, thereby enabling the exploration of a greater number of druggable targets beyond the genome and epigenome. The paradigm shift has made a tremendous headway in developing new therapeutic agents targeting different clinically relevant mechanisms/pathways in cancer cells. In this Prospects article, we provide an overview of potential drug targets related to the following four emerging areas: (1) tumor metabolism (the Warburg effect), (2) dysregulated protein turnover (E3 ubiquitin ligases), (3) protein-protein interactions, and (4) unique DNA high-order structures and protein-DNA interactions. Nonetheless, considering the genetic and phenotypic heterogeneities that characterize cancer cells, the development of drug resistance in cancer cells by adapting signaling circuitry to take advantage of redundant pathways or feedback/crosstalk systems is possible. This "phenotypic adaptation" underlies the rationale of using therapeutic combinations of these targeted agents with cytotoxic drugs.
Collapse
Affiliation(s)
- Chih-Chien Chou
- Division of Medicinal Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | | | | |
Collapse
|