1
|
Zimmer AM. Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding. J Comp Physiol B 2024; 194:697-715. [PMID: 38849577 DOI: 10.1007/s00360-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
2
|
Williamson G, Harris T, Bizior A, Hoskisson PA, Pritchard L, Javelle A. Biological ammonium transporters: evolution and diversification. FEBS J 2024; 291:3786-3810. [PMID: 38265636 DOI: 10.1111/febs.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paul Alan Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
3
|
Yamaguchi Y, Ikeba K, Yoshida MA, Takagi W. Molecular basis of the unique osmoregulatory strategy in the inshore hagfish, Eptatretus burgeri. Am J Physiol Regul Integr Comp Physiol 2024; 327:R208-R233. [PMID: 38105762 DOI: 10.1152/ajpregu.00166.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hagfishes are characterized by omo- and iono-conforming nature similar to marine invertebrates. Conventionally, hagfishes had been recognized as the most primitive living vertebrate that retains plesiomorphic features. However, some of the "ancestral" features of hagfishes, such as rudimentary eyes and the lack of vertebrae, have been proven to be deceptive. Similarly, by the principle of maximum parsimony, the unique body fluid regulatory strategy of hagfishes seems to be apomorphic, since the lamprey, another cyclostome, adopts osmo- and iono-regulatory mechanisms as in jawed vertebrates. Although hagfishes are unequivocally important in discussing the origin and evolution of the vertebrate osmoregulatory system, the molecular basis for the body fluid homeostasis in hagfishes has been poorly understood. In the present study, we explored this matter in the inshore hagfish, Eptatretus burgeri, by analyzing the transcriptomes obtained from the gill, kidney, and muscle of the animals acclimated to distinct environmental salinities. Together with the measurement of parameters in the muscular fluid compartment, our data indicate that the hagfish possesses an ability to conduct free amino acid (FAA)-based osmoregulation at a cellular level, which is in coordination with the renal and branchial FAA absorption. We also revealed that the hagfish does possess the orthologs of the known osmoregulatory genes and that the transepithelial movement of inorganic ions in the hagfish gill and kidney is more complex than previously thought. These observations pose a challenge to the conventional view that the physiological features of hagfishes have been inherited from the last common ancestor of the extant vertebrates.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Kiriko Ikeba
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Masa-Aki Yoshida
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
4
|
Kang DY, Kim HC. Functional relation of agouti signaling proteins (ASIPs) to pigmentation and color change in the starry flounder, Platichthys stellatus. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111524. [PMID: 37981006 DOI: 10.1016/j.cbpa.2023.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 11/21/2023]
Abstract
We investigated the involvement of agouti-signaling proteins (ASIPs) in morphological pigmentation and physiological color change in flatfishes. We isolated ASIP1 and 2 mRNAs from the skin of starry flounder (Platichthys stellatus), and compared their amino acid (aa) structures to those of other animals. Then, we examined the mRNA expression levels of two ASIPs (Sf-ASIPs) in the pigmented ocular body and in the unpigmented blind body, as well as in the ordinary skin and in albino skin, in flatfishes. To investigate the role of Sf-ASIPs in physiological color change (color camouflage), we compared the expression of the two genes in two background colors (dark-green and white). Sf-ASIP1 cDNA had a 375-bp open reading frame (ORF) that encoded a protein consisting of 125 aa residues, and Sf-ASIP2 cDNA had a 402-bp ORF that encoded a protein consisting of 132 aa residues. RT-PCR revealed that the strongest Sf-ASIP1 and Sf-ASIP2 expression levels were observed in the eye and blind-skin, respectively. In Sf-ASIP1, the gene expression did not differ between the ocular-side skin and blind-side skin, nor between ordinary skin and abnormal skin of the fish. However, in Sf-ASIP2, the expression level was significantly higher in blind-side skin, compared to ocular-side skin, suggesting that the ASIP2 gene is related to the countershading body pigment pattern of the fish. In addition, the Sf-ASIP2 gene expression level was lower in the pigmented spot regions than in the unpigmented spot regions of the malpigmented pseudo-albino skins on the ocular side, implying that ASIP2 is responsible for the ocular-side pseudo-albino. Additionally, ASIP2 gene expression in the blind-side skin of ordinary fish was enhanced by a white tank, implying that a bright background color could inhibit hypermelanosis in the blind-side skin of cultured flounder by increasing the activity of the Sf-ASIP2 gene. However, we did not find any relationship of ASIPs with camouflage color changes. In conclusion, the ASIP2 gene is related to the morphological pigmentation (countershading and malpigmentation) of the skin in starry flounder, but not with physiological color changes (color camouflage) in the ocular-side skin.
Collapse
Affiliation(s)
- Duk-Young Kang
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, 707 Eulwang-dong, Jung-gu, Incheon, Republic of Korea.
| | - Hyo-Chan Kim
- KMS & MC, Molecular research, Haneulbyeolbit-ro, YoungJong-1 dong, Joong-gu, Incheon, Republic of Korea
| |
Collapse
|
5
|
Zhao XF, Huang J, Li W, Wang SY, Liang LQ, Zhang LM, Liew HJ, Chang YM. Rh proteins and H + transporters involved in ammonia excretion in Amur Ide (Leuciscus waleckii) under high alkali exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116160. [PMID: 38432157 DOI: 10.1016/j.ecoenv.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
High alkaline environment can lead to respiratory alkalosis and ammonia toxification to freshwater fish. However, the Amur ide (Leuciscus waleckii), which inhabits an extremely alkaline lake in China with titratable alkalinity up to 53.57 mM (pH 9.6) has developed special physiological and molecular mechanisms to adapt to such an environment. Nevertheless, how the Amur ide can maintain acid-base balance and perform ammonia detoxification effectively remains unclear. Therefore, this study was designed to study the ammonia excretion rate (Tamm), total nitrogen accumulation in blood and tissues, including identification, expression, and localization of ammonia-related transporters in gills of both the alkali and freshwater forms of the Amur ide. The results showed that the freshwater form Amur ide does not have a perfect ammonia excretion mechanism exposed to high-alkaline condition. Nevertheless, the alkali form of Amur ide was able to excrete ammonia better than freshwater from Amur ide, which was facilitated by the ionocytes transporters (Rhbg, Rhcg1, Na+/H+ exchanger 2 (NHE2), and V-type H+ ATPase (VHA)) in the gills. Converting ammonia into urea served as an ammonia detoxication strategy to reduced endogenous ammonia accumulation under high-alkaline environment.
Collapse
Affiliation(s)
- Xue Fei Zhao
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jing Huang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Wen Li
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 2000, China
| | - Shuang Yi Wang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Li Qun Liang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Li Min Zhang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Hon Jung Liew
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti of Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Yu Mei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
6
|
Gilmour KM. Pushing back against high environmental ammonia levels: A model for active NH 4 + excretion. Acta Physiol (Oxf) 2022; 236:e13867. [PMID: 35975646 DOI: 10.1111/apha.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/29/2023]
|
7
|
Clifford AM, Wilkie MP, Edwards SL, Tresguerres M, Goss GG. Dining on the dead in the deep: Active NH 4 + excretion via Na + /H + (NH 4 + ) exchange in the highly ammonia tolerant Pacific hagfish, Eptatretus stoutii. Acta Physiol (Oxf) 2022; 236:e13845. [PMID: 35620804 DOI: 10.1111/apha.13845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/29/2023]
Abstract
AIM Pacific hagfish are exceptionally tolerant to high environmental ammonia (HEA). Here, we elucidated a cellular mechanism that enables hagfish to actively excrete ammonia against steep ammonia gradients expected to be found inside a decomposing whale carcass. METHODS Hagfish were exposed to varying concentrations of HEA in the presence or absence of environmental Na+ , while plasma ammonia levels were tracked. 14 C-methylammonium was used as a proxy for NH4 + to measure efflux in whole animals and in isolated gill pouches; the latter allowed us to assess the effects of amiloride specifically on Na+ /H+ exchangers (NHEs) in gill cells. Western blotting and immunohistochemistry were utilized to evaluate the abundance and sub-cellular localization of Rhesus glycoprotein (Rh) channels in the response to HEA. RESULTS Hagfish actively excreted NH4 + against steep inwardly directed ENH4 + (ΔENH4 + ~ 35 mV) and pNH3 (ΔpNH3 ~ 2000 μtorr) gradients. Active NH4 + excretion and plasma ammonia hypo-regulation were contingent on the presence of environmental Na+ , indicating a Na+ /NH4 + exchange mechanism. Active NH4 + excretion across isolated gill pouches was amiloride-sensitive. Exposure to HEA resulted in decreased abundance of Rh channels in the apical membrane of gill ionocytes. CONCLUSIONS During HEA exposure, hagfish can actively excrete ammonia against a steep concentration gradient using apical NHEs energized by Na+ -K+ -ATPase in gill ionocytes. Additionally, apical Rh channels are removed from the apical membrane, presumably to reduce ammonia loading from the environment. We suggest that this mechanism allows hagfish to maintain tolerable ammonia levels while feeding inside decomposing carrion, allowing them to exploit nutrient-rich food-falls.
Collapse
Affiliation(s)
- Alexander M Clifford
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, California, USA.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Michael P Wilkie
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Susan L Edwards
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, California, USA
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| |
Collapse
|
8
|
Birceanu O, Ferreira P, Neal J, Sunga J, Anthony S, Davidson S, Edwards SL, Wilson JM, Youson JH, Vijayan MM, Wilkie MP. Divergent pathways of ammonia and urea production and excretion during the life cycle of the sea lamprey. Physiol Biochem Zool 2022; 95:551-567. [DOI: 10.1086/721606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Hongxing G, Xiafei L, Jialing L, Zhenquan C, Luoyu G, Lei L, Yuxuan S, Zhiguo D, Min W. Effects of acute ammonia exposure on antioxidant and detoxification metabolism in clam Cyclina sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111895. [PMID: 33476851 DOI: 10.1016/j.ecoenv.2021.111895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/15/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
To investigate the defensive strategies of clam Cyclina sinensis in response to environmental ammonia exposure, we investigate the 96 h median lethal concentration (LC50-96 h) and the 96 h safe concentration (SC) of total ammonia nitrogen (TAN) for C. sinensis, and on the basis we examined glutamine synthetase (GS) activity, glutamine content, urea content and the antioxidant enzyme activities of super oxide dismutase (SOD) and catalase (CAT) in 96 h at three different levels of TAN as 0 (control), 73.94 (T1) and 227.04 mg/L (T2). Results showed that LC50-96 h and SC for C. sinensis were 65.79 and 6.58 mg/L, respectively. The LC50-96 h and SC of NH3 were 1.70 and 0.17 mg/L, respectively. Ammonia exposure had significantly effects on SOD and CAT activities in the hepatopancreas tissue. Both the level of SOD activity and CAT activity increased with increasing concentration of TAN. No significant differences between T1 and T2 were found in GS activity from 3 h to 96 h after exposed to ammonia, whereas they were significantly higher than those in the control. Both the level of glutamine content in T1 and T2 increased significantly from 6 h to 24 h after exposed to ammonia and they were significantly higher than those in the control. There were no significantly differences were found in the level of urea concentration between T1 and T2 from 6 h to 96 h, while they were significantly higher those in the control. In conclusion, enhancing hepatopancreas antioxidant responses as well as converting ammonia into glutamine and urea worked in combination to allow C. sinensi to defend against acute ammonia exposure.
Collapse
Affiliation(s)
- Ge Hongxing
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China; Jiangsu Key Laboratory of Marine Biotechnolog, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Liang Xiafei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Liu Jialing
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Cui Zhenquan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Guo Luoyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Li Lei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Sun Yuxuan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| | - Dong Zhiguo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China.
| | - Wei Min
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu Province 222005, China
| |
Collapse
|
10
|
Eom J, Wood CM. Understanding ventilation and oxygen uptake of Pacific hagfish (Eptatretus stoutii), with particular emphasis on responses to ammonia and interactions with other respiratory gases. J Comp Physiol B 2021; 191:255-271. [PMID: 33547930 DOI: 10.1007/s00360-020-01329-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 11/24/2022]
Abstract
The hagfishes are an ancient and evolutionarily important group, with breathing mechanisms and gills very different from those of other fishes. Hagfish inhale through a single nostril via a velum pump, and exhale through multiple separate gill pouches. We assessed respiratory performance in E. stoutii (31 ppt, 12 ºC, 50-120 g) by measuring total ventilatory flow ([Formula: see text]) at the nostril, velar (respiratory) frequency (fr), and inspired (PIO2) and expired (PEO2) oxygen tensions at all 12 gill pouch exits plus the pharyngo-cutaneous duct (PCD) on the left side, and calculated ventilatory stroke volume (S[Formula: see text]), % O2 utilization, and oxygen consumption (ṀO2). At rest under normoxia, spontaneous changes in [Formula: see text] ranged from apnea to > 400 ml kg-1 min-1, due to variations in both fr and S[Formula: see text]; "normal" [Formula: see text] averaged 137 ml kg-1 min-1, ṀO2 was 718 µmol kg-1 h-1, so the ventilatory convection requirement for O2 was about 11 L mmol-1. Relative to anterior gill pouches, lower PEO2 values (i.e. higher utilization) occurred in the more posterior pouches and PCD. Overall, O2 utilization was 34% and did not change during hyperventilation but increased to > 90% during hypoventilation. Environmental hypoxia (PIO2 ~ 8% air saturation, 1.67 kPa, 13 Torr) caused hyperventilation, but neither acute hyperoxia (PIO2 ~ 275% air saturation, 57.6 kPa, 430 Torr) nor hypercapnia (PICO2 ~ 1% CO2, 1.0 kPa, 7.5 Torr) significantly altered [Formula: see text]. ṀO2 decreased in hypoxia and increased in hyperoxia but did not change in hypercapnia. Acute exposure to high environmental ammonia (HEA, 10 mM NH4HCO3) caused an acute decrease in [Formula: see text], in contrast to the hyperventilation of long-term HEA exposure described in a previous study. The hypoventilatory response to HEA still occurred during hypoxia and hyperoxia, but was blunted during hypercapnia. Under all treatments, ṀO2 increased with increases in [Formula: see text]. Overall, there were lower convection requirements for O2 during hyperoxia, higher requirements during hypoxia and hypercapnia, but unchanged requirements during HEA. We conclude that this "primitive" fish operates a flexible respiratory system with considerable reserve capacity.
Collapse
Affiliation(s)
- Junho Eom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| |
Collapse
|
11
|
Zhang H, Sun G, Lin Z, Yao H, Dong Y. The razor clam Sinonovacula constricta uses the strategy of conversion of toxic ammonia to glutamine in response to high environmental ammonia exposure. Mol Biol Rep 2020; 47:9579-9593. [PMID: 33245503 DOI: 10.1007/s11033-020-06018-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/16/2020] [Indexed: 01/15/2023]
Abstract
High ammonia can inhibit the survival and growth, and even cause mortality of razor clam (S. constricta). The accumulation of ammonia to lethal concentrations in some invertebrates may be partially prevented by converting some of the ammonia into glutamine (Gln). Glutamine dehydrogenase (GDH) and glutamine synthetase (GS) have been widely implicated a central role in response to ammonia stress. However, the molecular and physiological response of GDH and GS to ammonia alterations has not yet been determined in clams. To investigate the possible participatory role of GDH and GS genes in altered ammonia conditions, we have cloned their gene sequences and examined the mRNA expression and western blotting under ammonia exposure in S. constricta (ScGDH and ScGS), and detected the levels of GS and GDH, and the content of glutamate (Glu) and Gln. The full-length cDNA of ScGDH was 3924 bp, with a 1629 bp open reading frame (ORF) encoding a 542 amino-acid polypeptide. The complete cDNA sequence for ScGS had 2739 bp with an ORF of 1110 bp encoding 369 amino acids. To investigate ammonia detoxification strategies, the clams were exposed to ammonia for 96 h at four different concentrations (0, 100, 140, and 180 mg/L). Exposure to ammonia resulted in a significant increase of glutamate concentration and Gln in the haemocytes. GDH activity, GDH relative mRNA and protein expression, GS activity, GS relative mRNA and protein expression increased significantly and showed a pronounced time and dosage interaction in the liver. The results suggested that the protective strategies of Gln formation existed in S. constricta, which could convert ammonia to non- or less toxic nitrogenous compounds on the exposure of ammonia. Glutamate content in the haemocytes increased significantly, which is to ensure sufficient Glu to meet the needs for GS to catalyze the conversion of ammonia to Gln. We proposed that the induction of Glu synthesis-related genes and the subsequent formation of the active protein occurred in preparation for the increased capacity of the body to convert ammonia, into Gln. The results of this study suggested that GDH and GS play an important role in the synthesis of Gln, emphasizing, the protective strategies of Gln formation in S. constricta convert ammonia to nontoxic or less toxic nitrogenous compounds upon exposure to ammonia.
Collapse
Affiliation(s)
- Huan Zhang
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Gaigai Sun
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China.,Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ninghai, 315604, China
| | - Hanhan Yao
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Yinghui Dong
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China.
| |
Collapse
|
12
|
Huang PC, Liu TY, Hu MY, Casties I, Tseng YC. Energy and nitrogenous waste from glutamate/glutamine catabolism facilitates acute osmotic adjustment in non-neuroectodermal branchial cells. Sci Rep 2020; 10:9460. [PMID: 32528019 PMCID: PMC7289822 DOI: 10.1038/s41598-020-65913-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Maintenance of homeostasis is one of the most important physiological responses for animals upon osmotic perturbations. Ionocytes of branchial epithelia are the major cell types responsible for active ion transport, which is mediated by energy-consuming ion pumps (e.g., Na+-K+-ATPase, NKA) and secondary active transporters. Consequently, in addition to osmolyte adjustments, sufficient and immediate energy replenishment is essenttableial for acclimation to osmotic changes. In this study, we propose that glutamate/glutamine catabolism and trans-epithelial transport of nitrogenous waste may aid euryhaline teleosts Japanese medaka (Oryzias latipes) during acclimation to osmotic changes. Glutamate family amino acid contents in gills were increased by hyperosmotic challenge along an acclimation period of 72 hours. This change in amino acids was accompanied by a stimulation of putative glutamate/glutamine transporters (Eaats, Sat) and synthesis enzymes (Gls, Glul) that participate in regulating glutamate/glutamine cycling in branchial epithelia during acclimation to hyperosmotic conditions. In situ hybridization of glutaminase and glutamine synthetase in combination with immunocytochemistry demonstrate a partial colocalization of olgls1a and olgls2 but not olglul with Na+/K+-ATPase-rich ionocytes. Also for the glutamate and glutamine transporters colocalization with ionocytes was found for oleaat1, oleaat3, and olslc38a4, but not oleaat2. Morpholino knock-down of Sat decreased Na+ flux from the larval epithelium, demonstrating the importance of glutamate/glutamine transport in osmotic regulation. In addition to its role as an energy substrate, glutamate deamination produces NH4+, which may contribute to osmolyte production; genes encoding components of the urea production cycle, including carbamoyl phosphate synthetase (CPS) and ornithine transcarbamylase (OTC), were upregulated under hyperosmotic challenges. Based on these findings the present work demonstrates that the glutamate/glutamine cycle and subsequent transepithelial transport of nitrogenous waste in branchial epithelia represents an essential component for the maintenance of ionic homeostasis under a hyperosmotic challenge.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC)
| | - Tzu-Yen Liu
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC)
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Isabel Casties
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC).
| |
Collapse
|
13
|
Eom J, Giacomin M, Clifford AM, Goss GG, Wood CM. Ventilatory sensitivity to ammonia in the Pacific hagfish ( Eptatretus stoutii), a representative of the oldest extant connection to the ancestral vertebrates. ACTA ACUST UNITED AC 2019; 222:jeb.199794. [PMID: 31221739 DOI: 10.1242/jeb.199794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/16/2019] [Indexed: 12/30/2022]
Abstract
Ventilatory sensitivity to ammonia occurs in teleosts, elasmobranchs and mammals. Here, we investigated whether the response is also present in hagfish. Ventilatory parameters (nostril flow, pressure amplitude, velar frequency and ventilatory index, the last representing the product of pressure amplitude and frequency), together with blood and water chemistry, were measured in hagfish exposed to either high environmental ammonia (HEA) in the external sea water or internal ammonia loading by intra-vascular injection. HEA exposure (10 mmol l-1 NH4HCO3 or 10 mmol l-1 NH4Cl) caused a persistent hyperventilation by 3 h, but further detailed analysis of the NH4HCO3 response showed that initially (within 5 min) there was a marked decrease in ventilation (80% reduction in ventilatory index and nostril flow), followed by a later 3-fold increase, by which time plasma total ammonia concentration had increased 11-fold. Thus, hyperventilation in HEA appeared to be an indirect response to internal ammonia elevation, rather than a direct response to external ammonia. HEA-mediated increases in oxygen consumption also occurred. Responses to NH4HCO3 were greater than those to NH4Cl, reflecting greater increases over time in water pH and P NH3 in the former. Hagfish also exhibited hyperventilation in response to direct injection of isotonic NH4HCO3 or NH4Cl solutions into the caudal sinus. In all cases where hyperventilation occurred, plasma total ammonia and P NH3 levels increased significantly, while blood acid-base status remained unchanged, indicating specific responses to internal ammonia elevation. The sensitivity of breathing to ammonia arose very early in vertebrate evolution.
Collapse
Affiliation(s)
- Junho Eom
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0 .,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Marina Giacomin
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Alexander M Clifford
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Greg G Goss
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Chris M Wood
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada V0R 1B0.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
14
|
Giacomin M, Dal Pont G, Eom J, Schulte PM, Wood CM. The effects of salinity and hypoxia exposure on oxygen consumption, ventilation, diffusive water exchange and ionoregulation in the Pacific hagfish (Eptatretus stoutii). Comp Biochem Physiol A Mol Integr Physiol 2019; 232:47-59. [PMID: 30878760 DOI: 10.1016/j.cbpa.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Hagfishes (Class: Myxini) are marine jawless craniate fishes that are widely considered to be osmoconformers whose plasma [Na+], [Cl-] and osmolality closely resemble that of sea water, although they have the ability to regulate plasma [Ca2+] and [Mg2+] below seawater levels. We investigated the responses of Pacific hagfish to changes in respiratory and ionoregulatory demands imposed by a 48-h exposure to altered salinity (25 ppt, 30 ppt (control) and 35 ppt) and by an acute hypoxia exposure (30 Torr; 4 kPa). When hagfish were exposed to 25 ppt, oxygen consumption rate (MO2), ammonia excretion rate (Jamm) and unidirectional diffusive water flux rate (JH2O, measured with 3H2O) were all reduced, pointing to an interaction between ionoregulation and gas exchange. At 35 ppt, JH2O was reduced, though MO2 and Jamm did not change. As salinity increased, so did the difference between plasma and external water [Ca2+] and [Mg2+]. Notably, the same pattern was seen for plasma Cl-, which was kept below seawater [Cl-] at all salinities, while plasma [Na+] was regulated well above seawater [Na+], but plasma osmolality matched seawater values. MO2 was reduced by 49% and JH2O by 36% during hypoxia, despite a small elevation in overall ventilation. Our results depart from the "classical" osmorespiratory compromise but are in accord with responses in other hypoxia-tolerant fish; instead of an exacerbation of gill fluxes when gas transfer is upregulated, the opposite happens.
Collapse
Affiliation(s)
- Marina Giacomin
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - Giorgi Dal Pont
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada; Integrated Group for Aquaculture and Environmental Studies, Department of Animal Science, Federal University of Paraná, Curitiba, Paraná 83035-050, Brazil
| | - Junho Eom
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada; Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
15
|
Giacomin M, Eom J, Schulte PM, Wood CM. Acute temperature effects on metabolic rate, ventilation, diffusive water exchange, osmoregulation, and acid–base status in the Pacific hagfish (Eptatretus stoutii). J Comp Physiol B 2018; 189:17-35. [DOI: 10.1007/s00360-018-1191-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
|
16
|
Clifford AM, Weinrauch AM, Goss GG. Dropping the base: recovery from extreme hypercarbia in the CO2 tolerant Pacific hagfish (Eptatretus stoutii). J Comp Physiol B 2017; 188:421-435. [PMID: 29290001 DOI: 10.1007/s00360-017-1141-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
|
17
|
Clifford AM, Weinrauch AM, Edwards SL, Wilkie MP, Goss GG. Flexible ammonia handling strategies using both cutaneous and branchial epithelia in the highly ammonia-tolerant Pacific hagfish. Am J Physiol Regul Integr Comp Physiol 2017; 313:R78-R90. [PMID: 28515081 DOI: 10.1152/ajpregu.00351.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022]
Abstract
Hagfish consume carrion, potentially exposing them to hypoxia, hypercapnia, and high environmental ammonia (HEA). We investigated branchial and cutaneous ammonia handling strategies by which Pacific hagfish (Eptatretus stoutii) tolerate and recover from high ammonia loading. Hagfish were exposed to HEA (20 mmol/l) for 48 h to elevate plasma total ammonia (TAmm) levels before placement into divided chambers for a 4-h recovery period in ammonia-free seawater where ammonia excretion (JAmm) was measured independently in the anterior and posterior compartments. Localized HEA exposures were also conducted by subjecting hagfish to HEA in either the anterior or posterior compartments. During recovery, HEA-exposed animals increased JAmm in both compartments, with the posterior compartment comprising ~20% of the total JAmm compared with ~11% in non-HEA-exposed fish. Plasma TAmm increased substantially when whole hagfish and the posterior regions were exposed to HEA. Alternatively, plasma TAmm did not elevate after anterior localized HEA exposure. JAmm was concentration dependent (0.05-5 mmol/l) across excised skin patches at up to eightfold greater rates than in skin sections that were excised from HEA-exposed hagfish. Skin excised from more posterior regions displayed greater JAmm than those from more anterior regions. Immunohistochemistry with hagfish-specific anti-rhesus glycoprotein type c (α-hRhcg; ammonia transporter) antibody was characterized by staining on the basal aspect of hagfish epidermis while Western blotting demonstrated greater expression of Rhcg in more posterior skin sections. We conclude that cutaneous Rhcg proteins are involved in cutaneous ammonia excretion by Pacific hagfish and that this mechanism could be particularly important during feeding.
Collapse
Affiliation(s)
- Alexander M Clifford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; .,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Susan L Edwards
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada.,Department of Biology, Appalachian State University, Boone, North Carolina; and
| | - Michael P Wilkie
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada.,Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| |
Collapse
|
18
|
Blair S, Wilkie M, Edwards S. Rh glycoprotein immunoreactivity in the skin and its role in extrabranchial ammonia excretion by the sea lamprey (Petromyzon marinus) in fresh water. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aquatic organisms employ various strategies to excrete ammonia across the gills, skin, and (or) renal routes. During three different stages of their life cycle, we hypothesized that the basal vertebrate sea lamprey (Petromyzon marinus L., 1758) used the skin as a route for ammonia excretion. Measurements of ammonia excretion using divided flux chambers revealed that extrabranchial sites (skin plus renal) of ammonia excretion were quantitatively more important in larval sea lampreys, but following metamorphosis, the gills became the dominant route of excretion in juvenile sea lampreys. Despite the greater relative importance of the skin in the larval stage, Rh glycoprotein isoforms Rhbg, Rhcg1, and Rhcg2 were detected in the skin in all three sea lamprey life stages examined, but the patterns of expression were dependent on the life stage. We conclude that, during the relatively sedentary filter-feeding larval stage, extrabranchial routes play an equally important role as the gill in facilitating ammonia excretion. However, the gills by virtue of their extensive branchial vasculature become the dominant route of ammonia excretion following metamorphosis because of the need to offload greater amounts of ammonia arising from higher rates of basal ammonia production and the potential to excrete higher amounts of ammonia following ingestion of protein-rich blood in the parasitic stage.
Collapse
Affiliation(s)
- S.D. Blair
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - M.P. Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - S.L. Edwards
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| |
Collapse
|
19
|
Iron transport across the skin and gut epithelia of Pacific hagfish: Kinetic characterisation and effect of hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2016; 199:1-7. [DOI: 10.1016/j.cbpa.2016.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
|
20
|
Zimmer AM, Wright PA, Wood CM. What is the primary function of the early teleost gill? Evidence for Na+/NH+4 exchange in developing rainbow trout (Oncorhynchus mykiss). Proc Biol Sci 2015; 281:rspb.2014.1422. [PMID: 25274361 DOI: 10.1098/rspb.2014.1422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Post-hatch fishes lack a functional gill and use cutaneous surfaces for exchange with the surrounding environment. The ionoregulatory hypothesis posits that ionoregulation is the first physiological process to be limited by cutaneous exchange, necessitating its shift to the gills. We hypothesized that the ontogeny of branchial ammonia excretion (J amm) is coupled to Na(+) uptake (J Na in) in accordance with the current model for Na+/NH4+ in exchange in freshwater. Using divided chambers, branchial and cutaneous J amm, J Na in and oxygen consumption (MO2) by larval rainbow trout were assessed. Following hatch, the skin accounted for 97% and 86% of total J amm and J Na in, respectively. J amm and J Na in shifted to the gills simultaneously at 15 days post-hatch (dph) and were highly correlated (R(2) = 0.951) at the gills, but not the skin, over development. Contrastingly, MO2 shifted significantly later at 27 dph, in agreement with the ionoregulatory hypothesis. Moreover, the mRNA expression and/or enzymatic activity of Rhesus proteins, Na(+)/H(+)-exchanger, H(+)-ATPase, Na(+)/K(+)-ATPase and carbonic anhydrase, all key components of the Na+/NH4+-exchange system, increased in the gills over larval development. We propose that the ontogeny of branchial J Na in occurs as Na+/NH4+ exchange and provide evidence for a novel element to the ionoregulatory hypothesis, the excretion of potentially lethal metabolic ammonia.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
21
|
Ren Q, Pan L, Zhao Q, Si L. Ammonia and urea excretion in the swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:48-54. [DOI: 10.1016/j.cbpa.2015.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/30/2015] [Accepted: 04/24/2015] [Indexed: 01/10/2023]
|
22
|
Edwards SL, Arnold J, Blair SD, Pray M, Bradley R, Erikson O, Walsh PJ. Ammonia excretion in the Atlantic hagfish (Myxine glutinosa) and responses of an Rhc glycoprotein. Am J Physiol Regul Integr Comp Physiol 2015; 308:R769-78. [DOI: 10.1152/ajpregu.00355.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/20/2015] [Indexed: 12/21/2022]
Abstract
Hagfishes, the most ancient of the extant craniates, demonstrate a high tolerance for a number of unfavorable environmental conditions, including elevated ammonia. Proposed mechanisms of ammonia excretion in aquatic organisms include vesicular NH4+ transport and release by exocytosis in marine crabs, and passive NH3 diffusion, active NH4+ transport, and paracellular leakage of NH3 or NH4+ across the gills of fishes. Recently, an emerging paradigm suggests that Rhesus glycoproteins play a vital role in ammonia transport in both aquatic invertebrates and vertebrates. This study has identified an Rh glycoprotein ortholog from the gills of Atlantic hagfish. The hagfish Rhcg shares a 56–60% amino acid identity to other vertebrate Rhcg cDNAs. Sequence information was used to produce an anti-hagfish Rhcg (hRhcg) antibody. We have used hRhcg to localize protein expression to epithelial cells of the gill and the skin. In addition, we have quantified hRhcg expression following exposure to elevated plasma ammonia levels. Animals exposed to a 3 mmol/kg NH4Cl load resulted in significantly elevated plasma ammonia concentrations compared with controls for up to 4 h postinjection. This correlated with net ammonia excretion rates that were also significantly elevated for up to 4 h postinjection. Rhcg mRNA expression in both the gill and skin was significantly elevated by 15 min and 1 h, respectively, and hRhcg protein expression in gills was significantly elevated at 2, 4, and 8 h postinjection. These results demonstrate a potential role for Rhcg in the excretion of ammonia in the Atlantic hagfish.
Collapse
Affiliation(s)
- Susan L. Edwards
- Department of Biology, Appalachian State University, Boone, North Carolina
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine; and
| | - Justin Arnold
- Department of Biology, Appalachian State University, Boone, North Carolina
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine; and
| | - Salvatore D. Blair
- Department of Biology, Appalachian State University, Boone, North Carolina
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine; and
| | - Margaret Pray
- Department of Biology, Appalachian State University, Boone, North Carolina
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine; and
| | - Rachel Bradley
- Department of Biology, Appalachian State University, Boone, North Carolina
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine; and
| | - Olivia Erikson
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine; and
| | - Patrick J. Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Kumai Y, Harris J, Al-Rewashdy H, Kwong RWM, Perry SF. Nitrogenous Waste Handling by Larval Zebrafish Danio rerio in Alkaline Water. Physiol Biochem Zool 2015; 88:137-45. [DOI: 10.1086/679628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Clifford AM, Goss GG, Wilkie MP. Adaptations of a deep sea scavenger: high ammonia tolerance and active NH₄⁺ excretion by the Pacific hagfish (Eptatretus stoutii). Comp Biochem Physiol A Mol Integr Physiol 2014; 182:64-74. [PMID: 25499242 DOI: 10.1016/j.cbpa.2014.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
The Pacific hagfish (Eptatretus stoutii) has an exceptional ability to both withstand and recover from exposure to high external ammonia (HEA). This tolerance is likely due to the feeding behavior of this scavenger, which feeds on intermittent food falls of carrion (e.g. fish, large marine mammals) during which time it may be exposed to high concentrations of total ammonia (T(Amm)=NH3+NH4(+)) while burrowed inside the decomposing carcass. Here we exposed hagfish to 20 mmol L(-1) T(Amm) for periods of up to 48 h and then let animals recover in ammonia-free seawater. During the 48 h HEA exposure period, plasma T(Amm) increased 100-fold to over 5000 μmol L(-1) while ammonia excretion (J(amm)) was transiently inhibited. This increase in plasma T(Amm) resulted from NH3 influx down massive inwardly directed ΔP(NH3) gradients, which also led to a short-lived metabolic alkalosis. Plasma [T(Amm)] stabilized after 24-48 h, possibly through a reduction in NH3 permeability across the body surface, which lowered NH3 influx. Ammonia balance was subsequently maintained through the re-establishment of J(amm) against an inwardly directed ΔP(NH3). Calculations of the Nernst potential for ammonia strongly indicated that J(amm) was also taking place against a large inwardly directed NH4(+) electrochemical gradient. Recovery from HEA in ammonia-free water was characterized by a large ammonia washout, and the restoration of plasma TAmm concentrations to near control concentrations. Ammonia clearance was also accompanied by a residual metabolic acidosis, which likely offset the ammonia-induced metabolic alkalosis seen in the early stages of HEA exposure. We conclude that restoration of J(amm) by the Pacific hagfish during ammonia exposure likely involves secondary active transport of NH4(+), possibly mediated by Na(+)/NH4(+) (H(+)) exchange.
Collapse
Affiliation(s)
- Alexander M Clifford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia, V0R 1B0, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia, V0R 1B0, Canada
| | - Michael P Wilkie
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, V0R 1B0, Canada; Biology Department, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| |
Collapse
|
25
|
Schultz AG, Guffey SC, Clifford AM, Goss GG. Phosphate absorption across multiple epithelia in the Pacific hagfish (Eptatretus stoutii). Am J Physiol Regul Integr Comp Physiol 2014; 307:R643-52. [PMID: 24944247 DOI: 10.1152/ajpregu.00443.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inorganic phosphate (Pi) is an essential nutrient for all organisms, but in seawater, Pi is a limiting nutrient. This study investigated the primary mechanisms of Pi uptake in Pacific hagfish (Eptatretus stoutii) using ex vivo physiological and molecular techniques. Hagfish were observed to have the capacity to absorb Pi from the environment into at least three epithelial surfaces: the intestine, skin, and gill. Pi uptake in all tissues was concentration dependent, and saturable Pi transport was observed in the skin and gill at <2.0 mmol/l Pi. Gill and intestinal Pi uptake was sodium dependent, but Pi uptake into the skin increased under low sodium conditions. Gill Pi transport exhibited an apparent affinity constant ~0.23-0.6 mmol/l Pi. A complete sequence of a type II sodium phosphate cotransporter (Slc34a) was obtained from the hagfish gill. Phylogenetic analysis of the hagfish Slc34a transporter indicates that it is earlier diverging than, and/or ancestral to, the other identified vertebrate Slc34a transporters (Slc34a1, Slc34a2, and Slc34a3). With the use of RT-PCR, the hagfish Slc34a transcript was detected in the intestine, skin, gill, and kidney, suggesting that this may be the transporter involved in Pi uptake into multiple epithelia in the hagfish. This is the first measurement of Pi uptake across the gill or skin of any vertebrate animal and first sodium phosphate cotransporter identified in hagfish.
Collapse
Affiliation(s)
- Aaron G Schultz
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada; and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Samuel C Guffey
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada; and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander M Clifford
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada; and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada; and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Extrabranchial mechanisms of systemic pH recovery in hagfish (Eptatretus stoutii). Comp Biochem Physiol A Mol Integr Physiol 2014; 168:82-9. [DOI: 10.1016/j.cbpa.2013.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 11/19/2022]
|
27
|
Bucking C, Edwards SL, Tickle P, Smith CP, McDonald MD, Walsh PJ. Immunohistochemical localization of urea and ammonia transporters in two confamilial fish species, the ureotelic gulf toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus). Cell Tissue Res 2013; 352:623-37. [PMID: 23512140 DOI: 10.1007/s00441-013-1591-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/14/2013] [Indexed: 12/29/2022]
Abstract
This study aims to illustrate potential transport mechanisms behind the divergent approaches to nitrogen excretion seen in the ureotelic toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus). Specifically, we wish to confirm the expression of a urea transporter (UT), which is found in the gill of the toadfish and which is responsible for the unique "pulsing" nature of urea excretion and to localize the transporter within specific gill cells and at specific cellular locations. Additionally, the localization of ammonia transporters (Rhesus glycoproteins; Rhs) within the gill of both the toadfish and midshipman was explored. Toadfish UT (tUT) was found within Na(+)-K(+)-ATPase (NKA)-enriched cells, i.e., ionocytes (probably mitochondria-rich cells), especially along the basolateral membrane and potentially on the apical membrane. In contrast, midshipman UT (pnUT) immunoreactivity did not colocalize with NKA immunoreactivity and was not found along the filaments but instead within the lamellae. The cellular location of Rh proteins was also dissimilar between the two fish species. In toadfish gills, the Rh isoform Rhcg1 was expressed in both NKA-reactive cells and non-reactive cells, whereas Rhbg and Rhcg2 were only expressed in the latter. In contrast, Rhbg, Rhcg1 and Rhcg2 were expressed in both NKA-reactive and non-reactive cells of midshipman gills. In an additional transport epithelium, namely the intestine, the expression of both UTs and Rhs was similar between the two species, with only subtle differences being observed.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
The skin of fish as a transport epithelium: a review. J Comp Physiol B 2013; 183:877-91. [DOI: 10.1007/s00360-013-0761-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/23/2013] [Indexed: 01/17/2023]
|
29
|
Kumai Y, Perry SF. Ammonia excretion via Rhcg1 facilitates Na⁺ uptake in larval zebrafish, Danio rerio, in acidic water. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1517-28. [PMID: 21832207 DOI: 10.1152/ajpregu.00282.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The involvement of a Na(+)/H(+) exchanger (NHE) in mediating Na(+) uptake by freshwater fish is currently debated. Although supported indirectly by empirical molecular and pharmacological data, theoretically its operation should be constrained thermodynamically, owing to unfavorable chemical gradients. Recently, there has been an increasing focus on ammonia channels (Rh proteins) as potentially contributing to Na(+) uptake across the freshwater fish gill. In this study, we tested the hypothesis that Rhcg1, a specific apical isoform of Rh protein, is critically important in facilitating Na(+) uptake in zebrafish larvae via its interaction with NHE. Treating larvae (4 days postfertilization) with 5-(N-ethyl-N-isopropyl) amiloride (EIPA), an inhibitor of NHE, caused a significant reduction in Na(+) uptake in fish reared in acidic water (pH ∼ 4.0). A role for NHE in Na(+) uptake was further confirmed by translational knockdown of NHE3b, an isoform of NHE thought to be responsible for Na(+)/H(+) exchange in zebrafish larvae. Exposing the larvae reared in acidic water to 5 mM external ammonium sulfate or increasing the buffering capacity of the water with 10 mM HEPES caused concurrent reductions in ammonia excretion and Na(+) uptake. Furthermore, translational knockdown of Rhcg1 significantly reduced ammonia excretion and Na(+) uptake in larvae chronically (4 days) or acutely (24 h) exposed to acidic water. Unlike in sham-injected larvae, EIPA did not affect Na(+) uptake in fish experiencing Rhcg1 knockdown. Additionally, exposure of larvae to bafilomycin A1 (an inhibitor of H(+)-ATPase) significantly reduced Na(+) uptake in fish reared in acidic water. These observations suggest the existence of multiple mechanisms of Na(+) uptake in larval zebrafish in acidic water: one in which Na(+) uptake via NHE3b is linked to ammonia excretion via Rhcg1, and another facilitated by H(+)-ATPase.
Collapse
Affiliation(s)
- Yusuke Kumai
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|