1
|
Manoharan S, Santhakumar A, Perumal E. Targeting STAT3, FOXO3a, and Pim-1 kinase by FDA-approved tyrosine kinase inhibitor-Radotinib: An in silico and in vitro approach. Arch Pharm (Weinheim) 2024:e2400429. [PMID: 39428846 DOI: 10.1002/ardp.202400429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024]
Abstract
Cancer, a multifactorial pathological condition, is primarily caused due to mutations in multiple genes. Hepatocellular carcinoma (HCC) is a form of primary liver cancer that is often diagnosed at the advanced stage. Current treatment strategies for advanced HCC involve systemic therapies which are often hindered due to the emergence of resistance and toxicity. Therefore, a multitarget approach might prove more effective in HCC treatment. The present study focuses on targeting signal transducer and activator of transcription 3 (STAT3), forkhead box class O3a (FOXO3a), and proviral integration site for Moloney murine leukemia virus-1 (Pim-1) kinase, using a Food and Drug Administration (FDA)-approved anticancer drug library. Two compounds, namely, radotinib and capmatinib, were identified as top compounds using molecular docking. Among the two compounds, radotinib exhibited significant binding values towards the targeted proteins and their heterodimers. Furthermore, in vitro experiments involving 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live/dead, 4',6-diamidino-2-phenylindole, and clonogenic assays were performed to evaluate the effect of radotinib in human hepatoblastoma cell line/hepatocellular carcinoma cells. The gene expression data indicated reduced expression of FOXO3a and Pim-1, but no basal-level alteration of STAT3. The Western blot analysis assay showed that the phosphorylation level of STAT3 was significantly decreased upon radotinib treatment. Taken together, our findings suggest that radotinib, which is currently used in the treatment of chronic myeloid leukemia (CML), could be considered as a potential candidate for repurposing in the treatment of HCC.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
2
|
Cabral G, Moss WJ, Brown KM. Proteomic approaches for protein kinase substrate identification in Apicomplexa. Mol Biochem Parasitol 2024; 259:111633. [PMID: 38821187 PMCID: PMC11194964 DOI: 10.1016/j.molbiopara.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William J Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Bogdańska-Chomczyk E, Wojtacha P, Tsai ML, Huang ACW, Kozłowska A. Age-related changes in the architecture and biochemical markers levels in motor-related cortical areas of SHR rats-an ADHD animal model. Front Mol Neurosci 2024; 17:1414457. [PMID: 39246601 PMCID: PMC11378348 DOI: 10.3389/fnmol.2024.1414457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder whose exact pathophysiology has not been fully understood yet. Numerous studies have suggested disruptions in the cellular architecture and neuronal activity within brain structures of individuals with ADHD, accompanied by imbalances in the immune system, oxidative stress, and metabolism. Methods This study aims to assess two functionally and histologically distinct brain areas involved in motor control and coordination: the motor cortex (MC) and prefrontal cortex (PFC). Namely, the morphometric analysis of the MC throughout the developmental stages of Spontaneously Hypertensive Rats (SHRs) and Wistar Kyoto Rats (WKYs). Additionally, the study aimed to investigate the levels and activities of specific immune, oxidative stress, and metabolic markers in the PFC of juvenile and maturing SHRs in comparison to WKYs. Results The most significant MC volume reductions occurred in juvenile SHRs, accompanied by alterations in neuronal density in these brain areas compared to WKYs. Furthermore, juvenile SHRs exhibit heightened levels and activity of various markers, including interleukin-1α (IL-1α), IL-6, serine/threonine-protein mammalian target of rapamycin, RAC-alpha serine/threonine-protein kinase, glucocorticoid receptor β, malondialdehyde, sulfhydryl groups, superoxide dismutase, peroxidase, glutathione reductase, glutathione S-transferase, glucose, fructosamine, iron, lactic acid, alanine, aspartate transaminase, and lactate dehydrogenase. Discussion Significant changes in the MC morphometry and elevated levels of inflammatory, oxidative, and metabolic markers in PFC might be associated with disrupted brain development and maturation in ADHD.
Collapse
Affiliation(s)
- E Bogdańska-Chomczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - P Wojtacha
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - M L Tsai
- Department of Biomechatronic Engineering, National Ilan University, Yilan, Taiwan
| | - A C W Huang
- Department of Psychology, Fo Guang University, Yilan, Taiwan
| | - A Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
4
|
Zhou Z, Huang S, Fan S, Li X, Wang C, Yu W, Du D, Zhang Y, Chen K, Fu W, Luo C. Structure-Based Design and Discovery of a Potent and Cell-Active LC3A/B Covalent Inhibitor. J Med Chem 2024; 67:12184-12204. [PMID: 39010658 DOI: 10.1021/acs.jmedchem.4c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Autophagy is a highly conserved cellular homeostasis maintenance mechanism in eukaryotes. Microtubule-associated protein light chain 3 (LC3) plays a crucial role in autophagy. It has multiple pairs of protein-protein interactions (PPIs) with other proteins, and these PPIs have an effect on the regulation of autophagosome formation and the recruitment of autophagic substrates. In our previous work, a small molecule covalent inhibitor DC-LC3in-D5 which could inhibit LC3A/B PPIs was identified, but a detailed study of structure-activity relationships (SARs) was lacking. Herein, a new molecule LC3in-C42 was discovered utilizing the hybridization of advantageous fragments, whose potency (IC50 = 7.6 nM) had been greatly improved compared with that of DC-LC3in-D5. LC3in-C42 inhibits autophagy at the cellular level and its efficacy far exceeds that of DC-LC3in-D5. Thus far, LC3in-C42 stands as the most potent LC3A/B small molecule inhibitor. LC3in-C42 could serve as a powerful tool for LC3A/B protein and autophagy research.
Collapse
Affiliation(s)
- Zhenfei Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
- Drug Discovery and Design Center and The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
| | - Siqi Huang
- Drug Discovery and Design Center and The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Fan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
| | - Xueyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chengyu Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
| | - Wanlin Yu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Daohai Du
- Drug Discovery and Design Center and The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanyuan Zhang
- Drug Discovery and Design Center and The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixian Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
- Drug Discovery and Design Center and The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center and The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Lima MP, Hornsby BD, Lim CS, Cheatham TE. Molecular Modeling of Single- and Double-Hydrocarbon-Stapled Coiled-Coil Inhibitors against Bcr-Abl: Toward a Treatment Strategy for CML. J Phys Chem B 2024; 128:6476-6491. [PMID: 38951498 PMCID: PMC11247501 DOI: 10.1021/acs.jpcb.4c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
The chimeric oncoprotein Bcr-Abl is the causative agent of virtually all chronic myeloid leukemias and a subset of acute lymphoblastic leukemias. As a result of the so-called Philadelphia chromosome translocation t(9;22), Bcr-Abl manifests as a constitutively active tyrosine kinase, which promotes leukemogenesis by activation of cell cycle signaling pathways. Constitutive and oncogenic activation is mediated by an N-terminal coiled-coil oligomerization domain in Bcr (Bcr-CC), presenting a therapeutic target for inhibition of Bcr-Abl activity toward the treatment of Bcr-Abl+ leukemias. Previously, we demonstrated that a rationally designed Bcr-CC mutant, CCmut3, exerts a dominant negative effect upon Bcr-Abl activity by preferential oligomerization with Bcr-CC. Moreover, we have shown that conjugation to a leukemia-specific cell-penetrating peptide (CPP-CCmut3) improves intracellular delivery and activity. However, our full-length CPP-CCmut3 construct (81 aa) is encumbered by an intrinsically high degree of conformational variability and susceptibility to proteolytic degradation relative to traditional small-molecule therapeutics. Here, we iterate a new generation of CCmut3 inhibitors against Bcr-CC-mediated Bcr-Abl assembly designed to address these constraints through incorporation of all-hydrocarbon staples spanning i and i + 7 positions in α-helix 2 (CPP-CCmut3-st). We utilize computational modeling and biomolecular simulation to evaluate single- and double-stapled CCmut3 candidates in silico for dynamics and binding energetics. We further model a truncated system characterized by the deletion of α-helix 1 and the flexible loop linker, which are known to impart high conformational variability. To study the impact of the N-terminal cyclic CPP toward model stability and inhibitor activity, we also model the full-length and truncated systems devoid of the CPP, with a cyclized CPP, and with an open-configuration CPP, for a total of six systems that comprise our library. From this library, we present lead-stapled peptide candidates to be synthesized and evaluated experimentally as our next iteration of inhibitors against Bcr-Abl.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/metabolism
- Models, Molecular
- Molecular Dynamics Simulation
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell-Penetrating Peptides/chemistry
- Cell-Penetrating Peptides/pharmacology
- Cell-Penetrating Peptides/metabolism
Collapse
Affiliation(s)
- Maria
Carolina P. Lima
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Braxten D. Hornsby
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Carol S. Lim
- Department
of Molecular Pharmaceutics, University of
Utah, Salt Lake City, Utah 84112, United States
| | - Thomas E. Cheatham
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Zhang YH, Huang F, Li J, Shen W, Chen L, Feng K, Huang T, Cai YD. Identification of Protein-Protein Interaction Associated Functions Based on Gene Ontology. Protein J 2024; 43:477-486. [PMID: 38436837 DOI: 10.1007/s10930-024-10180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/05/2024]
Abstract
Protein-protein interactions (PPIs) involve the physical or functional contact between two or more proteins. Generally, proteins that can interact with each other always have special relationships. Some previous studies have reported that gene ontology (GO) terms are related to the determination of PPIs, suggesting the special patterns on the GO terms of proteins in PPIs. In this study, we explored the special GO term patterns on human PPIs, trying to uncover the underlying functional mechanism of PPIs. The experimental validated human PPIs were retrieved from STRING database, which were termed as positive samples. Additionally, we randomly paired proteins occurring in positive samples, yielding lots of negative samples. A simple calculation was conducted to count the number of positive samples for each GO term pair, where proteins in samples were annotated by GO terms in the pair individually. The similar number for negative samples was also counted and further adjusted due to the great gap between the numbers of positive and negative samples. The difference of the above two numbers and the relative ratio compared with the number on positive samples were calculated. This ratio provided a precise evaluation of the occurrence of GO term pairs for positive samples and negative samples, indicating the latent GO term patterns for PPIs. Our analysis unveiled several nuclear biological processes, including gene transcription, cell proliferation, and nutrient metabolism, as key biological functions. Interactions between major proliferative or metabolic GO terms consistently correspond with significantly reported PPIs in recent literature.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - JiaBo Li
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - WenFeng Shen
- School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai, 201209, People's Republic of China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, People's Republic of China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
7
|
Chen H, Yang T, Xu Y, Liang B, Liu X, Cai Y. Anti-inflammatory and immunoregulatory effects of colistin sulphate on human PBMCs. J Cell Mol Med 2024; 28:e18322. [PMID: 38661452 PMCID: PMC11044820 DOI: 10.1111/jcmm.18322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
In previous studies, CST has been identified as having an immunostimulatory effect on Caenorhabditis elegans and macrophage of rats. Here, we further investigated its immunomodulatory effects on human peripheral blood mononuclear cells (PBMCs). LPS-stimulated PBMCs inflammatory model was established. Flow cytometry was applied to measure phagocytosis of PBMCs. Cytokine mRNA and protein expression levels of LPS-stimulated PBMCs with or without CST were measured by qRT-PCR and ELISA. The transcriptomic profile of CST-treated PBMCs was investigated by RNA-sequencing. Gene Ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) were applied to find potential signalling pathways. PBMCs showed a significant increase in phagocytic activity at 6 h after being incubated with CST at the concentration of 10 μg/mL. In the presence of LPS, CST maintained and promoted the expression of TNF-α and chemokine CCL24. The content of pro-inflammatory cytokines, such as IL-1β, IL-6 and IFN-γ, which were released from LPS-stimulated PBMCs, was reduced by CST at 6 h. Anti-inflammatory cytokines, such as IL-4, IL-13 and TGF-β1, were significantly increased by CST at 24 h. A total of 277 differentially expressed immune-related genes (DEIRGs) were detected and cytokine-cytokine receptor interaction was highly enriched. CST presented obvious anti-inflammatory and immunoregulatory effects in LPS-induced PBMCs inflammatory model not only by improving the ability of PBMCs to clear pathogens but also by decreasing pro-inflammatory cytokines and increasing anti-inflammatory cytokines. And the mechanism may be related to cytokine-cytokine receptor interaction.
Collapse
Affiliation(s)
- Huiling Chen
- Department of PharmacyCenter of Medicine Clinical Research, Medical Supplies Center, PLA General HospitalBeijingChina
- Department of PharmacyZigong Fourth People's HospitalZigongChina
| | - Tianli Yang
- Department of PharmacyCenter of Medicine Clinical Research, Medical Supplies Center, PLA General HospitalBeijingChina
- Medical School of Chinese PLAGraduate School of Chinese PLA General HospitalBeijingChina
| | - Yiran Xu
- Department of PharmacyCenter of Medicine Clinical Research, Medical Supplies Center, PLA General HospitalBeijingChina
- The Second Naval Hospital of Southern Theater Command of PLASanyaChina
| | - Beibei Liang
- Department of PharmacyCenter of Medicine Clinical Research, Medical Supplies Center, PLA General HospitalBeijingChina
| | - Xianyong Liu
- Medical School of Chinese PLAGraduate School of Chinese PLA General HospitalBeijingChina
- Department of Thoracic SurgeryThe First Medical Center, PLA General HospitalBeijingChina
| | - Yun Cai
- Department of PharmacyCenter of Medicine Clinical Research, Medical Supplies Center, PLA General HospitalBeijingChina
| |
Collapse
|
8
|
Lima MCP, Hornsby BD, Lim CS, Cheatham TE. Computational Modeling of Stapled Coiled-Coil Inhibitors Against Bcr-Abl: Toward a Treatment Strategy for CML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.566894. [PMID: 38014060 PMCID: PMC10680756 DOI: 10.1101/2023.11.15.566894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The chimeric oncoprotein Bcr-Abl is the causative agent of virtually all chronic myeloid leukemias (CML) and a subset of acute lymphoblastic leukemias (ALL). As a result of the so-called Philadelphia Chromosome translocation t(9;22), Bcr-Abl manifests as a constitutively active tyrosine kinase which promotes leukemogenesis by activation of cell cycle signaling pathways. Constitutive and oncogenic activation is mediated by an N-terminal coiled-coil oligomerization domain in Bcr (Bcr-CC), presenting a therapeutic target for inhibition of Bcr-Abl activity toward the treatment of Bcr-Abl+ leukemias. Previously, we demonstrated that a rationally designed Bcr-CC mutant, CCmut3, exerts a dominant negative effect upon Bcr-Abl activity by preferential oligomerization with Bcr-CC. Moreover, we have shown conjugation to a leukemia-specific cell-penetrating peptide (CPP-CCmut3) improves intracellular delivery and activity. However, our full-length CPP-CCmut3 construct (81 aa) is encumbered by an intrinsically high degree of conformational variability and susceptibility to proteolytic degradation, relative to traditional small molecule therapeutics. Here, we iterate a new generation of our inhibitor against Bcr-CC mediated Bcr-Abl assembly that is designed to address these constraints through incorporation of all-hydrocarbon staples spanning i, i + 7 positions in helix α2 (CPP-CCmut3-st). We utilize computational modeling and biomolecular simulation to design and characterize single and double staple candidates in silico, evaluating binding energetics and building upon our seminal work modeling single hydrocarbon staples when applied to a truncated Bcr-CC sequence. This strategy enables us to efficiently build, characterize, and screen lead single/double stapled CPP-CCmut3-st candidates for experimental studies and validation in vitro and in vivo. In addition to full-length CPP-CCmut, we model a truncated system characterized by deletion of helix α1 and the flexible-loop linker, which are known to impart high conformational variability. To study the impact of the N-terminal cyclic CPP toward model stability and inhibitor activity, we also model the full-length and truncated systems without CPP, with cyclized CPP, and with linear CPP, for a total of six systems which comprise our library. From this library, we present lead stapled peptide candidates to be synthesized and evaluated experimentally as our next-generation inhibitors against Bcr-Abl.
Collapse
Affiliation(s)
- Maria Carolina P. Lima
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Braxten D. Hornsby
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Carol S. Lim
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
9
|
Eslami SM, Rahman IR, van der Donk WA. Expression of Lanthipeptides in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563208. [PMID: 37961259 PMCID: PMC10634679 DOI: 10.1101/2023.10.19.563208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cyclic peptides represent a burgeoning area of interest in therapeutic and biotechnological research. In opposition to their linear counterparts, cyclic peptides, such as certain ribosomally synthesized and post-translationally modified peptides (RiPPs), are more conformationally constrained and less susceptible to proteolytic degradation. The lanthipeptide RiPP cytolysin L forms a covalently enforced helical structure that may be used to disrupt helical interactions at protein-protein interfaces. Herein, an expression system is reported to produce lanthipeptides and structurally diverse cytolysin L derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide inhibitors of native protein-protein interactions.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
10
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
11
|
Chen SY, Zacharias M. What Makes a Good Protein-Protein Interaction Stabilizer: Analysis and Application of the Dual-Binding Mechanism. ACS CENTRAL SCIENCE 2023; 9:969-979. [PMID: 37252344 PMCID: PMC10214505 DOI: 10.1021/acscentsci.3c00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 05/31/2023]
Abstract
Protein-protein interactions (PPIs) are essential for biological processes including immune reactions and diseases. Inhibition of PPIs by drug-like compounds is a common basis for therapeutic approaches. In many cases the flat interface of PP complexes prevents discovery of specific compound binding to cavities on one partner and PPI inhibition. However, frequently new pockets are formed at the PP interface that allow accommodation of stabilizers which is often as desirable as inhibition but a much less explored alternative strategy. Herein, we employ molecular dynamics simulations and pocket detection to investigate 18 known stabilizers and associated PP complexes. For most cases, we find that a dual-binding mechanism, a similar stabilizer interaction strength with each protein partner, is an important prerequisite for effective stabilization. A few stabilizers follow an allosteric mechanism by stabilizing the protein bound structure and/or increase the PPI indirectly. On 226 protein-protein complexes, we find in >75% of the cases interface cavities suitable for binding of drug-like compounds. We propose a computational compound identification workflow that exploits new PP interface cavities and optimizes the dual-binding mechanism and apply it to 5 PP complexes. Our study demonstrates a great potential for in silico PPI stabilizers discovery with a wide range of therapeutic applications.
Collapse
|
12
|
Harwood SJ, Smith CR, Lawson JD, Ketcham JM. Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway. Int J Mol Sci 2023; 24:ijms24087373. [PMID: 37108538 PMCID: PMC10139024 DOI: 10.3390/ijms24087373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Within the MAPK/RAS pathway, there exists a plethora of protein-protein interactions (PPIs). For many years, scientists have focused efforts on drugging KRAS and its effectors in hopes to provide much needed therapies for patients with KRAS-mutant driven cancers. In this review, we focus on recent strategies to inhibit RAS-signaling via disrupting PPIs associated with SOS1, RAF, PDEδ, Grb2, and RAS.
Collapse
Affiliation(s)
| | | | - J David Lawson
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| | - John M Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| |
Collapse
|
13
|
Lanjanian H, Hosseini S, Narimani Z, Meknatkhah S, Riazi GH. A knowledge-based protein-protein interaction inhibition (KPI) pipeline: an insight from drug repositioning for COVID-19 inhibition. J Biomol Struct Dyn 2023; 41:11700-11713. [PMID: 36622367 DOI: 10.1080/07391102.2022.2163425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023]
Abstract
The inhibition of protein-protein interactions (PPIs) by small molecules is an exciting drug discovery strategy. Here, we aimed to develop a pipeline to identify candidate small molecules to inhibit PPIs. Therefore, KPI, a Knowledge-based Protein-Protein Interaction Inhibition pipeline, was introduced to improve the discovery of PPI inhibitors. Then, phytochemicals from a collection of known Middle Eastern antiviral herbs were screened to identify potential inhibitors of key PPIs involved in COVID-19. Here, the following investigations were sequenced: 1) Finding the binding partner and the interface of the proteins in PPIs, 2) Performing the blind ligand-protein inhibition (LPI) simulations, 3) Performing the local LPI simulations, 4) Simulating the interactions of the proteins and their binding partner in the presence and absence of the ligands, and 5) Performing the molecular dynamics simulations. The pharmacophore groups involved in the LPI were also characterized. Aloin, Genistein, Neoglucobrassicin, and Rutin are our new pipeline candidates for inhibiting PPIs involved in COVID-19. We also propose KPI for drug repositioning studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Hosseini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Narimani
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Sogol Meknatkhah
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
14
|
Calderon-Rivera A, Loya-Lopez S, Gomez K, Khanna R. Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels. Channels (Austin) 2022; 16:198-215. [PMID: 36017978 PMCID: PMC9423853 DOI: 10.1080/19336950.2022.2103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Voltage-gated sodium and calcium channels (VGSCs and VGCCs) play an important role in the modulation of physiologically relevant processes in excitable cells that range from action potential generation to neurotransmission. Once their expression and/or function is altered in disease, specific pharmacological approaches become necessary to mitigate the negative consequences of such dysregulation. Several classes of small molecules have been developed with demonstrated effectiveness on VGSCs and VGCCs; however, off-target effects have also been described, limiting their use and spurring efforts to find more specific and safer molecules to target these channels. There are a great number of plants and herbal preparations that have been empirically used for the treatment of diseases in which VGSCs and VGCCs are involved. Some of these natural products have progressed to clinical trials, while others are under investigation for their action mechanisms on signaling pathways, including channels. In this review, we synthesize information from ~30 compounds derived from natural sources like plants and fungi and delineate their effects on VGSCs and VGCCs in human disease, particularly pain. [Figure: see text].
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA,CONTACT Rajesh Khanna
| |
Collapse
|
15
|
Jeong KB, Kim JS, Dhanasekar NN, Lee MK, Chi SW. Application of nanopore sensors for biomolecular interactions and drug discovery. Chem Asian J 2022; 17:e202200679. [PMID: 35929410 DOI: 10.1002/asia.202200679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
Biomolecular interactions, including protein-protein, protein-nucleic acid, and protein/nucleic acid-ligand interactions, play crucial roles in various cellular signaling and biological processes, and offer attractive therapeutic targets in numerous human diseases. Currently, drug discovery is limited by the low efficiency and high cost of conventional ensemble-averaging-based techniques for biomolecular interaction analysis and high-throughput drug screening. Nanopores are an emerging technology for single-molecule sensing of biomolecules. Owing to the robust advantages of single-molecule sensing, nanopore sensors have contributed tremendously to nucleic acid sequencing and disease diagnostics. In this minireview, we summarize the recent developments and outlooks in single-molecule sensing of various biomolecular interactions for drug discovery applications using biological and solid-state nanopore sensors.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Naresh Niranjan Dhanasekar
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Rehman AU, Lu S, Khan AA, Khurshid B, Rasheed S, Wadood A, Zhang J. Hidden allosteric sites and De-Novo drug design. Expert Opin Drug Discov 2021; 17:283-295. [PMID: 34933653 DOI: 10.1080/17460441.2022.2017876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hidden allosteric sites are not visible in apo-crystal structures, but they may be visible in holo-structures when a certain ligand binds and maintains the ligand intended conformation. Several computational and experimental techniques have been used to investigate these hidden sites but identifying them remains a challenge. AREAS COVERED This review provides a summary of the many theoretical approaches for predicting hidden allosteric sites in disease-related proteins. Furthermore, promising cases have been thoroughly examined to reveal the hidden allosteric site and its modulator. EXPERT OPINION In the recent past, with the development in scientific techniques and bioinformatics tools, the number of drug targets for complex human diseases has significantly increased but unfortunately most of these targets are undruggable due to several reasons. Alternative strategies such as finding cryptic (hidden) allosteric sites are an attractive approach for exploitation of the discovery of new targets. These hidden sites are difficult to recognize compared to allosteric sites, mainly due to a lack of visibility in the crystal structure. In our opinion, after many years of development, MD simulations are finally becoming successful for obtaining a detailed molecular description of drug-target interaction.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Lim YX, Lin H, Seah SH, Lim YP. Reciprocal Regulation of Hippo and WBP2 Signalling-Implications in Cancer Therapy. Cells 2021; 10:cells10113130. [PMID: 34831354 PMCID: PMC8625973 DOI: 10.3390/cells10113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cancer is a global health problem. The delineation of molecular mechanisms pertinent to cancer initiation and development has spurred cancer therapy in the form of precision medicine. The Hippo signalling pathway is a tumour suppressor pathway implicated in a multitude of cancers. Elucidation of the Hippo pathway has revealed an increasing number of regulators that are implicated, some being potential therapeutic targets for cancer interventions. WW domain-binding protein 2 (WBP2) is an oncogenic transcriptional co-factor that interacts, amongst others, with two other transcriptional co-activators, YAP and TAZ, in the Hippo pathway. WBP2 was recently discovered to modulate the upstream Hippo signalling components by associating with LATS2 and WWC3. Exacerbating the complexity of the WBP2/Hippo network, WBP2 itself is reciprocally regulated by Hippo-mediated microRNA biogenesis, contributing to a positive feedback loop that further drives carcinogenesis. Here, we summarise the biological mechanisms of WBP2/Hippo reciprocal regulation and propose therapeutic strategies to overcome Hippo defects in cancers through targeting WBP2.
Collapse
Affiliation(s)
- Yvonne Xinyi Lim
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
| | - Hexian Lin
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
| | - Sock Hong Seah
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; (Y.X.L.); (H.L.); (S.H.S.)
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yoon Pin Lim
- Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
- Correspondence:
| |
Collapse
|
18
|
Sun H, Wang J, Liu S, Zhou X, Dai L, Chen C, Xu Q, Wen X, Cheng K, Sun H, Yuan H. Discovery of Novel Small Molecule Inhibitors Disrupting the PCSK9-LDLR Interaction. J Chem Inf Model 2021; 61:5269-5279. [PMID: 34553597 DOI: 10.1021/acs.jcim.1c00521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proprotein convertase subtilisin kexin 9 (PCSK9) has been identified as a reliable therapeutic target for hypercholesterolemia and coronary artery heart diseases since the monoclonal antibodies of PCSK9 have launched. Disrupting the protein-protein interaction (PPI) between PCSK9 and the low-density lipoprotein receptor (LDLR) has been considered as a promising approach for developing PCSK9 inhibitors. However, PPIs have been traditionally considered difficult to target by small molecules since the PPI surface is usually large, flat, featureless, and without a "pocket" or "groove" for ligand binding. The PCSK9-LDLR PPI interface is such a typical case. In this study, a potential binding pocket was generated on the PCSK9-LDLR PPI surface of PCSK9 through induced-fit docking. On the basis of this induced binding pocket, virtual screening, molecular dynamics (MD) simulation, and biological evaluations have been applied for the identification of novel small molecule inhibitors of PCSK9-LDLR PPI. Among the selected compounds, compound 13 exhibited certain PCSK9-LDLR PPI inhibitory activity (IC50: 7.57 ± 1.40 μM). The direct binding affinity between 13 and PCSK9 was determined with a KD value of 2.50 ± 0.73 μM. The LDLR uptake function could be also restored to a certain extent by 13 in HepG2 cells. This well-characterized hit compound will facilitate the further development of novel small molecule inhibitors of PCSK9-LDLR PPI.
Collapse
Affiliation(s)
- Hengzhi Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinzheng Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shengjie Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinyu Zhou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Caiping Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
19
|
Kunig VBK, Potowski M, Klika Škopić M, Brunschweiger A. Scanning Protein Surfaces with DNA-Encoded Libraries. ChemMedChem 2021; 16:1048-1062. [PMID: 33295694 PMCID: PMC8048995 DOI: 10.1002/cmdc.202000869] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Understanding the ligandability of a target protein, defined as the capability of a protein to bind drug-like compounds on any site, can give important stimuli to drug-development projects. For instance, inhibition of protein-protein interactions usually depends on the identification of protein surface binders. DNA-encoded chemical libraries (DELs) allow scanning of protein surfaces with large chemical space. Encoded library selection screens uncovered several protein-protein interaction inhibitors and compounds binding to the surface of G protein-coupled receptors (GPCRs) and kinases. The protein surface-binding chemotypes from DELs are predominantly chemically modified and cyclized peptides, and functional small-molecule peptidomimetics. Peptoid libraries and structural peptidomimetics have been less studied in the DEL field, hinting at hitherto less populated chemical space and suggesting alternative library designs. Roughly a third of bioactive molecules evolved from smaller, target-focused libraries. They showcase the potential of encoded libraries to identify more potent molecules from weak, for example, fragment-like, starting points.
Collapse
Affiliation(s)
- Verena B. K. Kunig
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Marco Potowski
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Mateja Klika Škopić
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| |
Collapse
|
20
|
Nagaratnam N, Delker SL, Jernigan R, Edwards TE, Snider J, Thifault D, Williams D, Nannenga BL, Stofega M, Sambucetti L, Hsieh JJ, Flint AJ, Fromme P, Martin-Garcia JM. Structural insights into the function of the catalytically active human Taspase1. Structure 2021; 29:873-885.e5. [PMID: 33784495 DOI: 10.1016/j.str.2021.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Taspase1 is an Ntn-hydrolase overexpressed in primary human cancers, coordinating cancer cell proliferation, invasion, and metastasis. Loss of Taspase1 activity disrupts proliferation of human cancer cells in vitro and in mouse models of glioblastoma. Taspase1 is synthesized as an inactive proenzyme, becoming active upon intramolecular cleavage. The activation process changes the conformation of a long fragment at the C-terminus of the α subunit, for which no full-length structural information exists and whose function is poorly understood. We present a cloning strategy to generate a circularly permuted form of Taspase1 to determine the crystallographic structure of active Taspase1. We discovered that this region forms a long helix and is indispensable for the catalytic activity of Taspase1. Our study highlights the importance of this element for the enzymatic activity of Ntn-hydrolases, suggesting that it could be a potential target for the design of inhibitors with potential to be developed into anticancer therapeutics.
Collapse
Affiliation(s)
- Nirupa Nagaratnam
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Silvia L Delker
- Beryllium Discovery Corp., with present address of UCB Biosciences, Bedford, MA 01730, USA
| | - Rebecca Jernigan
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., with present address of UCB Biosciences, Bedford, MA 01730, USA
| | - Janey Snider
- Division of Biosciences, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - Darren Thifault
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Dewight Williams
- Eyring Materials Center, Arizona State University, Tempe, AZ 85257, USA
| | - Brent L Nannenga
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Stofega
- Division of Biosciences, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - Lidia Sambucetti
- Division of Biosciences, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - James J Hsieh
- Molecular Oncology, Division of Oncology, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Andrew J Flint
- Frederick National Lab for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jose M Martin-Garcia
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid 28006, Spain.
| |
Collapse
|
21
|
Hakmi M, Bouricha ELM, Akachar J, Lmimouni B, El Harti J, Belyamani L, Ibrahimi A. In silico exploration of small-molecule α-helix mimetics as inhibitors of SARS-COV-2 attachment to ACE2. J Biomol Struct Dyn 2020; 40:1546-1557. [PMID: 33023417 DOI: 10.1080/07391102.2020.1830175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The novel coronavirus, SARS-CoV-2, has infected more than 10 million people and caused more than 502,539 deaths worldwide as of June 2020. The explosive spread of the virus and the rapid increase in the number of cases require the immediate development of effective therapies and vaccines as well as accurate diagnosis tools. The pathogenesis of the disease is triggered by the entry of SARS-CoV-2 via its spike protein into ACE2-bearing host cells, particularly pneumocytes, resulting in overactivation of the immune system, which attacks the infected cells and damages the lung tissue. The interaction of the SARS-CoV-2 receptor binding domain (RBD) with host cells is primarily mediated by the N-terminal helix of ACE2; thus, inhibition of the spike-ACE2 interaction may be a promising therapeutic strategy for blocking the virus entry into host cells. In this paper, we used an in-silico approach to explore small-molecule α-helix mimetics as inhibitors that may disrupt the attachment of SARS-CoV-2 to ACE2. First, the RBD-ACE2 interface in the 6M0J structure was studied by the MM-GBSA decomposition module of the HawkDock server, which led to the identification of two critical target regions in the RBD. Next, two virtual screening experiments of 7236 α-helix mimetics from ASINEX were conducted on the above regions using the iDock tool, which resulted in 10 candidates with favorable binding affinities. Finally, the stability of RBD complexes with the top-two ranked compounds was further validated by 100 ns of molecular dynamics simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Rabat, Morocco
| | - E L Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Rabat, Morocco
| | - Jihane Akachar
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Rabat, Morocco
| | - Badreddine Lmimouni
- Laboratory of medical parasitology and mycology, Military Hospital Mohammed V, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Bioinova Research Center, Rabat, Morocco
| | - Jaouad El Harti
- Therapeutic Chemistry Laboratory, Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Rabat, Morocco
| | - Lahcen Belyamani
- Emergency Department, Military Hospital Mohammed V, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Bioinova Research Center, Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Rabat, Morocco
| |
Collapse
|
22
|
Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther 2020; 5:213. [PMID: 32968059 PMCID: PMC7511340 DOI: 10.1038/s41392-020-00315-3] [Citation(s) in RCA: 388] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023] Open
Abstract
Protein-protein interactions (PPIs) have pivotal roles in life processes. The studies showed that aberrant PPIs are associated with various diseases, including cancer, infectious diseases, and neurodegenerative diseases. Therefore, targeting PPIs is a direction in treating diseases and an essential strategy for the development of new drugs. In the past few decades, the modulation of PPIs has been recognized as one of the most challenging drug discovery tasks. In recent years, some PPIs modulators have entered clinical studies, some of which been approved for marketing, indicating that the modulators targeting PPIs have broad prospects. Here, we summarize the recent advances in PPIs modulators, including small molecules, peptides, and antibodies, hoping to provide some guidance to the design of novel drugs targeting PPIs in the future.
Collapse
Affiliation(s)
- Haiying Lu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Jun He
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Sichuan, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Cheng Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| |
Collapse
|
23
|
Nadel CM, Ran X, Gestwicki JE. Luminescence complementation assay for measurement of binding to protein C-termini in live cells. Anal Biochem 2020; 611:113947. [PMID: 32918866 DOI: 10.1016/j.ab.2020.113947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions (PPIs) involving the extreme C-terminus serve important scaffolding and regulatory functions. Here, we leveraged NanoBiT technology to build a luminescent complementation assay for use in studying this subcategory of PPI. As a model system, we fused one component of NanoBiT to the disordered C-terminus of heat shock protein (Hsp70) and the other to its binding partner, the tetratricopeptide repeat (TPR) domain of CHIP/STUB1. We found that HEK293 cells that stably express these chimeras under a doxycycline promoter produced a robust luminescence signal. This signal was sensitive to mutations and it was further tuned by the expression of competitive C-termini. Using this system, we identified a promising, membrane permeable inhibitor of the Hsp70-CHIP interaction. More broadly, we anticipate that NanoBiT is well-suited for studying PPIs that involve C-termini.
Collapse
Affiliation(s)
- Cory M Nadel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Xu Ran
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
24
|
Sanchez-Martin C, Serapian SA, Colombo G, Rasola A. Dynamically Shaping Chaperones. Allosteric Modulators of HSP90 Family as Regulatory Tools of Cell Metabolism in Neoplastic Progression. Front Oncol 2020; 10:1177. [PMID: 32766157 PMCID: PMC7378685 DOI: 10.3389/fonc.2020.01177] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Molecular chaperones have recently emerged as fundamental regulators of salient biological routines, including metabolic adaptations to environmental changes. Yet, many of the molecular mechanisms at the basis of their functions are still unknown or at least uncertain. This is in part due to the lack of chemical tools that can interact with the chaperones to induce measurable functional perturbations. In this context, the use of small molecules as modulators of protein functions has proven relevant for the investigation of a number of biomolecular systems. Herein, we focus on the functions, interactions and signaling pathways of the HSP90 family of molecular chaperones as possible targets for the discovery of new molecular entities aimed at tuning their activity and interactions. HSP90 and its mitochondrial paralog, TRAP1, regulate the activity of crucial metabolic circuitries, making cells capable of efficiently using available energy sources, with relevant implications both in healthy conditions and in a variety of disease states and especially cancer. The design of small-molecules targeting the chaperone cycle of HSP90 and able to inhibit or stimulate the activity of the protein can provide opportunities to finely dissect their biochemical activities and to obtain lead compounds to develop novel, mechanism-based drugs.
Collapse
Affiliation(s)
| | | | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy.,Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padua, Italy
| |
Collapse
|
25
|
Milton-Harris L, Jeeves M, Walker SA, Ward SE, Mancini EJ. Small molecule inhibits T-cell acute lymphoblastic leukaemia oncogenic interaction through conformational modulation of LMO2. Oncotarget 2020; 11:1737-1748. [PMID: 32477463 PMCID: PMC7233811 DOI: 10.18632/oncotarget.27580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
Ectopic expression in T-cell precursors of LIM only protein 2 (LMO2), a key factor in hematopoietic development, has been linked to the onset of T-cell acute lymphoblastic leukaemia (T-ALL). In the T-ALL context, LMO2 drives oncogenic progression through binding to erythroid-specific transcription factor SCL/TAL1 and sequestration of E-protein transcription factors, normally required for T-cell differentiation. A key requirement for the formation of this oncogenic protein-protein interaction (PPI) is the conformational flexibility of LMO2. Here we identify a small molecule inhibitor of the SCL-LMO2 PPI, which hinders the interaction in vitro through direct binding to LMO2. Biophysical analysis demonstrates that this inhibitor acts through a mechanism of conformational modulation of LMO2. Importantly, this work has led to the identification of a small molecule inhibitor of the SCL-LMO2 PPI, which can provide a starting point for the development of new agents for the treatment of T-ALL. These results suggest that similar approaches, based on the modulation of protein conformation by small molecules, might be used for therapeutic targeting of other oncogenic PPIs.
Collapse
Affiliation(s)
- Leanne Milton-Harris
- School of Life Sciences, Biochemistry Department, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Sarah A Walker
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Erika J Mancini
- School of Life Sciences, Biochemistry Department, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| |
Collapse
|
26
|
Zhong M, Lynch A, Muellers SN, Jehle S, Luo L, Hall DR, Iwase R, Carolan JP, Egbert M, Wakefield A, Streu K, Harvey CM, Ortet PC, Kozakov D, Vajda S, Allen KN, Whitty A. Interaction Energetics and Druggability of the Protein-Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2). Biochemistry 2020; 59:563-581. [PMID: 31851823 PMCID: PMC8177486 DOI: 10.1021/acs.biochem.9b00943] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development of small molecule inhibitors of protein-protein interactions (PPIs) is hampered by our poor understanding of the druggability of PPI target sites. Here, we describe the combined application of alanine-scanning mutagenesis, fragment screening, and FTMap computational hot spot mapping to evaluate the energetics and druggability of the highly charged PPI interface between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), an important drug target. FTMap identifies four binding energy hot spots at the active site. Only two of these are exploited by Nrf2, which alanine scanning of both proteins shows to bind primarily through E79 and E82 interacting with KEAP1 residues S363, R380, R415, R483, and S508. We identify fragment hits and obtain X-ray complex structures for three fragments via crystal soaking using a new crystal form of KEAP1. Combining these results provides a comprehensive and quantitative picture of the origins of binding energy at the interface. Our findings additionally reveal non-native interactions that might be exploited in the design of uncharged synthetic ligands to occupy the same site on KEAP1 that has evolved to bind the highly charged DEETGE binding loop of Nrf2. These include π-stacking with KEAP1 Y525 and interactions at an FTMap-identified hot spot deep in the binding site. Finally, we discuss how the complementary information provided by alanine-scanning mutagenesis, fragment screening, and computational hot spot mapping can be integrated to more comprehensively evaluate PPI druggability.
Collapse
Affiliation(s)
| | | | | | | | | | - David R Hall
- Acpharis, Inc. , 160 North Mill Street , Holliston , Massachusetts 01746 , United States
| | | | | | | | | | | | | | | | - Dima Kozakov
- Department of Applied Mathematics , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Sandor Vajda
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Karen N Allen
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Adrian Whitty
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
27
|
Abstract
Proteasomes are large, multicatalytic protein complexes that cleave cellular proteins into peptides. There are many distinct forms of proteasomes that differ in catalytically active subunits, regulatory subunits, and associated proteins. Proteasome inhibitors are an important class of drugs for the treatment of multiple myeloma and mantle cell lymphoma, and they are being investigated for other diseases. Bortezomib (Velcade) was the first proteasome inhibitor to be approved by the US Food and Drug Administration. Carfilzomib (Kyprolis) and ixazomib (Ninlaro) have recently been approved, and more drugs are in development. While the primary mechanism of action is inhibition of the proteasome, the downstream events that lead to selective cell death are not entirely clear. Proteasome inhibitors have been found to affect protein turnover but at concentrations that are much higher than those achieved clinically, raising the possibility that some of the effects of proteasome inhibitors are mediated by other mechanisms.
Collapse
Affiliation(s)
- Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
28
|
Long MJC, Hnedzko D, Kim BK, Aye Y. Breaking the Fourth Wall: Modulating Quaternary Associations for Protein Regulation and Drug Discovery. Chembiochem 2019; 20:1091-1104. [PMID: 30589188 PMCID: PMC6499692 DOI: 10.1002/cbic.201800716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions (PPIs) are an effective means to orchestrate intricate biological processes required to sustain life. Approximately 650 000 PPIs underlie the human interactome; thus underscoring its complexity and the manifold signaling outputs altered in response to changes in specific PPIs. This minireview illustrates the growing arsenal of PPI assemblies and offers insights into how these varied PPI regulatory modalities are relevant to customized drug discovery, with a focus on cancer. First, known and emerging PPIs and PPI-targeted drugs of both natural and synthetic origin are categorized. Building on these discussions, the merits of PPI-guided therapeutics over traditional drug design are discussed. Finally, a compare-and-contrast section for different PPI blockers, with gain-of-function PPI interventions, such as PROTACS, is provided.
Collapse
Affiliation(s)
- Marcus J. C. Long
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, HU17 8QH, UK
| | - Dziyana Hnedzko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Bo Kyoung Kim
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
| | - Yimon Aye
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, HU17 8QH, UK
| |
Collapse
|
29
|
Diharce J, Cueto M, Beltramo M, Aucagne V, Bonnet P. In Silico Peptide Ligation: Iterative Residue Docking and Linking as a New Approach to Predict Protein-Peptide Interactions. Molecules 2019; 24:E1351. [PMID: 30959812 PMCID: PMC6480567 DOI: 10.3390/molecules24071351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
Peptide⁻protein interactions are corner-stones of living functions involved in essential mechanisms, such as cell signaling. Given the difficulty of obtaining direct experimental structural biology data, prediction of those interactions is of crucial interest for the rational development of new drugs, notably to fight diseases, such as cancer or Alzheimer's disease. Because of the high flexibility of natural unconstrained linear peptides, prediction of their binding mode in a protein cavity remains challenging. Several theoretical approaches have been developed in the last decade to address this issue. Nevertheless, improvements are needed, such as the conformation prediction of peptide side-chains, which are dependent on peptide length and flexibility. Here, we present a novel in silico method, Iterative Residue Docking and Linking (IRDL), to efficiently predict peptide⁻protein interactions. In order to reduce the conformational space, this innovative method splits peptides into several short segments. Then, it uses the performance of intramolecular covalent docking to rebuild, sequentially, the complete peptide in the active site of its protein target. Once the peptide is constructed, a rescoring step is applied in order to correctly rank all IRDL solutions. Applied on a set of 11 crystallized peptide⁻protein complexes, the IRDL method shows promising results, since it is able to retrieve experimental binding conformations with a Root Mean Square Deviation (RMSD) below 2 Å in the top five ranked solutions. For some complexes, IRDL method outperforms two other docking protocols evaluated in this study. Hence, IRDL is a new tool that could be used in drug design projects to predict peptide⁻protein interactions.
Collapse
Affiliation(s)
- Julien Diharce
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans CEDEX 2, France.
| | - Mickaël Cueto
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans CEDEX 2, France.
| | - Massimiliano Beltramo
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Universitéde Tours; IFCE), F-37380 Nouzilly, France.
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans cedex 2, France.
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans CEDEX 2, France.
| |
Collapse
|
30
|
Kunig V, Potowski M, Gohla A, Brunschweiger A. DNA-encoded libraries - an efficient small molecule discovery technology for the biomedical sciences. Biol Chem 2019; 399:691-710. [PMID: 29894294 DOI: 10.1515/hsz-2018-0119] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.
Collapse
Affiliation(s)
- Verena Kunig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Marco Potowski
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Anne Gohla
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Andreas Brunschweiger
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| |
Collapse
|
31
|
Costamagna A, Rossi Sebastiano M, Natalini D, Simoni M, Valabrega G, Defilippi P, Visentin S, Ermondi G, Turco E, Caron G, Cabodi S. Modeling ErbB2-p130Cas interaction to design new potential anticancer agents. Sci Rep 2019; 9:3089. [PMID: 30816273 PMCID: PMC6395809 DOI: 10.1038/s41598-019-39510-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/11/2019] [Indexed: 12/02/2022] Open
Abstract
The ErbB2 receptor tyrosine kinase is overexpressed in approximately 15–20% of breast tumors and associated with aggressive disease and poor clinical outcome. p130Cas represents a nodal scaffold protein regulating cell survival, migration and proliferation in normal and pathological contexts. p130Cas overexpression in ErbB2 human breast cancer correlates with poor prognosis and metastasis formation. Recent data indicate that p130Cas association to ErbB2 protects ErbB2 from degradation, thus enhancing tumorigenesis. Therefore, inhibiting p130Cas/ErbB2 interaction might represent a new therapeutic strategy to target breast cancer. Here we demonstrate by performing Molecular Modeling, Molecular Dynamics, dot blot, ELISA and fluorescence quenching experiments, that p130Cas binds directly to ErbB2. Then, by structure-based virtual screening, we identified two potential inhibitors of p130Cas/ErbB2 interaction. Their experimental validation was performed in vitro and in ErbB2-positive breast cancer cellular models. The results highlight that both compounds interfere with p130Cas/ErbB2 binding and significantly affect cell proliferation and sensitivity to Trastuzumab. Overall, this study identifies p130Cas/ErbB2 complex as a potential breast cancer target revealing new therapeutic perspectives for protein-protein interaction (PPI).
Collapse
Affiliation(s)
- Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | | | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matilde Simoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | | | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giuseppe Ermondi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giulia Caron
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
32
|
Maziarz M, Leyme A, Marivin A, Luebbers A, Patel PP, Chen Z, Sprang SR, Garcia-Marcos M. Atypical activation of the G protein Gα q by the oncogenic mutation Q209P. J Biol Chem 2018; 293:19586-19599. [PMID: 30352874 DOI: 10.1074/jbc.ra118.005291] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
The causative role of G protein-coupled receptor (GPCR) pathway mutations in uveal melanoma (UM) has been well-established. Nearly all UMs bear an activating mutation in a GPCR pathway mediated by G proteins of the Gq/11 family, driving tumor initiation and possibly metastatic progression. Thus, targeting this pathway holds therapeutic promise for managing UM. However, direct targeting of oncogenic Gαq/11 mutants, present in ∼90% of UMs, is complicated by the belief that these mutants structurally resemble active Gαq/11 WT. This notion is solidly founded on previous studies characterizing Gα mutants in which a conserved catalytic glutamine (Gln-209 in Gαq) is replaced by leucine, which leads to GTPase function deficiency and constitutive activation. Whereas Q209L accounts for approximately half of GNAQ mutations in UM, Q209P is as frequent as Q209L and also promotes oncogenesis, but has not been characterized at the molecular level. Here, we characterized the biochemical and signaling properties of Gαq Q209P and found that it is also GTPase-deficient and activates downstream signaling as efficiently as Gαq Q209L. However, Gαq Q209P had distinct molecular and functional features, including in the switch II region of Gαq Q209P, which adopted a conformation different from that of Gαq Q209L or active WT Gαq, resulting in altered binding to effectors, Gβγ, and regulators of G-protein signaling (RGS) proteins. Our findings reveal that the molecular properties of Gαq Q209P are fundamentally different from those in other active Gαq proteins and could be leveraged as a specific vulnerability for the ∼20% of UMs bearing this mutation.
Collapse
Affiliation(s)
- Marcin Maziarz
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Anthony Leyme
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Arthur Marivin
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Alex Luebbers
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Prachi P Patel
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Zhe Chen
- the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Stephen R Sprang
- the Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812
| | - Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
33
|
Gestwicki JE, Shao H. Inhibitors and chemical probes for molecular chaperone networks. J Biol Chem 2018; 294:2151-2161. [PMID: 30213856 DOI: 10.1074/jbc.tm118.002813] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperones are central mediators of protein homeostasis. In that role, they engage in widespread protein-protein interactions (PPIs) with each other and with their "client" proteins. Together, these PPIs form the backbone of a network that ensures proper vigilance over the processes of protein folding, trafficking, quality control, and degradation. The core chaperones, such as the heat shock proteins Hsp60, Hsp70, and Hsp90, are widely expressed in most tissues, yet there is growing evidence that the PPIs among them may be re-wired in disease conditions. This possibility suggests that these PPIs, and perhaps not the individual chaperones themselves, could be compelling drug targets. Indeed, recent efforts have yielded small molecules that inhibit (or promote) a subset of inter-chaperone PPIs. These chemical probes are being used to study chaperone networks in a range of models, and the successes with these approaches have inspired a community-wide objective to produce inhibitors for a broader set of targets. In this Review, we discuss progress toward that goal and point out some of the challenges ahead.
Collapse
Affiliation(s)
- Jason E Gestwicki
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| | - Hao Shao
- From the Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, California 94158
| |
Collapse
|
34
|
Borkin D, Klossowski S, Pollock J, Miao H, Linhares BM, Kempinska K, Jin Z, Purohit T, Wen B, He M, Sun D, Cierpicki T, Grembecka J. Complexity of Blocking Bivalent Protein-Protein Interactions: Development of a Highly Potent Inhibitor of the Menin-Mixed-Lineage Leukemia Interaction. J Med Chem 2018; 61:4832-4850. [PMID: 29738674 PMCID: PMC7029623 DOI: 10.1021/acs.jmedchem.8b00071] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The protein-protein interaction between menin and mixed-lineage leukemia 1 (MLL1) plays an important role in development of acute leukemia with translocations of the MLL1 gene and in solid tumors. Here, we report the development of a new generation of menin-MLL1 inhibitors identified by structure-based optimization of the thienopyrimidine class of compounds. This work resulted in compound 28 (MI-1481), which showed very potent inhibition of the menin-MLL1 interaction (IC50 = 3.6 nM), representing the most potent reversible menin-MLL1 inhibitor reported to date. The crystal structure of the menin-28 complex revealed a hydrogen bond with Glu366 and hydrophobic interactions, which contributed to strong inhibitory activity of 28. Compound 28 also demonstrates pronounced activity in MLL leukemia cells and in vivo in MLL leukemia models. Thus, 28 is a valuable menin-MLL1 inhibitor that can be used for potential therapeutic applications and in further studies regarding the role of menin in cancer.
Collapse
Affiliation(s)
- Dmitry Borkin
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Szymon Klossowski
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan Pollock
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brian M. Linhares
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Zhuang Jin
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miao He
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA,Corresponding author; Jolanta Grembecka, PhD, Associate Professor, Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI, 48108, , Tel. 734-615-9319
| |
Collapse
|
35
|
Ran X, Gestwicki JE. Inhibitors of protein-protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Curr Opin Chem Biol 2018; 44:75-86. [PMID: 29908451 DOI: 10.1016/j.cbpa.2018.06.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions (PPI) were once considered 'undruggable', but clinical successes, driven by advanced methods in drug discovery, have challenged that notion. Here, we review the last three years of literature on PPI inhibitors to understand what is working and why. From the 66 recently reported PPI inhibitors, we found that the average molecular weight was significantly greater than 500Da, but that this trend was driven, in large part, by the contribution of peptide-based compounds. Despite differences in average molecular weight, we found that compounds based on small molecules or peptides were almost equally likely to be potent inhibitors (KD<1μM). Finally, we found PPIs with buried surface area (BSA) less than 2000Å2 were more likely to be inhibited by small molecules, while PPIs with larger BSA values were typically inhibited by peptides. PPIs with BSA values over 4000Å2 seemed to create a particular challenge, especially for orthosteric small molecules. Thus, it seems important to choose the inhibitor scaffold based on the properties of the target interaction. Moreover, this survey suggests a (more nuanced) conclusion to the question of whether PPIs are good drug targets; namely, that some PPIs are readily 'druggable' given the right choice of scaffold, while others still seem to deserve the 'undruggable' moniker.
Collapse
Affiliation(s)
- Xu Ran
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases and Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
36
|
Vajda S, Beglov D, Wakefield AE, Egbert M, Whitty A. Cryptic binding sites on proteins: definition, detection, and druggability. Curr Opin Chem Biol 2018; 44:1-8. [PMID: 29800865 PMCID: PMC6088748 DOI: 10.1016/j.cbpa.2018.05.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022]
Abstract
Many proteins in their unbound structures lack surface pockets appropriately sized for drug binding. Hence, a variety of experimental and computational tools have been developed for the identification of cryptic sites that are not evident in the unbound protein but form upon ligand binding, and can provide tractable drug target sites. The goal of this review is to discuss the definition, detection, and druggability of such sites, and their potential value for drug discovery. Novel methods based on molecular dynamics simulations are particularly promising and yield a large number of transient pockets, but it has been shown that only a minority of such sites are generally capable of binding ligands with substantial affinity. Based on recent studies, current methodology can be improved by combining molecular dynamics with fragment docking and machine learning approaches.
Collapse
Affiliation(s)
- Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; Department of Chemistry, Boston University, Boston, MA 02215, United States.
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Amanda E Wakefield
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; Department of Chemistry, Boston University, Boston, MA 02215, United States
| | - Megan Egbert
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
37
|
Abstract
Molecular dynamics (MD) simulations of proteins reveal the existence of many transient surface pockets; however, the factors determining what small subset of these represent druggable or functionally relevant ligand binding sites, called "cryptic sites," are not understood. Here, we examine multiple X-ray structures for a set of proteins with validated cryptic sites, using the computational hot spot identification tool FTMap. The results show that cryptic sites in ligand-free structures generally have a strong binding energy hot spot very close by. As expected, regions around cryptic sites exhibit above-average flexibility, and close to 50% of the proteins studied here have unbound structures that could accommodate the ligand without clashes. Nevertheless, the strong hot spot neighboring each cryptic site is almost always exploited by the bound ligand, suggesting that binding may frequently involve an induced fit component. We additionally evaluated the structural basis for cryptic site formation, by comparing unbound to bound structures. Cryptic sites are most frequently occluded in the unbound structure by intrusion of loops (22.5%), side chains (19.4%), or in some cases entire helices (5.4%), but motions that create sites that are too open can also eliminate pockets (19.4%). The flexibility of cryptic sites frequently leads to missing side chains or loops (12%) that are particularly evident in low resolution crystal structures. An interesting observation is that cryptic sites formed solely by the movement of side chains, or of backbone segments with fewer than five residues, result only in low affinity binding sites with limited use for drug discovery.
Collapse
|
38
|
Whitty A, Viarengo LA, Zhong M. Progress towards the broad use of non-peptide synthetic macrocycles in drug discovery. Org Biomol Chem 2018; 15:7729-7735. [PMID: 28876025 DOI: 10.1039/c7ob00056a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We discuss progress towards addressing three key questions pertaining to the design of screening libraries of synthetic non-peptidic macrocycles (MCs) for drug discovery: What structural and physicochemical properties of MCs maximize the likelihood of achieving strong and specific binding to protein targets? What features render a protein target suitable for binding MCs, and can this information be used to identify suitable targets for inhibition by MCs? What properties of synthetic MCs confer good pharmaceutical properties, and particularly good aqueous solubility coupled with passive membrane permeability? We additionally discuss how the criteria that define a meaningful MC screening hit are linked to the size of the screening library and the synthetic methodology employed in its preparation.
Collapse
Affiliation(s)
- Adrian Whitty
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
39
|
Feng T, Chen F, Kang Y, Sun H, Liu H, Li D, Zhu F, Hou T. HawkRank: a new scoring function for protein-protein docking based on weighted energy terms. J Cheminform 2017; 9:66. [PMID: 29282565 PMCID: PMC5745212 DOI: 10.1186/s13321-017-0254-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/14/2017] [Indexed: 01/09/2023] Open
Abstract
Deciphering the structural determinants of protein–protein interactions (PPIs) is essential to gain a deep understanding of many important biological functions in the living cells. Computational approaches for the structural modeling of PPIs, such as protein–protein docking, are quite needed to complement existing experimental techniques. The reliability of a protein–protein docking method is dependent on the ability of the scoring function to accurately distinguish the near-native binding structures from a huge number of decoys. In this study, we developed HawkRank, a novel scoring function designed for the sampling stage of protein–protein docking by summing the contributions from several energy terms, including van der Waals potentials, electrostatic potentials and desolvation potentials. First, based on the solvation free energies predicted by the Generalized Born model for ~ 800 proteins, a SASA (solvent accessible surface area)-based solvation model was developed, which can give the aqueous solvation free energies for proteins by summing the contributions of 21 atom types. Then, the van der Waals potentials and electrostatic potentials based on the Amber ff14SB force field were computed. Finally, the HawkRank scoring function was derived by determining the most optimal weights for five energy terms based on the training set. Here, MSR (modified success rate), a novel protein–protein scoring quality index, was used to assess the performance of HawkRank and three other popular protein–protein scoring functions, including ZRANK, FireDock and dDFIRE. The results show that HawkRank outperformed the other three scoring functions according to the total number of hits and MSR. HawkRank is available at http://cadd.zju.edu.cn/programs/hawkrank.
Collapse
Affiliation(s)
- Ting Feng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fu Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
40
|
Translocation Biosensors-Versatile Tools to Probe Protein Functions in Living Cells. Methods Mol Biol 2017. [PMID: 29082494 DOI: 10.1007/978-1-4939-7357-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this chapter, you will learn how to use translocation biosensors to investigate protein functions in living cells. We here present three classes of modular protein translocation biosensors tailored to investigate: (1) signal-mediated nucleo-cytoplasmic transport, (2) protease activity, and (3) protein-protein interactions. Besides the mapping of protein function, the biosensors are also applicable to identify chemicals and/or (nano) materials modulating the respective protein activities and can also be exploited for RNAi-mediated genetic screens.
Collapse
|
41
|
Yuan P, Zhang H, Qian L, Mao X, Du S, Yu C, Peng B, Yao SQ. Intracellular Delivery of Functional Native Antibodies under Hypoxic Conditions by Using a Biodegradable Silica Nanoquencher. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Hailong Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Linghui Qian
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xin Mao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Changmin Yu
- College of Materials Science & Engineering South China University of Technology 510640 Guangzhou China
| | - Bo Peng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
42
|
Yuan P, Zhang H, Qian L, Mao X, Du S, Yu C, Peng B, Yao SQ. Intracellular Delivery of Functional Native Antibodies under Hypoxic Conditions by Using a Biodegradable Silica Nanoquencher. Angew Chem Int Ed Engl 2017; 56:12481-12485. [DOI: 10.1002/anie.201705578] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/24/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Hailong Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Linghui Qian
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xin Mao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Changmin Yu
- College of Materials Science & Engineering South China University of Technology 510640 Guangzhou China
| | - Bo Peng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
43
|
Protein Translocation Assays to Probe Protease Function and Screen for Inhibitors. Methods Mol Biol 2017. [PMID: 28315255 DOI: 10.1007/978-1-4939-6850-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this chapter, you will learn how to use translocation biosensors to investigate protease functions in living cells. We here present modular protein translocation biosensors tailored to investigate protease activity and protein-protein interactions. Besides the mapping of protease function, the biosensors are also applicable to identify chemicals and/or (nano)materials modulating the respective protein activities and can also be exploited for RNAi-mediated genetic screens.
Collapse
|
44
|
Zaidman D, Wolfson HJ. Protein-Peptide Interaction Design: PepCrawler and PinaColada. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2017; 1561:279-290. [PMID: 28236244 DOI: 10.1007/978-1-4939-6798-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this chapter we present two methods related to rational design of inhibitory peptides: PepCrawler: A tool to derive binding peptides from protein-protein complexes and the prediction of protein-peptide complexes. Given an initial protein-peptide complex, the method detects improved predicted peptide binding conformations which bind the protein with higher affinity. This program is a robotics motivated algorithm, representing the peptide as a robotic arm moving among obstacles and exploring its conformational space in an efficient way. PinaColada: A peptide design program for the discovery of novel peptide candidates that inhibit protein-protein interactions. PinaColada uses PepCrawler while introducing sequence mutations, in order to find novel inhibitory peptides for PPIs. It uses the ant colony optimization approach to explore the peptide's sequence space, while using PepCrawler in the refinement stage.
Collapse
Affiliation(s)
- Daniel Zaidman
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Haim J Wolfson
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
45
|
Hewitt SH, Filby MH, Hayes E, Kuhn LT, Kalverda AP, Webb ME, Wilson AJ. Protein Surface Mimetics: Understanding How Ruthenium Tris(Bipyridines) Interact with Proteins. Chembiochem 2016; 18:223-231. [PMID: 27860106 PMCID: PMC5347857 DOI: 10.1002/cbic.201600552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 12/21/2022]
Abstract
Protein surface mimetics achieve high-affinity binding by exploiting a scaffold to project binding groups over a large area of solvent-exposed protein surface to make multiple cooperative noncovalent interactions. Such recognition is a prerequisite for competitive/orthosteric inhibition of protein-protein interactions (PPIs). This paper describes biophysical and structural studies on ruthenium(II) tris(bipyridine) surface mimetics that recognize cytochrome (cyt) c and inhibit the cyt c/cyt c peroxidase (CCP) PPI. Binding is electrostatically driven, with enhanced affinity achieved through enthalpic contributions thought to arise from the ability of the surface mimetics to make a greater number of noncovalent interactions than CCP with surface-exposed basic residues on cyt c. High-field natural abundance 1 H,15 N HSQC NMR experiments are consistent with surface mimetics binding to cyt c in similar manner to CCP. This provides a framework for understanding recognition of proteins by supramolecular receptors and informing the design of ligands superior to the protein partners upon which they are inspired.
Collapse
Affiliation(s)
- Sarah H Hewitt
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Maria H Filby
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Ed Hayes
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Lars T Kuhn
- Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Arnout P Kalverda
- Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Michael E Webb
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Astbury Centre For Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
46
|
Cardenas MG, Oswald E, Yu W, Xue F, MacKerell AD, Melnick AM. The Expanding Role of the BCL6 Oncoprotein as a Cancer Therapeutic Target. Clin Cancer Res 2016; 23:885-893. [PMID: 27881582 DOI: 10.1158/1078-0432.ccr-16-2071] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
BCL6 was initially discovered as an oncogene in B-cell lymphomas, where it drives the malignant phenotype by repressing proliferation and DNA damage checkpoints and blocking B-cell terminal differentiation. BCL6 mediates its effects by binding to hundreds of target genes and then repressing these genes by recruiting several different chromatin-modifying corepressor complexes. Structural characterization of BCL6-corepressor complexes suggested that BCL6 might be a druggable target. Accordingly, a number of compounds have been designed to bind to BCL6 and block corepressor recruitment. These compounds, based on peptide or small-molecule scaffolds, can potently block BCL6 repression of target genes and kill lymphoma cells. In the case of diffuse large B-cell lymphomas (DLBCL), BCL6 inhibitors are equally effective in suppressing both the germinal center B-cell (GCB)- and the more aggressive activated B-cell (ABC)-DLBCL subtypes, both of which require BCL6 to maintain their survival. In addition, BCL6 is implicated in an expanding scope of hematologic and solid tumors. These include, but are not limited to, B-acute lymphoblastic leukemia, chronic myeloid leukemia, breast cancer, and non-small cell lung cancer. BCL6 inhibitors have been shown to exert potent effects against these tumor types. Moreover, mechanism-based combinations of BCL6 inhibitors with other agents have yielded synergistic and often quite dramatic activity. Hence, there is a compelling case to accelerate the development of BCL6-targeted therapies for translation to the clinical setting. Clin Cancer Res; 23(4); 885-93. ©2016 AACR.
Collapse
Affiliation(s)
- Mariano G Cardenas
- Department of Hematology/Oncology, Weill Cornell Medicine, New York, New York
| | - Erin Oswald
- Department of Hematology/Oncology, Weill Cornell Medicine, New York, New York
| | - Wenbo Yu
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Ari M Melnick
- Department of Hematology/Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
47
|
Dasgupta S, Yang C, Castro LM, Tashima AK, Ferro ES, Moir RD, Willis IM, Fricker LD. Analysis of the Yeast Peptidome and Comparison with the Human Peptidome. PLoS One 2016; 11:e0163312. [PMID: 27685651 PMCID: PMC5042401 DOI: 10.1371/journal.pone.0163312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Peptides function as signaling molecules in species as diverse as humans and yeast. Mass spectrometry-based peptidomics techniques provide a relatively unbiased method to assess the peptidome of biological samples. In the present study, we used a quantitative peptidomic technique to characterize the peptidome of the yeast Saccharomyces cerevisiae and compare it to the peptidomes of mammalian cell lines and tissues. Altogether, 297 yeast peptides derived from 75 proteins were identified. The yeast peptides are similar to those of the human peptidome in average size and amino acid composition. Inhibition of proteasome activity with either bortezomib or epoxomicin led to decreased levels of some yeast peptides, suggesting that these peptides are generated by the proteasome. Approximately 30% of the yeast peptides correspond to the N- or C-terminus of the protein; the human peptidome is also highly represented in N- or C-terminal protein fragments. Most yeast and humans peptides are derived from a subset of abundant proteins, many with functions involving cellular metabolism or protein synthesis and folding. Of the 75 yeast proteins that give rise to peptides, 24 have orthologs that give rise to human and/or mouse peptides and for some, the same region of the proteins are found in the human, mouse, and yeast peptidomes. Taken together, these results support the hypothesis that intracellular peptides may have specific and conserved biological functions.
Collapse
Affiliation(s)
- Sayani Dasgupta
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
| | - Ciyu Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Leandro M. Castro
- Biomedical Science Institute, Campus on the São Paulo Coast, São Paulo State University, São Vicente, 11330–900, SP, Brazil
| | - Alexandre K. Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP, 04023–901, SP, Brazil
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, São Paulo, 05508–000, SP, Brazil
| | - Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
| | - Lloyd D. Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461, United States of America
- * E-mail:
| |
Collapse
|
48
|
Maffucci I, Contini A. Improved Computation of Protein–Protein Relative Binding Energies with the Nwat-MMGBSA Method. J Chem Inf Model 2016; 56:1692-704. [DOI: 10.1021/acs.jcim.6b00196] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Irene Maffucci
- Dipartimento di Scienze Farmaceutiche
− Sezione di Chimica Generale e Organica “Alessandro
Marchesini”, Università degli Studi di Milano, Via
Venezian, 21, 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche
− Sezione di Chimica Generale e Organica “Alessandro
Marchesini”, Università degli Studi di Milano, Via
Venezian, 21, 20133 Milano, Italy
| |
Collapse
|
49
|
Sedan Y, Marcu O, Lyskov S, Schueler-Furman O. Peptiderive server: derive peptide inhibitors from protein-protein interactions. Nucleic Acids Res 2016; 44:W536-41. [PMID: 27141963 PMCID: PMC4987930 DOI: 10.1093/nar/gkw385] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/05/2023] Open
Abstract
The Rosetta Peptiderive protocol identifies, in a given structure of a protein-protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a 'hot segment', a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive.
Collapse
Affiliation(s)
- Yuval Sedan
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel Department of Chemical and Biomolecular Engineering, John Hopkins University, Baltimore, MD 21218, USA
| | - Orly Marcu
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Sergey Lyskov
- Racah Institute of Physics, Hebrew University of Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
50
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|