1
|
Du P, Zhang X, Zhu Y, Wang Z, Si X, Zhang H, Huang Y, Chen W. FKBP5 as a key regulator of metabolic processes in birds: Insights from chicken pectoral muscle. Poult Sci 2024; 104:104657. [PMID: 39675107 PMCID: PMC11714397 DOI: 10.1016/j.psj.2024.104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
FK506-binding protein 5 (FKBP5) is a negative regulator of the glucocorticoid response and may play an important role in regulating metabolic homeostasis in birds. However, limited information is available regarding its role in avian species. This study aimed to clarify the spatiotemporal characteristics of chicken FKBP5 and investigate the effects of exogenous stimuli on its expression. Real-time quantitative PCR (RT-qPCR) was utilized to analyze the spatiotemporal expression patterns of FKBP5 in chickens. Additionally, the impact of exogenous stimuli, including fasting, energy restriction, and insulin/pyruvate/glucose injections, on FKBP5 expression in the pectoral muscle was investigated. The results showed that FKBP5 is broadly expressed in various bird tissues, with dominant expression in insulin-sensitive tissues. The FKBP5 levels in birds are dramatically modulated during development in insulin-sensitive tissues, with the highest expression observed in striated muscle and liver at embryonic day 19 (E19) (P < 0.01). The basal level of FKBP5 in the pectoral muscle of broilers is higher than that in Silky chickens. Insulin administration leads to a rapid drop in blood glucose levels in both breeds, with a slower recovery in AA broilers (P < 0.01). However, FKBP5 expression in the pectoral muscle initially shows a slight drop, followed by a sharp increase over time after insulin administration (P < 0.01). Additionally, breed heterogeneity in FKBP5 expression was observed in the pectoral muscle upon insulin stimulation, with broilers showing stronger insulin sensitivity compared to Silky chickens. A 24-hour fasting period downregulated blood glucose levels (P < 0.01) and FKBP5 expression in the pectoral muscle of AA broilers (P < 0.01). A 30% energy restriction over three weeks slightly reduced blood glucose levels (P = 0.075) and significantly decreased FKBP5 levels in the pectoralis muscle of broilers. In addition, pyruvate increased blood glucose and pectoralis FKBP5 transcription levels at 60 min (P < 0.01), whereas glucose increased blood glucose levels but had no effect on FKBP5 expression. Overall analysis showed a negative correlation between FKBP5 expression in the pectoral muscle and blood glucose levels (ρ = -0.405, P < 0.001). In conclusion, FKBP5 is a key player in the metabolic regulation of birds, with its expression being highly dynamic and tissue-specific. Insulin regulates FKBP5 expression in pectoral muscles in a time-dependent manner, while pyruvate increases FKBP5 levels and fasting/energy restriction reduces FKBP5 mRNA expression in the pectoral muscles.
Collapse
Affiliation(s)
- Pengfei Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yao Zhu
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Ziyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
2
|
Zhang X, Du P, Wang Z, Zhu Y, Si X, Chen W, Huang Y. Distinct dynamic regulation of pectoralis muscle metabolomics by insulin and the promotion of glucose-lipid metabolism with extended duration. Poult Sci 2024; 104:104619. [PMID: 39642750 DOI: 10.1016/j.psj.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024] Open
Abstract
Birds' glycolipid metabolism has garnered considerable attention due to their fasting blood glucose levels being nearly twice those of mammals. While skeletal muscle is the primary insulin-sensitive tissue in mammals, the effects of insulin on chicken skeletal muscle remain unclear. In this study, the insulin-responsive metabolites were identified in broiler's pectoralis muscle (after 16 h of fasting) using widely targeted metabolomics. Glycolipid concentrations were measured using kits, and the expression of key genes involved in glucose metabolism was assessed via quantitative real-time PCR (qRT-PCR). The insulin tolerance test, performed by injecting 5 IU/kg body weight of insulin, demonstrated a rapid drop in blood glucose levels from 0 to 15 min, with a consistent reduction observed at 120 min (P < 0.01). Insulin did not alter glucose and glycogen content in chicken pectoralis; however, low-density lipoprotein (LDL, P < 0.05) levels were upregulated in the early phase (15 min). With an extended insulin duration (120 min), pectoralis glucose content increased (P < 0.05), accompanied by a reduction in TG levels (P < 0.05). Metabolomic analysis revealed that insulin promotes the downregulation of 63 out of 71 metabolites at 15 min and the upregulation of 101 out of 134 metabolites at 120 min, mainly associated with lysine degradation and thyroid hormone signaling pathways, respectively. 7 metabolites were dynamically modulated in the same manner over time (2 up-up and 5 down-down). Early insulin inhibited glycolysis, evidenced by the reduction in phosphoenolpyruvate levels and hexokinase 2 (HK2) expression; however, insulin promoted glucose uptake through the activation of glucose transporter 4 (GLUT4) and enhanced glycolysis, accompanied by elevated fatty acid metabolism at the later phase. In conclusion, insulin dynamically regulates the metabolomics of the pectoralis muscle over time. Initially, chicken muscle tissues downregulate metabolic activities to accommodate the new signaling state, followed by significant upregulation to meet heightened metabolic demands. Extended insulin monitoring promotes glucose uptake and glycolysis, alongside enhanced fatty acid metabolism. This research provides insights into the potential mechanisms of insulin action in chicken muscles.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengfei Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ziyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yao Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
3
|
Lin WC, Hoe BC, Li X, Lian D, Zeng X. Glucose Metabolism-Modifying Natural Materials for Potential Feed Additive Development. Pharmaceutics 2024; 16:1208. [PMID: 39339244 PMCID: PMC11435105 DOI: 10.3390/pharmaceutics16091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Glucose, a primary energy source derived from animals' feed ration, is crucial for their growth, production performance, and health. However, challenges such as metabolic stress, oxidative stress, inflammation, and gut microbiota disruption during animal production practices can potentially impair animal glucose metabolism pathways. Phytochemicals, probiotics, prebiotics, and trace minerals are known to change the molecular pathway of insulin-dependent glucose metabolism and improve glucose uptake in rodent and cell models. These compounds, commonly used as animal feed additives, have been well studied for their ability to promote various aspects of growth and health. However, their specific effects on glucose uptake modulation have not been thoroughly explored. This article focuses on glucose metabolism is on discovering alternative non-pharmacological treatments for diabetes in humans, which could have significant implications for developing feed additives that enhance animal performance by promoting insulin-dependent glucose metabolism. This article also aims to provide information about natural materials that impact glucose uptake and to explore their potential use as non-antibiotic feed additives to promote animal health and production. Further exploration of this topic and the materials involved could provide a basis for new product development and innovation in animal nutrition.
Collapse
Affiliation(s)
- Wei-Chih Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Boon-Chin Hoe
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, China
| | - Xianming Li
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Daizheng Lian
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Sulaiman U, Vaughan R, Siegel P, Liu D, Gilbert ER, Cline MA. Oleuropein has hypophagic effects in broiler chicks. Front Physiol 2024; 15:1409211. [PMID: 38933363 PMCID: PMC11199682 DOI: 10.3389/fphys.2024.1409211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Oleuropein, a phenolic compound derived from olives, has known glucoregulatory effects in mammalian models but effects in birds are unknown. We investigated effects of dietary supplementation and exogenous administration of oleuropein on broiler chick feed intake and glucose homeostasis during the first 7 days post-hatch. One hundred and forty-eight day-of-hatch broiler chicks were randomly allocated to one of four dietary treatments with varying oleuropein concentrations (0, 250, 500, or 1,000 mg/kg). Body weight and breast muscle and liver weights were recorded on day 7. In the next experiment, chicks received intraperitoneal (IP) injections of oleuropein at doses of 0 (vehicle), 50, 100, or 200 mg/kg on day 4 post-hatch, with feed intake and blood glucose levels measured thereafter. Lastly, chicks fed a control diet were fasted and administered intracerebroventricular (ICV) injections of oleuropein at doses of 0, 50, 100, or 200 μg, after which feed intake was recorded. Results indicated that IP and ICV injections led to decreased feed intake, primarily at 60 min post-injection, with effects diminishing by 90 min in the IP study. Blood glucose levels decreased 1-h post-IP injection at higher oleuropein doses. These findings suggest that oleuropein acts as a mild appetite suppressant and influences energy metabolism in broiler chickens.
Collapse
Affiliation(s)
- Usman Sulaiman
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Reagan Vaughan
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Paul Siegel
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth Ruth Gilbert
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark Andrew Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
5
|
Du P, Wang H, Shi X, Zhang X, Zhu Y, Chen W, Zhang H, Huang Y. A comparative study to determine the effects of breed and feed restriction on glucose metabolism of chickens. ANIMAL NUTRITION 2023; 13:261-269. [PMID: 37168446 PMCID: PMC10164833 DOI: 10.1016/j.aninu.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
The glucose metabolism of poultry draws wide attention as they have nearly twice the fasting blood glucose than that of mammals. To define the relationship between glucose metabolism and breed of chicken, the outcomes from different growth rate chickens showed that Arbor Acres (AA) broilers, a well-known fast-growing breed, had a lower fasting blood glucose concentration and glucose clearance rate when compared to Silky chickens, a Chinese traditional medicinal chicken with black skin and a slow growth rate. Moreover, AA broilers had a relatively slow rise in blood glucose in response to oral glucose solution than the Silky chickens on 21 and 42 d (P < 0.05), which is probably attributed to downregulated expression of pancreatic insulin (INS), and upregulated transcription of phosphoenolpyruvate carboxy kinase 1 (PCK1) and glucose transporter 2 (GLUT2) in the liver of AA broilers (P < 0.05). In response to feeding restriction from 7 to 21 d, both the fasting blood glucose and the response speed of AA broilers to oral glucose were increased on d 21 (P < 0.05), and the serum glucose concentrations after 3 weeks compensatory growth were improved by early feed restriction in AA broilers. Feed restriction could also upregulate the mRNA level of pancreatic INS on d 21 and 42, as well as decrease the expressions of PCK1, glucose-6-phosphatase catalytic (G6PC), and GLUT2 in the liver on d 21 (P < 0.05) when compared to the free feeding group. These results revealed that Silky chickens have a stronger capability to regulate glucose homeostasis than AA broilers, and feed restriction could improve the fasting blood glucose and the response to oral glucose of AA broilers.
Collapse
Affiliation(s)
- Pengfei Du
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huanjie Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiuwen Shi
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yao Zhu
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
- Corresponding authors.
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Corresponding authors.
| |
Collapse
|
6
|
Luo P, Wang Z, Su C, Li H, Zhang H, Huang Y, Chen W. Chicken GLUT4 undergoes complex alternative splicing events and its expression in striated muscle changes dramatically during development. Poult Sci 2022; 102:102403. [PMID: 36584419 PMCID: PMC9827075 DOI: 10.1016/j.psj.2022.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Glucose transporter protein 4 (GLUT4) plays an important role in regulating insulin-mediated glucose homeostasis in mammals. Until now, studies on GLUT4 have focused on mammals mostly, while chicken GLUT4 has been rarely investigated. In this study, chicken GLUT4 mRNA sequences were obtained by combining conventional amplification, 5'- and 3'- rapid amplification of cDNA ends technique (RACE), then bioinformatics analysis on its genomic structure, splicing pattern, subcellular localization prediction and homologous comparisons were carried out. In addition, the distribution of GLUT4 was detected by RT-qPCR in bird's liver and striated muscles (cardiac muscle, pectoralis and leg muscle) at different ages, including embryonic day 14 (E14), E19, 7-day-old (D7), D21 and D49 (n = 3-4). Results showed that chicken GLUT4 gene produced at least 14 transcripts (GenBank accession No: OP491293-OP491306) through alternative splicing and polyadenylation, which predicted encoding 12 types of amino acid (AA) sequences (with length ranged from 65 AA to 519 AA). These proteins contain typical major facilitator superfamily domain of glucose transporters with length variations, sharing a common sequence of 59 AA, and were predicted to have distinct subcellular localization. The dominant transcript (named as T1) consists of 11 exons with an open reading frame being predicted encoding 519 AA. In addition, analyzing on the spatio-temporal expression of chicken GLUT4 showed it dominantly expressed in pectoralis, leg muscles and cardiac muscle, and the mRNA level of chicken GLUT4 dramatically fluctuated with birds' development in cardiac muscle, pectoralis and leg muscles, with the level at D21 significantly higher than that at E14, E19, and D49 (P < 0.05). These data indicated that chicken GLUT4 undergoes complex alternative splicing events, and GLUT4 expression level in striated muscle was subjected to dynamic regulation with birds' development. Results indicate these isoforms may play overlapping and distinct roles in chicken.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanqun Huang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450000, China.
| | | |
Collapse
|
7
|
Zhao J, Zhang X, Gao L, Guo Y, Wang Z, Su C, Zhang H, Chen W, Huang Y. Exogenous insulin promotes the expression of B-cell translocation gene 1 and 2 in chicken pectoralis. Poult Sci 2022; 101:101875. [PMID: 35544956 PMCID: PMC9118148 DOI: 10.1016/j.psj.2022.101875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/03/2022] Open
Abstract
B-cell translocation genes (BTG) have been proved to play important roles in carbohydrate metabolism through modifying insulin homeostasis and glucose metabolism. This study, therefore, was conducted to investigate the effects of exogenous insulin on the expression of BTG1 and BTG2 in chickens. Twenty-four-day-old broilers and layers were fasted for 16 h and randomly assigned to insulin treatment group (subcutaneously injected with 5 IU/kg body weight) or control group (received an equivalent volume of phosphate-buffered saline). Blood glucose concentration was measured, and it showed that the blood glucose concentrations in the layers were significantly (P < 0.05) higher than that in the broilers under fasting state. Response to exogenous insulin, the blood glucose concentrations were greatly reduced in both breeds. Of note, the blood glucose concentration restored to 62% of the basal state at 240 min (P < 0.05) after insulin stimulation in layers, whereas it was still in low level until 240 min in broilers (under fast state). Tissue profiling revealed that both BTG1 and BTG2 were abundantly expressed in the skeletal muscles of broilers. A negative correlation was observed between blood glucose and BTG1 (ρ = −0.289, P = 0.031) /BTG2 (ρ = −0.500, P < 0.001) in pectoralis, and BTG1 (ρ = −0.462, P < 0.001) in pancreas. As blood glucose decreased due to exogenous insulin administration (under fast state), the expression of both BTG1 and BTG2 notably upregulated in birds’ pectoralis at 120 min and/or 240 min, meanwhile pancreas BTG1 was also upregulated. Re-feeding at 120 min elevated the blood glucose and reduced the expression of BTG genes in pectoralis generally. In addition, the change of BTG1 and BTG2 expression showed distinct difference between layers and broilers at 120 min and 240 min after insulin stimulation in pectoralis, pancreas and heart tissue; even after re-feeding at 120 min, BTG2 expression at 240 min after insulin injection was downregulated in the pectoralis of layers, while it was upregulated in that broilers. Collectively, these results indicated that response to exogenous insulin, chicken blood glucose exhibited breed-specific dynamic change, and meanwhile the expressions of both BTG1 and BTG2 genes in chickens were significantly altered by exogenous insulin in a breed- and tissue-specific manner. BTG1 and BTG2 genes may negatively regulate bird's blood glucose by promoting the glucose uptake corporately in pectoralis, and through regulating the insulin secretion in pancreas (especially BTG1).
Collapse
|
8
|
Azadinia B, Khosravinia H, Masouri B, Kavan BP. Effects of early growth rate and fat soluble vitamins on glucose tolerance, feed transit time, certain liver and pancreas-related parameters, and their share in intra-flock variation in performance indices in broiler chicken. Poult Sci 2022; 101:101783. [PMID: 35339932 PMCID: PMC8957045 DOI: 10.1016/j.psj.2022.101783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/01/2022] Open
Abstract
Three hundred fifty 18-day-old Ross 308 male chicks were used to examine the effects of early growth rate (x̄-3SD, x̄-2SD, x̄-SD, x̄, x̄+SD, x̄+2SD and x̄+3SD) and a fat soluble vitamin (FSV) cocktail on glucose tolerance, whole tract feed transit time (FFT), certain liver, and pancreas related traits as well as their share in intra-flock variance of body weight (BW) at d 42 and feed intake (FI) and feed conversion ratio (FCR) in d 21 to 42 of age. Birds with a greater initial BW (21 d) showed greater FI during d 21 to 42 of age and gained a higher final BW at d 42 of age. The broilers injected with a FSV cocktail consumed more feed with an improved FCR and achieved a noticeable greater BW at d 42 of age compared with the untreated birds (P < 0.05). Blood glucose at 15 min after oral gavageing of a glucose solution was elevated in all birds faster than those with a body weight close to the mean population BW. Lipase activity increased by 9.75% and amylase activity decreased by 14.9% in the birds treated with FSV injections compared with those received no vitamin. Multivariate step-wise regression analysis showed liver percentage as the leading variable accounting for about 75 and 62.77% of BW and FI variance, respectively. Serum cholesterol concentration was the major predictor in a poor model (R2 = 52.07) generated for FCR, explaining 29.3 of the FCR viability (P < 0.150). It was concluded that the slow and fast growing birds within a flock showed the same efficiency in dietary glucose absorbing and blood glucose clearing. The faster-growing birds demonstrated slower FTT. Liver percentage was the major parameter explaining a significant fraction of the intra-flock variance in BW at marketing age and FI during days 21 to 42 d.
Collapse
Affiliation(s)
- Borzou Azadinia
- Department of Animal Sciences, Faculty of Agriculture, Lorestan University, Khorramabad 6813717133, Lorestan, Iran
| | - Heshmatollah Khosravinia
- Department of Animal Sciences, Faculty of Agriculture, Lorestan University, Khorramabad 6813717133, Lorestan, Iran.
| | - Babak Masouri
- Department of Animal Sciences, Faculty of Agriculture, Lorestan University, Khorramabad 6813717133, Lorestan, Iran
| | - Bahman Parizadian Kavan
- Department of Animal Sciences, Faculty of Agriculture, Lorestan University, Khorramabad 6813717133, Lorestan, Iran
| |
Collapse
|
9
|
Chen S, Yan C, Xiang H, Xiao J, Liu J, Zhang H, Wang J, Liu H, Zhang X, Ou M, Chen Z, Li W, Turner SP, Zhao X. Transcriptome changes underlie alterations in behavioral traits in different types of chicken. J Anim Sci 2020; 98:5841043. [PMID: 32432320 DOI: 10.1093/jas/skaa167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
In recent decades, artificial selection has contributed greatly to meeting the demands for animal meat, eggs, and milk. However, it has also resulted in changes in behavior, metabolic and digestive function, and alterations in tissue development, including the brain and skeleton. Our study aimed to profile the behavioral traits and transcriptome pattern of chickens (broilers, layers, and dual-purpose breeds) in response to artificial selection. Broilers spent less time gathered as a group in a novel arena (P < 0.01), suggesting reduced fearfulness in these birds. Broilers also showed a greater willingness to approach a model predator during a vigilance test but had a greater behavioral response when first exposed to the vocalization of the predator. Genes found to be upregulated and downregulated in previous work on chickens divergently selected for fear responses also showed consistent differences in expression between breeds in our study and indicated a reduction in fearfulness in broilers. Gene ACTB_G1 (actin) was differentially expressed between breeds and is a candidate gene involved with skeletal muscle growth and disease susceptibility in broilers. Furthermore, breed-specific alterations in the chicken domestic phenotype leading to differences in growth and egg production were associated with behavioral changes, which are probably underpinned by alterations in gene expression, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes pathways. The results highlight the change in behavior and gene expression of the broiler strain relative to the layer and a dual-purpose native breed.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Chao Yan
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Hai Xiang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Jinlong Xiao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Liu
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Hui Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education; Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, China
| | - Hao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiben Zhang
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Maojun Ou
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Zelin Chen
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Weibo Li
- Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| | - Simon P Turner
- Animal and Veterinary Sciences Department, Scotland's Rural College, Edinburgh, UK
| | - Xingbo Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China.,Guizhou Nayong Professor Workstation of China Agricultural University, Bijie, China
| |
Collapse
|
10
|
Montoya B, Briga M, Jimeno B, Verhulst S. Glucose regulation is a repeatable trait affected by successive handling in zebra finches. J Comp Physiol B 2020; 190:455-464. [PMID: 32424441 DOI: 10.1007/s00360-020-01283-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 11/29/2022]
Abstract
The capacity to adequately respond to (physiological) perturbations is a fundamental aspect of physiology, and may affect health and thereby Darwinian fitness. However, little is known of the degree of individual variation in this capacity in non-model organisms. The glucose tolerance test evaluates the individual's ability to regulate circulating glucose levels, and is a widely used tool in medicine and biomedical research, because glucose regulation is thought to play a role in the ageing process, among other reasons. Here, we developed an application of the intraperitoneal glucose tolerance test (IP-GTT) to be used in small birds, to test whether individuals can be characterized by their regulation of glucose levels and the effect of successive handling on such regulation. Since the IP-injection (intraperitoneal glucose injection), repeated handling and blood sampling may trigger a stress response, which involves a rise in glucose levels, we also evaluated the effects of handling protocols on glucose response. Blood glucose levels decreased immediately following an IP-injection, either vehicle or glucose loaded, and increased with successive blood sampling. Blood glucose levels peaked, on average, at 20 min post-injection (PI) and had not yet returned back to initial levels at 120 min PI. Glucose measurements taken during the IP-GTT were integrated to estimate magnitude of changes in glucose levels over time using the incremental area under the curve (AUC) up to 40 min PI. Glucose levels integrated in the AUC were significantly repeatable within individuals over months (r = 50%; 95% CI 30-79%), showing that the ability to regulate glucose differs consistently between individuals.
Collapse
Affiliation(s)
- Bibiana Montoya
- Laboratorio de Conducta Animal, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands. .,Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| | - Michael Briga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Department of Biology, University of Turku, Turku, Finland
| | - Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Dynamic changes of blood glucose, serum biochemical parameters and gene expression in response to exogenous insulin in Arbor Acres broilers and Silky fowls. Sci Rep 2020; 10:6697. [PMID: 32317707 PMCID: PMC7174311 DOI: 10.1038/s41598-020-63549-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/26/2020] [Indexed: 11/14/2022] Open
Abstract
Silky chicken is a breed of chickens with black skin and slow growth rate used in Chinese traditional medicine, whereas Arbor Acres broiler is a well-known commercial breed in the poultry industry, it is featured by a large size, rapid-growth rate, high feed-conversion rate and strong adaptability. The difference in their rate of growth may be primarily related to different mechanism for glucose metabolism. Here we compared the insulin sensitivity of the two breeds; we investigated the temporal changes (at 0 min, 120 min and 240 min) of serum insulin and other biochemical parameters and determined the spatio-temporal changes of gene mRNA abundance in response to exogenous insulin (80 μg/kg body weight). The results indicated that: (1) Silky chickens showed stronger blood glucose recovery than broilers in the insulin resistance test. (2) The serum urea level in Silky chickens was twice of broilers; exogenous insulin significantly up-regulated serum uric acid level in Silky fowls in a time-dependent manner and increased serum cholesterol content at 120 min. (3) Two breeds showed distinctly different temporal changed in serum insulin in response to exogenous insulin stimulation. The fasting serum insulin concentration of broilers was three-fold of Silky chickens at the basal state; it decreased significantly after insulin injection and the levels at 120 min and 240 min of broilers were only 23% (P < 0.01) and 14% (P < 0.01) of the basal state, respectively. Whereas the serum insulin content in Silky chickens showed stronger recovery, and the 240 min level was close to the 0 min level. (4) GLUT2, GLUT12, neuropeptide Y and insulin receptor (IR) were predominantly expressed in the liver, pectoralis major, olfactory bulb and pancreas, respectively, where these genes presented stronger insulin sensitivity. In addition, the IR mRNA level was strongly positively with the GLUT12 level. In conclusion, our findings suggested that Silky chickens have a stronger ability to regulate glucose homeostasis than broilers, owing to their higher IR levels in the basal state, stronger serum insulin homeostasis and candidate genes functioning primarily in their predominantly expressed tissue in response to exogenous insulin.
Collapse
|
12
|
Glucose Tolerance and Plasma Non-Esterified Fatty Acid Levels in Chickens Selected for Low Body Weight, Red Junglefowl, and their Reciprocal Cross. J Poult Sci 2019; 56:245-252. [PMID: 32055221 PMCID: PMC7005393 DOI: 10.2141/jpsa.0180098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Responses of an individual to food deprivation, such as a 16-h fast, are complex, and are influenced by environmental and genetic factors. Domestication is an ongoing process during which adaptations to changing environments occur over generations. Food deprivation by their caretakers is less for domestic chickens than for their junglefowl ancestors. Unlike domestic chicken, the junglefowl adapted over generations to periods of food deprivation, which may be reflected in differences in metabolic responses to brief periods without food. Here, we compared the blood glucose and plasma levels of non-esterified fatty acids (NEFA) among four populations when deprived of feed for 16 h. The four populations included a domestic White Rock experimental line (LWS) maintained for generations under ad libitum feeding, adult red junglefowl (RJF), and a reciprocal cross of the lines. Although there were significant differences in adult (31-week) body weight between the RJF (683 g) and LWS (1282 g), with the weight of F1 crosses being intermediate, the amount of abdominal fat relative to body weight was similar for all populations. Patterns for blood glucose responses to a glucose bolus after a 16-h fast were similar for the initial and final points in the parental and cross populations. However, RJF reached their peak faster than LWS, with the reciprocal cross intermediate to the parental populations. Plasma NEFA concentrations were higher after the 16-h fast than in fed states, with no population differences for the fasting state. However, in the fed state, NEFA levels were lesser for LWS than for others, which was reflected further in percentage change from fed to fasted. This larger change in LWS suggests differences in mobilization of energy substrates and implies that during domestication or development of the LWS line, thresholds for responses to acute stressors may have increased.
Collapse
|
13
|
Zhuang Y, Xing C, Cao H, Zhang C, Luo J, Guo X, Hu G. Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet. Sci Rep 2019; 9:10141. [PMID: 31300671 PMCID: PMC6626135 DOI: 10.1038/s41598-019-46183-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Fatty liver haemorrhagic syndrome (FLHS) is a widespread metabolic disease in laying hens that causes a decrease in egg production and even death. Insulin resistance is a major contributor to the pathogenesis of nonalcoholic fatty liver disease. However, the relationship between FLHS and the insulin resistance mechanisms underlying FLHS is not well elucidated. Therefore, we established an FLHS model induced by feeding a high-energy low-protein diet. In the current study, we found that the fasting glucose and insulin concentrations were elevated in the FLHS group compared with the control group during the experimental period. The results of the oral glucose tolerance test (OGTT) and insulin sensitivity test (IST) showed a high level of insulin resistance in the FLHS model. InsR, 4EBP-1, Glut-1 and Glut-3 mRNA expression were decreased, and TOR, S6K1, and FOXO1 were elevated (P < 0.05). Metabolomic analysis with GC/MS identified 46 differentially expressed metabolites between these two groups, and of these, 14 kinds of metabolism molecules and 32 kinds of small metabolism molecules were decreased (P < 0.05). Further investigation showed that glucose, lipid and amino acid metabolism blocks in the progression of FLHS by GO functional and pathway analysis. Overall, these results suggest that insulin resistance participated in FLHS; comprehensively, metabolites participated in the dysregulated biological process.
Collapse
Affiliation(s)
- Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China.
| |
Collapse
|
14
|
Miska KB, Fetterer RH. Expression of amino acid and sugar transporters, aminopeptidase, and the di- and tri-peptide transporter PepT1; differences between modern fast growing broilers and broilers not selected for rapid growth. Poult Sci 2019; 98:2272-2280. [DOI: 10.3382/ps/pey583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
|
15
|
Ellestad LE, Cogburn LA, Simon J, Le Bihan-Duval E, Aggrey SE, Byerly MS, Duclos MJ, Porter TE. Transcriptional profiling and pathway analysis reveal differences in pituitary gland function, morphology, and vascularization in chickens genetically selected for high or low body weight. BMC Genomics 2019; 20:316. [PMID: 31023219 PMCID: PMC6482517 DOI: 10.1186/s12864-019-5670-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background Though intensive genetic selection has led to extraordinary advances in growth rate and feed efficiency in production of meat-type chickens, endocrine processes controlling these traits are still poorly understood. The anterior pituitary gland is a central component of the neuroendocrine system and plays a key role in regulating important physiological processes that directly impact broiler production efficiency, though how differences in pituitary gland function contribute to various growth and body composition phenotypes is not fully understood. Results Global anterior pituitary gene expression was evaluated on post-hatch weeks 1, 3, 5, and 7 in male broiler chickens selected for high (HG) or low (LG) growth. Differentially expressed genes (DEGs) were analyzed with gene ontology categorization, self-organizing maps, gene interaction network determination, and upstream regulator identification to uncover novel pituitary genes and pathways contributing to differences in growth and body composition. A total of 263 genes were differentially expressed between HG and LG anterior pituitary glands (P ≤ 0.05 for genetic line-by-age interaction or main effect of line; ≥1.6-fold difference between lines), including genes encoding four anterior pituitary hormones. Genes involved in signal transduction, transcriptional regulation, and vesicle-mediated transport were differentially expressed and are predicted to influence expression and secretion of pituitary hormones. DEGs involved in immune regulation provide evidence that inflammation and response to cellular stressors may compromise pituitary function in LG birds, affecting their ability to adequately produce pituitary hormones. Many DEGs were also predicted to function in processes that regulate organ morphology and angiogenesis, suggesting pituitary gland structure differs between the divergently selected lines. Conclusions The large number of DEGs within the anterior pituitary gland of birds selected for high or low body weight highlights the importance of this gland in regulating economically important traits such as growth and body composition in broiler chickens. Intracellular signaling, transcriptional regulation, and membrane trafficking are important cellular processes contributing to proper hormone production and secretion. The data also suggest that pituitary function is intimately tied to structure, and organization of the gland could influence hypothalamic and systemic metabolic inputs and delivery of hormones regulating growth and metabolism into peripheral circulation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5670-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Larry A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jean Simon
- Biologie des Oiseaux et Aviculture, Institut National de la Recherche Agronomique (INRA), Université de Tours, UR83 Recherches Avicoles, 37380, Nouzilly, France
| | - Elisabeth Le Bihan-Duval
- Biologie des Oiseaux et Aviculture, Institut National de la Recherche Agronomique (INRA), Université de Tours, UR83 Recherches Avicoles, 37380, Nouzilly, France
| | - Samuel E Aggrey
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Mardi S Byerly
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Michel J Duclos
- Biologie des Oiseaux et Aviculture, Institut National de la Recherche Agronomique (INRA), Université de Tours, UR83 Recherches Avicoles, 37380, Nouzilly, France
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Sparkman AM, Clark AD, Brummett LJ, Chism KR, Combrink LL, Kabey NM, Schwartz TS. Convergence in reduced body size, head size, and blood glucose in three island reptiles. Ecol Evol 2018; 8:6169-6182. [PMID: 29988440 PMCID: PMC6024148 DOI: 10.1002/ece3.4171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Many oceanic islands harbor diverse species that differ markedly from their mainland relatives with respect to morphology, behavior, and physiology. A particularly common morphological change exhibited by a wide range of species on islands worldwide involves either a reduction in body size, termed island dwarfism, or an increase in body size, termed island gigantism. While numerous instances of dwarfism and gigantism have been well documented, documentation of other morphological changes on islands remains limited. Furthermore, we lack a basic understanding of the physiological mechanisms that underlie these changes, and whether they are convergent. A major hypothesis for the repeated evolution of dwarfism posits selection for smaller, more efficient body sizes in the context of low resource availability. Under this hypothesis, we would expect the physiological mechanisms known to be downregulated in model organisms exhibiting small body sizes due to dietary restriction or artificial selection would also be downregulated in wild species exhibiting dwarfism on islands. We measured body size, relative head size, and circulating blood glucose in three species of reptiles-two snakes and one lizard-in the California Channel Islands relative to mainland populations. Collating data from 6 years of study, we found that relative to mainland population the island populations had smaller body size (i.e., island dwarfism), smaller head sizes relative to body size, and lower levels of blood glucose, although with some variation by sex and year. These findings suggest that the island populations of these three species have independently evolved convergent physiological changes (lower glucose set point) corresponding to convergent changes in morphology that are consistent with a scenario of reduced resource availability and/or changes in prey size on the islands. This provides a powerful system to further investigate ecological, physiological, and genetic variables to elucidate the mechanisms underlying convergent changes in life history on islands.
Collapse
Affiliation(s)
| | - Amanda D. Clark
- Department of Biological SciencesAuburn UniversityAuburnAlabama
| | | | | | | | - Nicole M. Kabey
- Department of BiologyWestmont CollegeSanta BarbaraCalifornia
| | | |
Collapse
|
17
|
Resnyk CW, Carré W, Wang X, Porter TE, Simon J, Le Bihan-Duval E, Duclos MJ, Aggrey SE, Cogburn LA. Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: validating visceral adipose tissue as a dynamic endocrine and metabolic organ. BMC Genomics 2017; 18:626. [PMID: 28814270 PMCID: PMC5559791 DOI: 10.1186/s12864-017-4035-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Decades of intensive genetic selection in the domestic chicken (Gallus gallus domesticus) have enabled the remarkable rapid growth of today’s broiler (meat-type) chickens. However, this enhanced growth rate was accompanied by several unfavorable traits (i.e., increased visceral fatness, leg weakness, and disorders of metabolism and reproduction). The present descriptive analysis of the abdominal fat transcriptome aimed to identify functional genes and biological pathways that likely contribute to an extreme difference in visceral fatness of divergently selected broiler chickens. Methods We used the Del-Mar 14 K Chicken Integrated Systems microarray to take time-course snapshots of global gene transcription in abdominal fat of juvenile [1-11 weeks of age (wk)] chickens divergently selected on bodyweight at two ages (8 and 36 wk). Further, a RNA sequencing analysis was completed on the same abdominal fat samples taken from high-growth (HG) and low-growth (LG) cockerels at 7 wk, the age with the greatest divergence in body weight (3.2-fold) and visceral fatness (19.6-fold). Results Time-course microarray analysis revealed 312 differentially expressed genes (FDR ≤ 0.05) as the main effect of genotype (HG versus LG), 718 genes in the interaction of age and genotype, and 2918 genes as the main effect of age. The RNA sequencing analysis identified 2410 differentially expressed genes in abdominal fat of HG versus LG chickens at 7 wk. The HG chickens are fatter and over-express numerous genes that support higher rates of visceral adipogenesis and lipogenesis. In abdominal fat of LG chickens, we found higher expression of many genes involved in hemostasis, energy catabolism and endocrine signaling, which likely contribute to their leaner phenotype and slower growth. Many transcription factors and their direct target genes identified in HG and LG chickens could be involved in their divergence in adiposity and growth rate. Conclusions The present analyses of the visceral fat transcriptome in chickens divergently selected for a large difference in growth rate and abdominal fatness clearly demonstrate that abdominal fat is a very dynamic metabolic and endocrine organ in the chicken. The HG chickens overexpress many transcription factors and their direct target genes, which should enhance in situ lipogenesis and ultimately adiposity. Our observation of enhanced expression of hemostasis and endocrine-signaling genes in diminished abdominal fat of LG cockerels provides insight into genetic mechanisms involved in divergence of abdominal fatness and somatic growth in avian and perhaps mammalian species, including humans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4035-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C W Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - W Carré
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033, Rennes, France
| | - X Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - T E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - J Simon
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - E Le Bihan-Duval
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - M J Duclos
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - S E Aggrey
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - L A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
18
|
Matias JA, Gilbert ER, Denbow DM, Cline MA. Effects of intracerebroventricular injection of rosiglitazone on appetite-associated parameters in chicks. Gen Comp Endocrinol 2017; 246:99-104. [PMID: 26723189 DOI: 10.1016/j.ygcen.2015.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022]
Abstract
Rosiglitazone, a thiazolidinedione, is a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist that increases insulin sensitivity. A documented side effect of this diabetes drug is increased appetite, although the mechanism mediating this response is unknown. To better understand effects on food intake regulation, we evaluated the appetite-associated effects of rosiglitazone in an alternative vertebrate and agriculturally-relevant model, the domesticated chick. Four day-old chicks received intracerebroventricular (ICV) injections of 0, 5, 10 or 20nmol rosiglitazone and food and water intake were measured. Chicks that received 5 and 10nmol rosiglitazone increased food intake during the 2h observation period, with no effect on water intake. In the next experiment, chicks were ICV-injected with 10nmol rosiglitazone and hypothalamus was collected at 1h post-injection for total RNA isolation. Real-time PCR was performed to measure mRNA abundance of appetite- and glucose regulation-associated factors. Neuropeptide Y (NPY) and proopiomelanocortin (POMC) mRNA decreased while NPY receptor 1 (NPYr1) mRNA increased in rosiglitazone-injected chicks compared to the controls. Results show that central effects of rosiglitazone on appetite are conserved between birds and mammals, and that increases in food intake might be mediated through NPY and POMC neurons in the hypothalamus.
Collapse
Affiliation(s)
- Justin A Matias
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - D Michael Denbow
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
19
|
Matos M, Grafl B, Liebhart D, Hess M. The outcome of experimentally induced inclusion body hepatitis (IBH) by fowl aviadenoviruses (FAdVs) is crucially influenced by the genetic background of the host. Vet Res 2016; 47:69. [PMID: 27356980 PMCID: PMC4928300 DOI: 10.1186/s13567-016-0350-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/02/2016] [Indexed: 11/20/2022] Open
Abstract
In the present study, inclusion body hepatitis (IBH) was experimentally induced by oral inoculation of two groups of specific pathogen-free (SPF) broilers and two groups of SPF layers at day-old with either a fowl aviadenovirus (FAdV)-D or a FAdV-E strain. A substantial variation in the degree of susceptibility was observed with mortalities of 100 and 96% in the FAdV-E and D infected SPF broiler groups, respectively, whereas in the groups of infected SPF layers mortalities of only 20 and 8% were noticed. Significant changes in clinical chemistry analytes of all infected birds together with histopathological lesions indicated impairment of liver and pancreas integrity and functions. Furthermore, significantly lower blood glucose concentrations were recorded at peak of infection in both inoculated SPF broiler groups, in comparison to the control group, corresponding to a hypoglycaemic status. High viral loads were determined in liver and pancreas of SPF broilers already at 4 days post-infection (dpi), in comparison to SPF layers, indicating a somewhat faster viral replication in the target organs. Overall, highest values were noticed in the pancreas of SPF broilers independent of the virus used for infection. The actual study provides new insights into the pathogenesis of IBH, a disease evolving to a metabolic disorder, to which SPF broilers were highly susceptible. Hence, this is the first study to report a significant higher susceptibility of SPF broiler chickens to experimentally induced IBH in direct comparison to SPF layers.
Collapse
Affiliation(s)
- Miguel Matos
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Beatrice Grafl
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.,Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
20
|
Buzala M, Janicki B. Review: Effects of different growth rates in broiler breeder and layer hens on some productive traits. Poult Sci 2016; 95:2151-9. [PMID: 27194733 DOI: 10.3382/ps/pew173] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/26/2022] Open
Abstract
Genetic selection that has been carried out for several dozen years has led to significant progress in poultry production by improving productive traits and increasing the profitability of broiler breeder and layer hen production. After hatching, broilers and layers differ mainly in feed intake, growth rate, efficiency of nutrient utilization, and development of muscles and adipose tissue. A key role can be played by hormonal mechanisms of appetite control in broilers and layers. The paper discusses the consequences of different growth rates resulting from long-term genetic selection on feed intake, efficiency of nutrient utilization, and development of muscles and adipose tissue, with particular consideration of the hormonal mechanisms of appetite control in broilers and layers. The information presented in this review paper shows that it would be worth comparing these issues in a meta-analysis.
Collapse
Affiliation(s)
- M Buzala
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - B Janicki
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
21
|
Delayed access of low body weight-selected chicks to food at hatch is associated with up-regulated pancreatic glucagon and glucose transporter gene expression. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:124-9. [DOI: 10.1016/j.cbpa.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 08/02/2015] [Indexed: 11/19/2022]
|
22
|
Hypothalamic differences in expression of genes involved in monoamine synthesis and signaling pathways after insulin injection in chickens from lines selected for high and low body weight. Neurogenetics 2015; 16:133-44. [PMID: 25582322 DOI: 10.1007/s10048-014-0435-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
Long-term selection for juvenile body weight from a common founder population resulted in two divergent chicken lines (low-weight selected line (LWS), high-weight selected line (HWS)) that display distinct food intake and blood glucose responses to exogenous neuropeptides and insulin. The objective of this study was to elucidate putative targets affecting food intake and energy homeostasis by sequencing hypothalamic RNA from LWS and HWS chickens after insulin injection. Ninety-day-old female LWS and HWS chickens were injected with either vehicle or insulin and hypothalamus collected at 1 h postinjection. Through RNA sequencing, a total of 361 differentially expressed genes (DEGs) were identified. There was greater expression of genes, mainly tyrosine hydroxylase (TH), L-aromatic amino acid decarboxylase (DDC), and vesicular monoamine transporter (VMAT), involved in serotonin and dopamine biosynthesis and signaling in LWS than in HWS vehicle-injected chickens. In contrast, after insulin injection, these genes were more highly expressed in HWS than in LWS. We identified 90 single nucleotide polymorphisms (SNPs) existing only in the HWS and 121 SNPs specific to LWS and 5119 SNPs close to fixation (with absolute frequency difference ≥0.9). Four were located in genes encoding enzymes associated with serotonergic and dopaminergic pathways, such as DDC, TH, and solute carrier family 18, member 2 (VMAT). These data implicate differences in biogenic amines such as serotonin and dopamine in hypothalamic physiology between the chicken lines, and these differences might be associated with polymorphisms during long-term selection. Changes in serotonergic and dopaminergic signaling pathways in response to insulin injection suggest a role in whole-body energy homeostasis.
Collapse
|
23
|
Rice BB, Zhang W, Bai S, Siegel PB, Cline MA, Gilbert ER. Insulin-induced hypoglycemia associations with gene expression changes in liver and hypothalamus of chickens from lines selected for low or high body weight. Gen Comp Endocrinol 2014; 208:1-4. [PMID: 25157791 DOI: 10.1016/j.ygcen.2014.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/09/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Chickens selected for low (LWS) or high (HWS) body weight for more than 56 generations now have a 10-fold difference in body weight at 56 days of age and correlated responses in appetite and glucose regulation. The LWS chickens are lean and some are anorexic, while the HWS are compulsive feeders and have a different threshold sensitivity of food intake and blood glucose to both central and peripheral insulin, respectively. We previously demonstrated that at 90-days of age, insulin-induced hypoglycemia was associated with reduced glucose transporter expression in the liver of both lines, and differences in expression of neuropeptide Y (NPY) and NPY receptor sub-type genes between LWS and HWS in the hypothalamus. The objective of this study was to determine effects of insulin-induced hypoglycemia on gene expression in the hypothalamus and liver of early post-hatch LWS and HWS chicks. On day 5 post-hatch chicks from each line were fasted for 3h and injected intraperitoneally with insulin or vehicle. At 1h post-injection, chicks were euthanized, blood glucose was measured, and hypothalamus and liver were removed. Total RNA was isolated and real time PCR performed. Insulin injection was associated with a more pronounced reduction in blood glucose in HWS compared with LWS chicks (two-way interaction; P<0.05). Aromatic L-amino acid decarboxylase, NPY, and NPY receptor sub-types 2 and 5 mRNA quantities were greater in LWS than HWS chicks in the hypothalamus (P<0.05), whereas pro-opiomelanocortin mRNA was greater in the hypothalamus of HWS than LWS (P<0.05). In the liver, glucose transporter 1, 2 and 3 (GLUT 1, 2 and 3, respectively) mRNA abundance was greater in HWS than LWS chicks (P<0.05). Compared to the vehicle, insulin treatment was associated with an increase in tryptophan hydroxylase 2 mRNA in the hypothalamus of both lines (P=0.02). In the liver of both lines, insulin treatment was associated with decreased (P=0.01) GLUT2 mRNA and increased (P=0.01) GLUT1 mRNA, compared to vehicle-treated chicks. Results suggest that NPY-associated factors and glucose transporters are differentially-expressed between LWS and HWS chickens and that HWS chicks display greater sensitivity to exogenous insulin during the early post-hatch period.
Collapse
Affiliation(s)
- Brittany B Rice
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Wei Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Shiping Bai
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Paul B Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|