1
|
Dou Z, He J, Han C, Wu X, Wan L, Yang J, Zheng Y, Gong B, Wang L. qProtein: Exploring Physical Features of Protein Thermostability Based on Structural Proteomics. J Chem Inf Model 2024; 64:7885-7894. [PMID: 39375829 DOI: 10.1021/acs.jcim.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Thermostability, which is essential for the functional performance of enzymes, is largely determined by intramolecular physical interactions. Although many tools have been developed, existing computational methods have struggled to find the universal principles of protein thermostability. Recent advancements in structural proteomics have been driven by the introduction of deep neural networks such as AlphaFold2 and ESMFold. These innovations have enabled the characterization of protein structures with unprecedented speed and accuracy. Here, we introduce qProtein, a Python-implemented workflow designed for the quantitative analysis of physical interactions on the scale of structural proteomics. This platform accepts protein sequences as input and produces four structural features, including hydrophobic clusters, hydrogen bonds, electrostatic interactions, and disulfide bonds. To demonstrate the use of qProtein, we investigate the structural features related to protein thermostability in six glycoside hydrolase (GH) families, comprising a total of 3,811 protein structures. Our results indicate that in five enzyme families (GH11, GH12, GH5_2, GH10, and GH48), the thermophilic enzymes have a larger average area of hydrophobic clusters compared to the nonthermophilic enzymes within each family. Furthermore, our analysis of the local-structure regions reveals that the hydrophobic clusters are predominantly distributed in the distal regions of the GH11 enzymes. In addition, the average hydrophobic cluster area of the thermophilic enzymes is significantly higher than that of the nonthermophilic enzymes in the distal regions of the GH11 enzymes. Therefore, qProtein is a well-suited platform for analyzing the structural features of thermal stability at the level of structural proteomics. We provide the source code for qProtein at https://github.com/bj600800/qProtein, and the web server is available at http://qProtein.sdu.edu.cn:8888.
Collapse
Affiliation(s)
- Zhixin Dou
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| | - Jiaxin He
- School of Computer Science and Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| | - Chao Han
- Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| | - Lin Wan
- School of Software, Shandong University, Shunhua Road, Jinan 250101, P.R. China
| | - Jian Yang
- School of Computer Science and Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| | - Yanwei Zheng
- School of Computer Science and Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| | - Bin Gong
- School of Software, Shandong University, Shunhua Road, Jinan 250101, P.R. China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| |
Collapse
|
2
|
Hegazy R, Cristobal JR, Richard JP. Glycerol 3-Phosphate Dehydrogenase Catalyzed Hydride Transfer: Enzyme Activation by Cofactor Pieces. Biochemistry 2024. [PMID: 39319842 DOI: 10.1021/acs.biochem.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Glycerol 3-phosphate dehydrogenase catalyzes reversible hydride transfer from glycerol 3-phosphate (G3P) to NAD+ to form dihydroxyacetone phosphate; from the truncated substrate ethylene glycol to NAD+ in a reaction activated by the phosphite dianion substrate fragment; and from G3P to the truncated nicotinamide riboside cofactor in a reaction activated by adenosine 5'-diphosphate, adenosine 5'-monophosphate, and ribose 5-phosphate cofactor fragments. The sum of the stabilization of the transition state for GPDH-catalyzed hydride transfer reactions of the whole substrates by the phosphodianion fragment of G3P and the ADP fragment of NAD+ is 25 kcal/mol. Fourteen kcal/mol of this transition state stabilization is recovered as phosphite dianion and AMP activation of the reactions of the substrate and cofactor fragments. X-ray crystal structures for unliganded GPDH, for a binary GPDH·NAD+ complex, and for a nonproductive ternary GPDH·NAD+·DHAP complex show that the ligand binding energy is utilized to drive an extensive protein conformational change that creates a caged complex for these ligands. The phosphite dianion and AMP fragments are proposed to activate GPDH for the catalysis of hydride transfer by stabilization of this active caged complex. The closure of a conserved loop [292-LNGQKL-297] during substrate binding stabilizes the G3P and NAD+ complexes by interactions, respectively, with the Q295 and K296 loop side chains. The appearance and apparent conservation of two side chains that interact with the hydride donor and acceptor to stabilize the active closed enzyme are proposed to represent a significant improvement in the catalytic performance of GPDH.
Collapse
Affiliation(s)
- Rania Hegazy
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
3
|
Hupfeld E, Schlee S, Wurm JP, Rajendran C, Yehorova D, Vos E, Ravindra Raju D, Kamerlin SCL, Sprangers R, Sterner R. Conformational Modulation of a Mobile Loop Controls Catalysis in the (βα) 8-Barrel Enzyme of Histidine Biosynthesis HisF. JACS AU 2024; 4:3258-3276. [PMID: 39211614 PMCID: PMC11350729 DOI: 10.1021/jacsau.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The overall significance of loop motions for enzymatic activity is generally accepted. However, it has largely remained unclear whether and how such motions can control different steps of catalysis. We have studied this problem on the example of the mobile active site β1α1-loop (loop1) of the (βα)8-barrel enzyme HisF, which is the cyclase subunit of imidazole glycerol phosphate synthase. Loop1 variants containing single mutations of conserved amino acids showed drastically reduced rates for the turnover of the substrates N'-[(5'-phosphoribulosyl) formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PrFAR) and ammonia to the products imidazole glycerol phosphate (ImGP) and 5-aminoimidazole-4-carboxamide-ribotide (AICAR). A comprehensive mechanistic analysis including stopped-flow kinetics, X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations detected three conformations of loop1 (open, detached, closed) whose populations differed between wild-type HisF and functionally affected loop1 variants. Transient stopped-flow kinetic experiments demonstrated that wt-HisF binds PrFAR by an induced-fit mechanism whereas catalytically impaired loop1 variants bind PrFAR by a simple two-state mechanism. Our findings suggest that PrFAR-induced formation of the closed conformation of loop1 brings active site residues in a productive orientation for chemical turnover, which we show to be the rate-limiting step of HisF catalysis. After the cyclase reaction, the closed loop conformation is destabilized, which favors the formation of detached and open conformations and hence facilitates the release of the products ImGP and AICAR. Our data demonstrate how different conformations of active site loops contribute to different catalytic steps, a finding that is presumably of broad relevance for the reaction mechanisms of (βα)8-barrel enzymes and beyond.
Collapse
Affiliation(s)
- Enrico Hupfeld
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Sandra Schlee
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jan Philip Wurm
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Chitra Rajendran
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dariia Yehorova
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Eva Vos
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Dinesh Ravindra Raju
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Shina Caroline Lynn Kamerlin
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Remco Sprangers
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Reinhard Sterner
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Zinovjev K, Guénon P, Ramos-Guzmán CA, Ruiz-Pernía JJ, Laage D, Tuñón I. Activation and friction in enzymatic loop opening and closing dynamics. Nat Commun 2024; 15:2490. [PMID: 38509080 PMCID: PMC10955111 DOI: 10.1038/s41467-024-46723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Protein loop dynamics have recently been recognized as central to enzymatic activity, specificity and stability. However, the factors controlling loop opening and closing kinetics have remained elusive. Here, we combine molecular dynamics simulations with string-method determination of complex reaction coordinates to elucidate the molecular mechanism and rate-limiting step for WPD-loop dynamics in the PTP1B enzyme. While protein conformational dynamics is often represented as diffusive motion hindered by solvent viscosity and internal friction, we demonstrate that loop opening and closing is activated. It is governed by torsional rearrangement around a single loop peptide group and by significant friction caused by backbone adjustments, which can dynamically trap the loop. Considering both torsional barrier and time-dependent friction, our calculated rate constants exhibit very good agreement with experimental measurements, reproducing the change in loop opening kinetics between proteins. Furthermore, we demonstrate the applicability of our results to other enzymatic loops, including the M20 DHFR loop, thereby offering prospects for loop engineering potentially leading to enhanced designs.
Collapse
Affiliation(s)
- Kirill Zinovjev
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain
| | - Paul Guénon
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Carlos A Ramos-Guzmán
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain
- Instituto de Materiales Avanzados, Universidad Jaume I, 12071, Castelló, Spain
| | | | - Damien Laage
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Iñaki Tuñón
- Departamento de Química Física, Universidad de Valencia, 46100, Burjasot, Spain.
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
5
|
Juretić D, Bonačić Lošić Ž. Theoretical Improvements in Enzyme Efficiency Associated with Noisy Rate Constants and Increased Dissipation. ENTROPY (BASEL, SWITZERLAND) 2024; 26:151. [PMID: 38392406 PMCID: PMC10888251 DOI: 10.3390/e26020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Previous studies have revealed the extraordinarily large catalytic efficiency of some enzymes. High catalytic proficiency is an essential accomplishment of biological evolution. Natural selection led to the increased turnover number, kcat, and enzyme efficiency, kcat/KM, of uni-uni enzymes, which convert a single substrate into a single product. We added or multiplied random noise with chosen rate constants to explore the correlation between dissipation and catalytic efficiency for ten enzymes: beta-galactosidase, glucose isomerase, β-lactamases from three bacterial strains, ketosteroid isomerase, triosephosphate isomerase, and carbonic anhydrase I, II, and T200H. Our results highlight the role of biological evolution in accelerating thermodynamic evolution. The catalytic performance of these enzymes is proportional to overall entropy production-the main parameter from irreversible thermodynamics. That parameter is also proportional to the evolutionary distance of β-lactamases PC1, RTEM, and Lac-1 when natural or artificial evolution produces the optimal or maximal possible catalytic efficiency. De novo enzyme design and attempts to speed up the rate-limiting catalytic steps may profit from the described connection between kinetics and thermodynamics.
Collapse
Affiliation(s)
- Davor Juretić
- Mediterranean Institute for Life Sciences, Šetalište Ivana Meštrovića 45, 21000 Split, Croatia
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | | |
Collapse
|
6
|
Hegazy R, Richard JP. Triosephosphate Isomerase: The Crippling Effect of the P168A/I172A Substitution at the Heart of an Enzyme Active Site. Biochemistry 2023; 62:2916-2927. [PMID: 37768194 PMCID: PMC10586322 DOI: 10.1021/acs.biochem.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/01/2023] [Indexed: 09/29/2023]
Abstract
The P168 and I172 side chains sit at the heart of the active site of triosephosphate isomerase (TIM) and play important roles in the catalysis of the isomerization reaction. The phosphodianion of substrate glyceraldehyde 3-phosphate (GAP) drives a conformational change at the TIM that creates a steric interaction with the P168 side chain that is relieved by the movement of P168 that carries the basic E167 side chain into a clamp that consists of the hydrophobic I172 and L232 side chains. The P168A/I172A substitution at TIM from Trypanosoma brucei brucei (TbbTIM) causes a large 120,000-fold decrease in kcat for isomerization of GAP that eliminates most of the difference in the reactivity of TIM compared to the small amine base quinuclidinone for deprotonation of catalyst-bound GAP. The I172A substitution causes a > 2-unit decrease in the pKa of the E167 carboxylic acid in a complex to the intermediate analog PGA, but the P168A substitution at the I172A variant has no further effect on this pKa. The P168A/I172A substitutions cause a 5-fold decrease in Km for the isomerization of GAP from a 0.9 kcal/mol stabilization of the substrate Michaelis complexes. The results show that the P168 and I172 side chains play a dual role in destabilizing the ground-state Michaelis complex to GAP and in promoting stabilization of the transition state for substrate isomerization. This is consistent with an important role for these side chains in an induced fit reaction mechanism [Richard, J. P. (2022) Enabling Role of Ligand-Driven Conformational Changes in Enzyme Evolution. Biochemistry 61, 1533-1542].
Collapse
Affiliation(s)
- Rania Hegazy
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
7
|
García-Meseguer R, Ortí E, Tuñón I, Ruiz-Pernía JJ, Aragó J. Insights into the Enhancement of the Poly(ethylene terephthalate) Degradation by FAST-PETase from Computational Modeling. J Am Chem Soc 2023; 145:19243-19255. [PMID: 37585687 PMCID: PMC10851425 DOI: 10.1021/jacs.3c04427] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 08/18/2023]
Abstract
Polyethylene terephthalate (PET) is the most abundant polyester plastic, widely used in textiles and packaging, but, unfortunately, it is also one of the most discarded plastics after one use. In the last years, the enzymatic biodegradation of PET has sparked great interest owing to the discovery and subsequent mutation of PETase-like enzymes, able to depolymerize PET. FAST-PETase is one of the best enzymes hitherto proposed to efficiently degrade PET, although the origin of its efficiency is not completely clear. To understand the molecular origin of its enhanced catalytic activity, we have carried out a thorough computational study of PET degradation by the FAST-PETase action by employing classical and hybrid (QM/MM) molecular dynamics (MD) simulations. Our findings show that the rate-limiting reaction step for FAST-PETase corresponds to the acylation stage with an estimated free energy barrier of 12.1 kcal mol-1, which is significantly smaller than that calculated for PETase (16.5 kcal mol-1) and, therefore, supports the enhanced catalytic activity of FAST-PETase. The origin of this enhancement is mainly attributed to the N233K mutation, which, although sited relatively far from the active site, induces a chain folding where the Asp206 of the catalytic triad is located, impeding that this residue sets effective H-bonds with its neighboring residues. This effect makes Asp206 hold a more basic character compared to the wild-type PETase and boosts the interaction with the protonated His237 of the catalytic triad in the transition state of acylation, with the consequent decrease of the catalytic barrier and acceleration of the PET degradation reaction.
Collapse
Affiliation(s)
- Rafael García-Meseguer
- Instituto
de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - Enrique Ortí
- Instituto
de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| | - Iñaki Tuñón
- Departamento
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| | | | - Juan Aragó
- Instituto
de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán
2, 46980 Paterna, Spain
| |
Collapse
|
8
|
Cristobal J, Nagorski RW, Richard JP. Utilization of Cofactor Binding Energy for Enzyme Catalysis: Formate Dehydrogenase-Catalyzed Reactions of the Whole NAD Cofactor and Cofactor Pieces. Biochemistry 2023; 62:2314-2324. [PMID: 37463347 PMCID: PMC10399567 DOI: 10.1021/acs.biochem.3c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Indexed: 07/20/2023]
Abstract
The pressure to optimize enzymatic rate accelerations has driven the evolution of the induced-fit mechanism for enzyme catalysts where the binding interactions of nonreacting phosphodianion or adenosyl substrate pieces drive enzyme conformational changes to form protein substrate cages that are activated for catalysis. We report the results of experiments to test the hypothesis that utilization of the binding energy of the adenosine 5'-diphosphate ribose (ADP-ribose) fragment of the NAD cofactor to drive a protein conformational change activates Candida boidinii formate dehydrogenase (CbFDH) for catalysis of hydride transfer from formate to NAD+. The ADP-ribose fragment provides a >14 kcal/mol stabilization of the transition state for CbFDH-catalyzed hydride transfer from formate to NAD+. This is larger than the ca. 6 kcal/mol stabilization of the ground-state Michaelis complex between CbFDH and NAD+ (KNAD = 0.032 mM). The ADP, AMP, and ribose 5'-phosphate fragments of NAD+ activate CbFDH for catalysis of hydride transfer from formate to nicotinamide riboside (NR). At a 1.0 M standard state, these activators stabilize the hydride transfer transition states by ≈5.5 (ADP), 5.5 (AMP), and 4.4 (ribose 5'-phosphate) kcal/mol. We propose that activation by these cofactor fragments is partly or entirely due to the ion-pair interaction between the guanidino side chain cation of R174 and the activator phosphate anion. This substitutes for the interaction between the α-adenosyl pyrophosphate anion of the whole NAD+ cofactor that holds CbFDH in the catalytically active closed conformation.
Collapse
Affiliation(s)
- Judith
R. Cristobal
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - Richard W. Nagorski
- Department
of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United
States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
9
|
Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 2023; 7:536-547. [PMID: 37225920 DOI: 10.1038/s41570-023-00495-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
In the early 2000s, Tawfik presented his 'New View' on enzyme evolution, highlighting the role of conformational plasticity in expanding the functional diversity of limited repertoires of sequences. This view is gaining increasing traction with increasing evidence of the importance of conformational dynamics in both natural and laboratory evolution of enzymes. The past years have seen several elegant examples of harnessing conformational (particularly loop) dynamics to successfully manipulate protein function. This Review revisits flexible loops as critical participants in regulating enzyme activity. We showcase several systems of particular interest: triosephosphate isomerase barrel proteins, protein tyrosine phosphatases and β-lactamases, while briefly discussing other systems in which loop dynamics are important for selectivity and turnover. We then discuss the implications for engineering, presenting examples of successful loop manipulation in either improving catalytic efficiency, or changing selectivity completely. Overall, it is becoming clearer that mimicking nature by manipulating the conformational dynamics of key protein loops is a powerful method of tailoring enzyme activity, without needing to target active-site residues.
Collapse
Affiliation(s)
- Marina Corbella
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry, Uppsala University, Uppsala, Sweden
- Cortex Discovery GmbH, Regensburg, Germany
| | - Shina C L Kamerlin
- Department of Chemistry, Uppsala University, Uppsala, Sweden.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
10
|
Belinskaia DA, Voronina PA, Popova PI, Voitenko NG, Shmurak VI, Vovk MA, Baranova TI, Batalova AA, Korf EA, Avdonin PV, Jenkins RO, Goncharov NV. Albumin Is a Component of the Esterase Status of Human Blood Plasma. Int J Mol Sci 2023; 24:10383. [PMID: 37373530 PMCID: PMC10299176 DOI: 10.3390/ijms241210383] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The esterase status of blood plasma can claim to be one of the universal markers of various diseases; therefore, it deserves attention when searching for markers of the severity of COVID-19 and other infectious and non-infectious pathologies. When analyzing the esterase status of blood plasma, the esterase activity of serum albumin, which is the major protein in the blood of mammals, should not be ignored. The purpose of this study is to expand understanding of the esterase status of blood plasma and to evaluate the relationship of the esterase status, which includes information on the amount and enzymatic activity of human serum albumin (HSA), with other biochemical parameters of human blood, using the example of surviving and deceased patients with confirmed COVID-19. In experiments in vitro and in silico, the activity of human plasma and pure HSA towards various substrates was studied, and the effect of various inhibitors on this activity was tested. Then, a comparative analysis of the esterase status and a number of basic biochemical parameters of the blood plasma of healthy subjects and patients with confirmed COVID-19 was performed. Statistically significant differences have been found in esterase status and biochemical indices (including albumin levels) between healthy subjects and patients with COVID-19, as well as between surviving and deceased patients. Additional evidence has been obtained for the importance of albumin as a diagnostic marker. Of particular interest is a new index, [Urea] × [MDA] × 1000/(BChEb × [ALB]), which in the group of deceased patients was 10 times higher than in the group of survivors and 26 times higher than the value in the group of apparently healthy elderly subjects.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Polina I. Popova
- City Polyclinic No. 112, 25 Academician Baykov Str., 195427 St. Petersburg, Russia
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Vladimir I. Shmurak
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Mikhail A. Vovk
- Centre for Magnetic Resonance, St. Petersburg State University, Universitetskij pr., 26, Peterhof, 198504 St. Petersburg, Russia
| | - Tatiana I. Baranova
- Faculty of Biology, St. Petersburg State University, 7-9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Anastasia A. Batalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Ekaterina A. Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., 119334 Moscow, Russia
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, 194223 St. Petersburg, Russia
| |
Collapse
|
11
|
Cristobal JR, Richard JP. Kinetics and mechanism for enzyme-catalyzed reactions of substrate pieces. Methods Enzymol 2023; 685:95-126. [PMID: 37245916 PMCID: PMC10251411 DOI: 10.1016/bs.mie.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The most important difference between enzyme and small molecule catalysts is that only enzymes utilize the large intrinsic binding energies of nonreacting portions of the substrate in stabilization of the transition state for the catalyzed reaction. A general protocol is described to determine the intrinsic phosphodianion binding energy for enzymatic catalysis of reactions of phosphate monoester substrates, and the intrinsic phosphite dianion binding energy in activation of enzymes for catalysis of phosphodianion truncated substrates, from the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates. The enzyme-catalyzed reactions so-far documented that utilize dianion binding interactions for enzyme activation; and, their phosphodianion truncated substrates are summarized. A model for the utilization of dianion binding interactions for enzyme activation is described. The methods for the determination of the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates, from initial velocity data, are described and illustrated by graphical plots of kinetic data. The results of studies on the effect of site-directed amino acid substitutions at orotidine 5'-monophosphate decarboxylase, triosephosphate isomerase, and glycerol-3-phosphate dehydrogenase provide strong support for the proposal that these enzymes utilize binding interactions with the substrate phosphodianion to hold the protein catalysts in reactive closed conformations.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States.
| |
Collapse
|
12
|
Brickel S, Demkiv AO, Crean RM, Pinto GP, Kamerlin SCL. Q-RepEx: A Python pipeline to increase the sampling of empirical valence bond simulations. J Mol Graph Model 2023; 119:108402. [PMID: 36610324 DOI: 10.1016/j.jmgm.2022.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
The exploration of chemical systems occurs on complex energy landscapes. Comprehensively sampling rugged energy landscapes with many local minima is a common problem for molecular dynamics simulations. These multiple local minima trap the dynamic system, preventing efficient sampling. This is a particular challenge for large biochemical systems with many degrees of freedom. Replica exchange molecular dynamics (REMD) is an approach that accelerates the exploration of the conformational space of a system, and thus can be used to enhance the sampling of complex biomolecular processes. In parallel, the empirical valence bond (EVB) approach is a powerful approach for modeling chemical reactivity in biomolecular systems. Here, we present an open-source Python-based tool that interfaces with the Q simulation package, and increases the sampling efficiency of the EVB free energy perturbation/umbrella sampling approach by means of REMD. This approach, Q-RepEx, both decreases the computational cost of the associated REMD-EVB simulations, and opens the door to more efficient studies of biochemical reactivity in systems with significant conformational fluctuations along the chemical reaction coordinate.
Collapse
Affiliation(s)
- Sebastian Brickel
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Andrey O Demkiv
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Rory M Crean
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Shina Caroline Lynn Kamerlin
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden; School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
13
|
Onyido I, Obumselu OF, Egwuatu CI, Okoye NH. Solvent and solvation effects on reactivities and mechanisms of phospho group transfers from phosphate and phosphinate esters to nucleophiles. Front Chem 2023; 11:1176746. [PMID: 37179775 PMCID: PMC10172589 DOI: 10.3389/fchem.2023.1176746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Organophosphorus esters fulfil many industrial, agricultural, and household roles. Nature has deployed phosphates and their related anhydrides as energy carriers and reservoirs, as constituents of genetic materials in the form of DNA and RNA, and as intermediates in key biochemical conversions. The transfer of the phosphoryl (PO3) group is thus a ubiquitous biological process that is involved in a variety of transformations at the cellular level such as bioenergy and signals transductions. Significant attention has been paid in the last seven decades to understanding the mechanisms of uncatalyzed (solution) chemistry of the phospho group transfer because of the notion that enzymes convert the dissociative transition state structures in the uncatalyzed reactions into associative ones in the biological processes. In this regard, it has also been proposed that the rate enhancements enacted by enzymes result from the desolvation of the ground state in the hydrophobic active site environments, although theoretical calculations seem to disagree with this position. As a result, some attention has been paid to the study of the effects of solvent change, from water to less polar solvents, in uncatalyzed phospho transfer reactions. Such changes have consequences on the stabilities of the ground and the transition states of reactions which affect reactivities and, sometimes, the mechanisms of reactions. This review seeks to collate and evaluate what is known about solvent effects in this domain, especially their effects on rates of reactions of different classes of organophosphorus esters. The outcome of this exercise shows that a systematized study of solvent effects needs to be undertaken to fully understand the physical organic chemistry of the transfer of phosphates and related molecules from aqueous to substantially hydrophobic environments, since significant knowledge gaps exist.
Collapse
|
14
|
Fernandez P, Richard JP. Adenylate Kinase-Catalyzed Reactions of AMP in Pieces: Specificity for Catalysis at the Nucleoside Activator and Dianion Catalytic Sites. Biochemistry 2022; 61:2766-2775. [PMID: 36413937 PMCID: PMC9731266 DOI: 10.1021/acs.biochem.2c00531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The pressure to optimize the enzymatic rate acceleration for adenylate kinase (AK)-catalyzed phosphoryl transfer has led to the evolution of an induced-fit mechanism, where the binding energy from interactions between the protein and substrate adenosyl group is utilized to drive a protein conformational change that activates the enzyme for catalysis. The adenine group of adenosine contributes 11.8 kcal mol-1 to the total ≥14.7 kcal mol-1 adenosine stabilization of the transition state for AK-catalyzed phosphoryl transfer to AMP. The relative third-order rate constants for activation of adenylate kinase, by the C-5 truncated adenosine 1-(β-d-erythrofuranosyl)adenine (EA), for catalysis of phosphoryl transfer from ATP to phosphite dianion (HP, kcat/KHPKAct = 260 M-2 s-1), fluorophosphate (47 M-2 s-1), and phosphate (9.6 M-2 s-1), show that substitution of -F for -H and of -OH for -H at HP results, respectively, in decreases in the reactivity of AK for catalysis of phosphoryl transfer due to polar and steric effects of the -F and -OH substituents. The addition of a 5'-CH2OH to the EA activator results in a 3.0 kcal mol-1 destabilization of the transition state for AK-activated phosphoryl transfer to HP due to a steric effect. This is smaller than the 8.3 kcal mol-1 steric effect of the 5'-CH2OH substituent at OMP on HP-activated OMPDC-catalyzed decarboxylation of 1-(β-d-erythrofuranosyl)orotate. The 2'-OH ribosyl substituent shows significant interactions with the transition states for AK-catalyzed phosphoryl transfer from ATP to AMP and for adenosine-activated AK-catalyzed phosphoryl transfer from ATP to HP.
Collapse
Affiliation(s)
- Patrick
L. Fernandez
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York14260−3000, United States
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York14260−3000, United States
| |
Collapse
|
15
|
Cristobal JR, Richard JP. Glycerol-3-Phosphate Dehydrogenase: The K120 and K204 Side Chains Define an Oxyanion Hole at the Enzyme Active Site. Biochemistry 2022; 61:856-867. [PMID: 35502876 PMCID: PMC9119304 DOI: 10.1021/acs.biochem.2c00053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cationic K120 and K204 side chains lie close to the C-2 carbonyl group of substrate dihydroxyacetone phosphate (DHAP) at the active site of glycerol-3-phosphate dehydrogenase (GPDH), and the K120 side chain is also positioned to form a hydrogen bond to the C-1 hydroxyl of DHAP. The kinetic parameters for unactivated and phosphite dianion-activated GPDH-catalyzed reduction of glycolaldehyde and acetaldehyde (AcA) show that the transition state for the former reaction is stabilized by ca 5 kcal/mole by interactions of the C-1 hydroxyl group with the protein catalyst. The K120A and K204A substitutions at wild-type GPDH result in similar decreases in kcat, but Km is only affected by the K120A substitution. These results are consistent with 3 kcal/mol stabilizing interactions between the K120 or K204 side chains and a negative charge at the C-2 oxygen at the transition state for hydride transfer from NADH to DHAP. This stabilization resembles that observed at oxyanion holes for other enzymes. There is no detectable rescue of the K204A variant by ethylammonium cation (EtNH3+), compared with the efficient rescue of the K120A variant. This is consistent with a difference in the accessibility of the variant enzyme active sites to exogenous EtNH3+. The K120A/K204A substitutions cause a (6 × 106)-fold increase in the promiscuity of wild-type hlGPDH for catalysis of the reduction of AcA compared to DHAP. This may reflect conservation of the active site for an ancestral alcohol dehydrogenase, whose relative activity for catalysis of reduction of AcA increases with substitutions that reduce the activity for reduction of the specific substrate DHAP.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
16
|
Lawal MM, Vaissier Welborn V. Structural dynamics support electrostatic interactions in the active site of Adenylate Kinase. Chembiochem 2022; 23:e202200097. [PMID: 35303385 DOI: 10.1002/cbic.202200097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Indexed: 11/12/2022]
Abstract
Electrostatic preorganization as well as structural and dynamic heterogeneity are often used to rationalize the remarkable catalytic efficiency of enzymes. However, they are often presented as incompatible because the generation of permanent electrostatic effects implies that the protein structure remains rigid. Here, we use a metric, electric fields, that can treat electrostatic contributions and dynamics effects on equal footing, for a unique perspective on enzymatic catalysis. We find that the residues that contribute the most to electrostatic interactions with the substrate in the active site of Adenylate Kinase (our working example) are also the most flexible residues. Further, entropy-tuning mutations raise flexibility at the picosecond timescale where more conformations can be visited on short time periods, thereby softening the sharp heterogeneity normally visible at the microsecond timescale.
Collapse
Affiliation(s)
| | - Valerie Vaissier Welborn
- Virginia Polytechnic Institute and State University, Chemistry, Davidson 421A, 1040 Drillfield Drive, 24073, Blacksburg, UNITED STATES
| |
Collapse
|
17
|
Robertson AJ, Cruz-Navarrete FA, Wood HP, Vekaria N, Hounslow AM, Bisson C, Cliff MJ, Baxter NJ, Waltho JP. An Enzyme with High Catalytic Proficiency Utilizes Distal Site Substrate Binding Energy to Stabilize the Closed State but at the Expense of Substrate Inhibition. ACS Catal 2022; 12:3149-3164. [PMID: 35692864 PMCID: PMC9171722 DOI: 10.1021/acscatal.1c05524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/10/2022] [Indexed: 02/05/2023]
Abstract
Understanding the factors that underpin the enormous catalytic proficiencies of enzymes is fundamental to catalysis and enzyme design. Enzymes are, in part, able to achieve high catalytic proficiencies by utilizing the binding energy derived from nonreacting portions of the substrate. In particular, enzymes with substrates containing a nonreacting phosphodianion group coordinated in a distal site have been suggested to exploit this binding energy primarily to facilitate a conformational change from an open inactive form to a closed active form, rather than to either induce ground state destabilization or stabilize the transition state. However, detailed structural evidence for the model is limited. Here, we use β-phosphoglucomutase (βPGM) to investigate the relationship between binding a phosphodianion group in a distal site, the adoption of a closed enzyme form, and catalytic proficiency. βPGM catalyzes the isomerization of β-glucose 1-phosphate to glucose 6-phosphate via phosphoryl transfer reactions in the proximal site, while coordinating a phosphodianion group of the substrate(s) in a distal site. βPGM has one of the largest catalytic proficiencies measured and undergoes significant domain closure during its catalytic cycle. We find that side chain substitution at the distal site results in decreased substrate binding that destabilizes the closed active form but is not sufficient to preclude the adoption of a fully closed, near-transition state conformation. Furthermore, we reveal that binding of a phosphodianion group in the distal site stimulates domain closure even in the absence of a transferring phosphoryl group in the proximal site, explaining the previously reported β-glucose 1-phosphate inhibition. Finally, our results support a trend whereby enzymes with high catalytic proficiencies involving phosphorylated substrates exhibit a greater requirement to stabilize the closed active form.
Collapse
Affiliation(s)
- Angus J. Robertson
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Henry P. Wood
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Nikita Vekaria
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Andrea M. Hounslow
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Claudine Bisson
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Matthew J. Cliff
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicola J. Baxter
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Jonathan P. Waltho
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
18
|
Cristobal JR, Brandão TAS, Reyes AC, Richard JP. Protein-Ribofuranosyl Interactions Activate Orotidine 5'-Monophosphate Decarboxylase for Catalysis. Biochemistry 2021; 60:3362-3373. [PMID: 34726391 DOI: 10.1021/acs.biochem.1c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of a global, substrate-driven, enzyme conformational change in enabling the extraordinarily large rate acceleration for orotidine 5'-monophosphate decarboxylase (OMPDC)-catalyzed decarboxylation of orotidine 5'-monophosphate (OMP) is examined in experiments that focus on the interactions between OMPDC and the ribosyl hydroxyl groups of OMP. The D37 and T100' side chains of OMPDC interact, respectively, with the C-3' and C-2' hydroxyl groups of enzyme-bound OMP. D37G and T100'A substitutions result in 1.4 kcal/mol increases in the activation barrier ΔG⧧ for catalysis of decarboxylation of the phosphodianion-truncated substrate 1-(β-d-erythrofuranosyl)orotic acid (EO) but result in larger 2.1-2.9 kcal/mol increases in ΔG⧧ for decarboxylation of OMP and for phosphite dianion-activated decarboxylation of EO. This shows that these substitutions reduce transition-state stabilization by the Q215, Y217, and R235 side chains at the dianion binding site. The D37G and T100'A substitutions result in <1.0 kcal/mol increases in ΔG⧧ for activation of OMPDC-catalyzed decarboxylation of the phosphoribofuranosyl-truncated substrate FO by phosphite dianions. Experiments to probe the effect of D37 and T100' substitutions on the kinetic parameters for d-glycerol 3-phosphate and d-erythritol 4-phosphate activators of OMPDC-catalyzed decarboxylation of FO show that ΔG⧧ for sugar phosphate-activated reactions is increased by ca. 2.5 kcal/mol for each -OH interaction eliminated by D37G or T100'A substitutions. We conclude that the interactions between the D37 and T100' side chains and ribosyl or ribosyl-like hydroxyl groups are utilized to activate OMPDC for catalysis of decarboxylation of OMP, EO, and FO.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tiago A S Brandão
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Archie C Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
19
|
Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem Soc Rev 2021; 50:5952-5984. [PMID: 34027955 PMCID: PMC8142540 DOI: 10.1039/d0cs00540a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Racemases and epimerases catalyse changes in the stereochemical configurations of chiral centres and are of interest as model enzymes and as biotechnological tools. They also occupy pivotal positions within metabolic pathways and, hence, many of them are important drug targets. This review summarises the catalytic mechanisms of PLP-dependent, enolase family and cofactor-independent racemases and epimerases operating by a deprotonation/reprotonation (1,1-proton transfer) mechanism and methods for measuring their catalytic activity. Strategies for inhibiting these enzymes are reviewed, as are specific examples of inhibitors. Rational design of inhibitors based on substrates has been extensively explored but there is considerable scope for development of transition-state mimics and covalent inhibitors and for the identification of inhibitors by high-throughput, fragment and virtual screening approaches. The increasing availability of enzyme structures obtained using X-ray crystallography will facilitate development of inhibitors by rational design and fragment screening, whilst protein models will facilitate development of transition-state mimics.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Maksims Yevglevskis
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and CatSci Ltd., CBTC2, Capital Business Park, Wentloog, Cardiff CF3 2PX, UK
| | - Amit Nathubhai
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and University of Sunderland, School of Pharmacy & Pharmaceutical Sciences, Sciences Complex, Sunderland SR1 3SD, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth SY23 3BY, UK
| | - Timothy J Woodman
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
20
|
Richard JP, Cristobal JR, Amyes TL. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe. Acc Chem Res 2021; 54:2532-2542. [PMID: 33939414 PMCID: PMC8157535 DOI: 10.1021/acs.accounts.1c00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Linear free energy relationships (LFERs) for substituent effects on reactions that
proceed through similar transition states provide insight into transition state
structures. A classical approach to the analysis of LFERs showed that differences in the
slopes of Brønsted correlations for addition of substituted alkyl alcohols to
ring-substituted 1-phenylethyl carbocations and to the β-galactopyranosyl
carbocation intermediate of reactions catalyzed by β-galactosidase provide
evidence that the enzyme catalyst modifies the curvature of the energy surface at the
saddle point for the transition state for nucleophile addition. We have worked to
generalize the use of LFERs in the determination of enzyme mechanisms. The defining
property of enzyme catalysts is their specificity for binding the transition state with
a much higher affinity than the substrate. Triosephosphate isomerase (TIM), orotidine
5′-monophosphate decarboxylase (OMPDC), and glycerol 3-phosphate dehydrogenase
(GPDH) show effective catalysis of reactions of phosphorylated substrates and strong
phosphite dianion activation of reactions of phosphodianion truncated substrates, with
rate constants kcat/Km
(M–1 s–1) and
kcat/KdKHPi
(M–2 s–1), respectively. Good linear logarithmic
correlations, with a slope of 1.1, between these kinetic parameters determined for
reactions catalyzed by five or more variant forms of each catalyst are observed, where
the protein substitutions are mainly at side chains which function to stabilize the cage
complex between the enzyme and substrate. This shows that the enzyme-catalyzed reactions
of a whole substrate and substrate pieces proceed through transition states of similar
structures. It provides support for the proposal that the dianion binding energy of
whole phosphodianion substrates and of phosphite dianion is used to drive the conversion
of these protein catalysts from flexible and entropically rich ground states to stiff
and catalytically active Michaelis complexes that show the same activity toward
catalysis of the reactions of whole and phosphodianion truncated substrates. There is a
good linear correlation, with a slope of 0.73, between values of the dissociation
constants log Ki for release of the transition state analog
phosphoglycolate (PGA) trianion and log
kcat/Km for isomerization of
GAP for wild-type and variants of TIM. This correlation shows that the substituted amino
acid side chains act to stabilize the complex between TIM and the PGA trianion and that
ca. 70% of this stabilization is observed at the transition state for
substrate deprotonation. The correlation provides evidence that these side chains
function to enhance the basicity of the E165 side chain of TIM, which deprotonates the
bound carbon acid substrate. There is a good linear correlation, with a slope of 0.74,
between the values of ΔG‡ and
ΔG° determined by electron valence bond (EVB) calculations
to model deprotonation of dihydroxyacetone phosphate (DHAP) in water and when bound to
wild-type and variant forms of TIM to form the enediolate reaction intermediate. This
correlation provides evidence that the stabilizing interactions of the transition state
for TIM-catalyzed deprotonation of DHAP are optimized by placement of amino acid side
chains in positions that provide for the maximum stabilization of the charged reaction
intermediate, relative to the neutral substrate.
Collapse
Affiliation(s)
- John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Judith R. Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tina L. Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
21
|
Waghwani HK, Douglas T. Cytochrome C with peroxidase-like activity encapsulated inside the small DPS protein nanocage. J Mater Chem B 2021; 9:3168-3179. [PMID: 33885621 DOI: 10.1039/d1tb00234a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes self-assembled protein-based structures as subcellular compartments in prokaryotes to sequester catalysts for specialized biochemical reactions. These protein cage structures provide unique isolated environments for the encapsulated enzymes. Understanding these systems is useful in the bioinspired design of synthetic catalytic organelle-like nanomaterials. The DNA binding protein from starved cells (Dps), isolated from Sulfolobus solfataricus, is a 9 nm dodecameric protein cage making it the smallest known naturally occurring protein cage. It is naturally over-expressed in response to oxidative stress. The small size, natural biodistribution to the kidney, and ability to cross the glomerular filtration barrier in in vivo experiments highlight its potential as a synthetic antioxidant. Cytochrome C (CytC) is a small heme protein with peroxidase-like activity involved in the electron transport chain and also plays a critical role in cellular apoptosis. Here we report the encapsulation of CytC inside the 5 nm interior cavity of Dps and demonstrate the catalytic activity of the resultant Dps nanocage with enhanced antioxidant behavior. The small cavity can accommodate a single CytC and this was achieved through self-assembly of chimeric cages comprising Dps subunits and a Dps subunit to which the CytC was fused. For selective isolation of CytC containing Dps cages, we utilized engineered polyhistidine tag present only on the enzyme fused Dps subunits (6His-Dps-CytC). The catalytic activity of encapsulated CytC was studied using guaiacol and 3,3',5,5'-tetramethylbenzidine (TMB) as two different peroxidase substrates and compared to the free (unencapsulated) CytC activity. The encapsulated CytC showed better pH dependent catalytic activity compared to free enzyme and provides a proof-of-concept model to engineer these small protein cages for their potential as catalytic nanoreactors.
Collapse
Affiliation(s)
- Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
22
|
Recabarren R, Zinovjev K, Tuñón I, Alzate-Morales J. How a Second Mg 2+ Ion Affects the Phosphoryl-Transfer Mechanism in a Protein Kinase: A Computational Study. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodrigo Recabarren
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente, 1141 Talca, Chile
| | - Kirill Zinovjev
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, Valencia 46010, Spain
| | - Jans Alzate-Morales
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente, 1141 Talca, Chile
| |
Collapse
|
23
|
He R, Cristobal JR, Gong NJ, Richard JP. Hydride Transfer Catalyzed by Glycerol Phosphate Dehydrogenase: Recruitment of an Acidic Amino Acid Side Chain to Rescue a Damaged Enzyme. Biochemistry 2020; 59:4856-4863. [PMID: 33305938 PMCID: PMC7784668 DOI: 10.1021/acs.biochem.0c00801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
K120 of glycerol 3-phosphate dehydrogenase (GPDH) lies close to the carbonyl group of
the bound dihydroxyacetone phosphate (DHAP) dianion. pH rate (pH 4.6–9.0)
profiles are reported for kcat and
(kcat/Km)dianion
for wild type and K120A GPDH-catalyzed reduction of DHAP by NADH, and for
(kcat/KdKam)
for activation of the variant-catalyzed reduction by
CH3CH2NH3+, where
Kam and Kd are apparent
dissociation constants for CH3CH2NH3+ and
DHAP, respectively. These profiles provide evidence that the K120 side chain cation,
which is stabilized by an ion-pairing interaction with the D260 side chain, remains
protonated between pH 4.6 and 9.0. The profiles for wild type and K120A variant GPDH
show downward breaks at a similar pH value (7.6) that are attributed to protonation of
the K204 side chain, which also lies close to the substrate carbonyl oxygen. The pH
profiles for
(kcat/Km)dianion
and
(kcat/KdKam)
for the K120A variant show that the monoprotonated form of the variant is activated for
catalysis by CH3CH2NH3+ but has no
detectable activity, compared to the diprotonated variant, for unactivated reduction of
DHAP. The pH profile for kcat shows that the monoprotonated
K120A variant is active toward reduction of enzyme-bound DHAP, because of activation by
a ligand-driven conformational change. Upward breaks in the pH profiles for
kcat and
(kcat/Km)dianion
for K120A GPDH are attributed to protonation of D260. These breaks are consistent with
the functional replacement of K120 by D260, and a plasticity in the catalytic roles of
the active site side chains.
Collapse
Affiliation(s)
- Rui He
- Department of Chemistry, University at Buffalo, The State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Judith R Cristobal
- Department of Chemistry, University at Buffalo, The State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Naiji Jabin Gong
- Department of Chemistry, University at Buffalo, The State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, The State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
24
|
Di Cera E. Mechanisms of ligand binding. BIOPHYSICS REVIEWS 2020; 1:011303. [PMID: 33313600 PMCID: PMC7714259 DOI: 10.1063/5.0020997] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| |
Collapse
|
25
|
Biler M, Crean RM, Schweiger AK, Kourist R, Kamerlin SCL. Ground-State Destabilization by Active-Site Hydrophobicity Controls the Selectivity of a Cofactor-Free Decarboxylase. J Am Chem Soc 2020; 142:20216-20231. [PMID: 33180505 PMCID: PMC7735706 DOI: 10.1021/jacs.0c10701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 01/11/2023]
Abstract
Bacterial arylmalonate decarboxylase (AMDase) and evolved variants have become a valuable tool with which to access both enantiomers of a broad range of chiral arylaliphatic acids with high optical purity. Yet, the molecular principles responsible for the substrate scope, activity, and selectivity of this enzyme are only poorly understood to date, greatly hampering the predictability and design of improved enzyme variants for specific applications. In this work, empirical valence bond and metadynamics simulations were performed on wild-type AMDase and variants thereof to obtain a better understanding of the underlying molecular processes determining reaction outcome. Our results clearly reproduce the experimentally observed substrate scope and support a mechanism driven by ground-state destabilization of the carboxylate group being cleaved by the enzyme. In addition, our results indicate that, in the case of the nonconverted or poorly converted substrates studied in this work, increased solvent exposure of the active site upon binding of these substrates can disturb the vulnerable network of interactions responsible for facilitating the AMDase-catalyzed cleavage of CO2. Finally, our results indicate a switch from preferential cleavage of the pro-(R) to the pro-(S) carboxylate group in the CLG-IPL variant of AMDase for all substrates studied. This appears to be due to the emergence of a new hydrophobic pocket generated by the insertion of the six amino acid substitutions, into which the pro-(S) carboxylate binds. Our results allow insight into the tight interaction network determining AMDase selectivity, which in turn provides guidance for the identification of target residues for future enzyme engineering.
Collapse
Affiliation(s)
- Michal Biler
- Department
of Chemistry−BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Rory M. Crean
- Department
of Chemistry−BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Anna K. Schweiger
- Institute
of Molecular Biotechnology, Graz University
of Technology, NAWI Graz,
Petersgasse 14, 8010 Graz, Austria
| | - Robert Kourist
- Institute
of Molecular Biotechnology, Graz University
of Technology, NAWI Graz,
Petersgasse 14, 8010 Graz, Austria
| | | |
Collapse
|
26
|
Cornell RB. Membrane Lipids Assist Catalysis by CTP: Phosphocholine Cytidylyltransferase. J Mol Biol 2020; 432:5023-5042. [PMID: 32234309 DOI: 10.1016/j.jmb.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
While most of the articles in this issue review the workings of integral membrane enzymes, in this review, we describe the catalytic mechanism of an enzyme that contains a soluble catalytic domain but appears to catalyze its reaction on the membrane surface, anchored and assisted by a separate regulatory amphipathic helical domain and inter-domain linker. Membrane partitioning of CTP: phosphocholine cytidylyltransferase (CCT), a key regulatory enzyme of phosphatidylcholine metabolism, is regulated chiefly by changes in membrane phospholipid composition, and boosts the enzyme's catalytic efficiency >200-fold. Catalytic enhancement by membrane binding involves the displacement of an auto-inhibitory helix from the active site entrance-way and promotion of a new conformational ensemble for the inter-domain, allosteric linker that has an active role in the catalytic cycle. We describe the evidence for close contact between membrane lipid, a compact allosteric linker, and the CCT active site, and discuss potential ways that this interaction enhances catalysis.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A-1S6.
| |
Collapse
|
27
|
Crean RM, Gardner JM, Kamerlin SCL. Harnessing Conformational Plasticity to Generate Designer Enzymes. J Am Chem Soc 2020; 142:11324-11342. [PMID: 32496764 PMCID: PMC7467679 DOI: 10.1021/jacs.0c04924] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 02/08/2023]
Abstract
Recent years have witnessed an explosion of interest in understanding the role of conformational dynamics both in the evolution of new enzymatic activities from existing enzymes and in facilitating the emergence of enzymatic activity de novo on scaffolds that were previously non-catalytic. There are also an increasing number of examples in the literature of targeted engineering of conformational dynamics being successfully used to alter enzyme selectivity and activity. Despite the obvious importance of conformational dynamics to both enzyme function and evolvability, many (although not all) computational design approaches still focus either on pure sequence-based approaches or on using structures with limited flexibility to guide the design. However, there exist a wide variety of computational approaches that can be (re)purposed to introduce conformational dynamics as a key consideration in the design process. Coupled with laboratory evolution and more conventional existing sequence- and structure-based approaches, these techniques provide powerful tools for greatly expanding the protein engineering toolkit. This Perspective provides an overview of evolutionary studies that have dissected the role of conformational dynamics in facilitating the emergence of novel enzymes, as well as advances in computational approaches that allow one to target conformational dynamics as part of enzyme design. Harnessing conformational dynamics in engineering studies is a powerful paradigm with which to engineer the next generation of designer biocatalysts.
Collapse
Affiliation(s)
- Rory M. Crean
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Jasmine M. Gardner
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Shina C. L. Kamerlin
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| |
Collapse
|
28
|
Rosenberg MM, Yao T, Patton GC, Redfield AG, Roberts MF, Hedstrom L. Enzyme-Substrate-Cofactor Dynamical Networks Revealed by High-Resolution Field Cycling Relaxometry. Biochemistry 2020; 59:2359-2370. [PMID: 32479091 PMCID: PMC8364753 DOI: 10.1021/acs.biochem.0c00212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The remarkable power and specificity of enzyme catalysis rely on the dynamic alignment of the enzyme, substrates, and cofactors, yet the role of dynamics has usually been approached from the perspective of the protein. We have been using an underappreciated NMR technique, subtesla high-resolution field cycling 31P NMR relaxometry, to investigate the dynamics of the enzyme-bound substrates and cofactor on guanosine-5'-monophosphate reductase (GMPR). GMPR forms two dead end, yet catalytically competent, complexes that mimic distinct steps in the catalytic cycle: E·IMP·NADP+ undergoes a partial hydride transfer reaction, while E·GMP·NADP+ undergoes a partial deamination reaction. A different cofactor conformation is required for each partial reaction. Here we report the effects of mutations designed to perturb cofactor conformation and ammonia binding with the goal of identifying the structural features that contribute to the distinct dynamic signatures of the hydride transfer and deamination complexes. These experiments suggest that Asp129 is a central cog in a dynamic network required for both hydride transfer and deamination. In contrast, Lys77 modulates the conformation and mobility of substrates and cofactors in a reaction-specific manner. Thr105 and Tyr318 are part of a deamination-specific dynamic network that includes the 2'-OH of GMP. These residues have comparatively little effect on the dynamic properties of the hydride transfer complex. These results further illustrate the potential of high-resolution field cycling NMR relaxometry for the investigation of ligand dynamics. In addition, exchange experiments indicate that NH3/NH4+ has a high affinity for the deamination complex but a low affinity for the hydride transfer complex, suggesting that the movement of ammonia may gate the cofactor conformational change. Collectively, these experiments reinforce the view that the enzyme, substrates, and cofactor are linked in intricate, reaction-specific, dynamic networks and demonstrate that distal portions of the substrates and cofactors are critical features in these networks.
Collapse
Affiliation(s)
- Masha M. Rosenberg
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
| | - Tianjiong Yao
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
| | - Gregory C. Patton
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
| | - Alfred G. Redfield
- Department of Biochemistry, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Mary F. Roberts
- Department of Chemistry, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-9110 USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South St., Waltham MA 02453-9110 USA
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453-3808 USA
| |
Collapse
|
29
|
Brandão TAS, Richard JP. Orotidine 5'-Monophosphate Decarboxylase: The Operation of Active Site Chains Within and Across Protein Subunits. Biochemistry 2020; 59:2032-2040. [PMID: 32374983 PMCID: PMC7476526 DOI: 10.1021/acs.biochem.0c00241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The D37 and T100′
side chains of orotidine 5′-monophosphate
decarboxylase (OMPDC) interact with the C-3′ and C-2′
ribosyl hydroxyl groups, respectively, of the bound substrate. We
compare the intra-subunit interactions of D37 with the inter-subunit
interactions of T100′ by determining the effects of the D37G,
D37A, T100′G, and T100′A substitutions on the following:
(a) kcat and kcat/Km values for the OMPDC-catalyzed decarboxylations
of OMP and 5-fluoroorotidine 5′-monophosphate (FOMP) and (b)
the stability of dimeric OMPDC relative to the monomer. The D37G and
T100′A substitutions resulted in 2 kcal mol–1 increases in ΔG† for kcat/Km for the decarboxylation
of OMP, while the D37A and T100′G substitutions resulted in
larger 4 and 5 kcal mol–1 increases, respectively,
in ΔG†. The D37G and T100′A
substitutions both resulted in smaller 2 kcal mol–1 decreases in ΔG† for the
decarboxylation of FOMP compared to that of OMP. These results show
that the D37G and T100′A substitutions affect the barrier to
the chemical decarboxylation step while the D37A and T100′G
substitutions also affect the barrier to a slow, ligand-driven enzyme
conformational change. Substrate binding induces the movement of an
α-helix (G′98–S′106) toward the substrate
C-2′ ribosyl hydroxy bound at the main subunit. The T100′G
substitution destabilizes the enzyme dimer by 3.5 kcal mol–1 compared to the monomer, which is consistent with the known destabilization
of α-helices by the internal Gly side chains [Serrano, L., et
al. (1992) Nature, 356, 453–455].
We propose that the T100′G substitution weakens the α-helical
contacts at the dimer interface, which results in a decrease in the
dimer stability and an increase in the barrier to the ligand-driven
conformational change.
Collapse
Affiliation(s)
- Tiago A S Brandão
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - John P Richard
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
30
|
Hirvonen VHA, Mulholland AJ, Spencer J, van der Kamp MW. Small Changes in Hydration Determine Cephalosporinase Activity of OXA-48 β-Lactamases. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Viivi H. A. Hirvonen
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD United Kingdom
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS United Kingdom
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD United Kingdom
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD United Kingdom
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS United Kingdom
| |
Collapse
|
31
|
Fischer C, Ahn YC, Vederas JC. Catalytic mechanism and properties of pyridoxal 5'-phosphate independent racemases: how enzymes alter mismatched acidity and basicity. Nat Prod Rep 2020; 36:1687-1705. [PMID: 30994146 DOI: 10.1039/c9np00017h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to March 2019 Amino acid racemases and epimerases are key enzymes that invert the configuration of common amino acids and supply many corresponding d-isomers in living organisms. Some d-amino acids are inherently bioactive, whereas others are building blocks for important biomolecules, for example lipid II, the bacterial cell wall precursor. Peptides containing them have enhanced proteolytic stability and can act as important recognition elements in mammalian systems. Selective inhibition of certain amino acid racemases (e.g. glutamate racemase) is believed to offer a promising target for new antibacterial drugs effective against pathogens resistant to current antibiotics. Many amino acid racemases employ imine formation with pyridoxal phosphate (PLP) as a cofactor to accelerate the abstraction of the alpha proton. However, the group reviewed herein achieves racemization of free amino acids without the use of cofactors or metals, and uses a thiol/thiolate pair for deprotonation and reprotonation. All bacteria and higher plants contain such enzymes, for example diaminopimelate epimerase, which is required for lysine biosynthesis in these organisms. This process cannot be accomplished without an enzyme catalyst as the acidities of a thiol and the substrate α-hydrogen are inherently mismatched by at least 10 orders of magnitude. This review describes the structural and mechanistic studies on PLP-independent racemases and the evolving view of key enzymatic machinery that accomplishes these remarkable transformations.
Collapse
Affiliation(s)
- Conrad Fischer
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2.
| | | | | |
Collapse
|
32
|
Cristobal JR, Reyes AC, Richard JP. The Organization of Active Site Side Chains of Glycerol-3-phosphate Dehydrogenase Promotes Efficient Enzyme Catalysis and Rescue of Variant Enzymes. Biochemistry 2020; 59:1582-1591. [PMID: 32250105 PMCID: PMC7207223 DOI: 10.1021/acs.biochem.0c00175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
A comparison of the
values of kcat/Km for reduction of dihydroxyacetone phosphate
(DHAP) by NADH catalyzed by wild type and K120A/R269A variant glycerol-3-phosphate
dehydrogenase from human liver (hlGPDH) shows that
the transition state for enzyme-catalyzed hydride transfer is stabilized
by 12.0 kcal/mol by interactions with the cationic K120 and R269 side
chains. The transition state for the K120A/R269A variant-catalyzed
reduction of DHAP is stabilized by 1.0 and 3.8 kcal/mol for reactions
in the presence of 1.0 M EtNH3+ and guanidinium
cation (Gua+), respectively, and by 7.5 kcal/mol for reactions
in the presence of a mixture of each cation at 1.0 M, so that the
transition state stabilization by the ternary E·EtNH3+·Gua+ complex is 2.8 kcal/mol greater
than the sum of stabilization by the respective binary complexes.
This shows that there is cooperativity between the paired activators
in transition state stabilization. The effective molarities (EMs)
of ∼50 M determined for the K120A and R269A side chains are
≪106 M, the EM for entropically controlled reactions.
The unusually efficient rescue of the activity of hlGPDH-catalyzed reactions by the HPi/Gua+ pair
and by the Gua+/EtNH3+ activator
pair is due to stabilizing interactions between the protein and the
activator pieces that organize the K120 and R269 side chains at the
active site. This “preorganization” of side chains promotes
effective catalysis by hlGPDH and many other enzymes.
The role of the highly conserved network of side chains, which include
Q295, R269, N270, N205, T264, K204, D260, and K120, in catalysis is
discussed.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Archie C Reyes
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
33
|
The role of ligand-gated conformational changes in enzyme catalysis. Biochem Soc Trans 2020; 47:1449-1460. [PMID: 31657438 PMCID: PMC6824834 DOI: 10.1042/bst20190298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 11/17/2022]
Abstract
Structural and biochemical studies on diverse enzymes have highlighted the importance of ligand-gated conformational changes in enzyme catalysis, where the intrinsic binding energy of the common phosphoryl group of their substrates is used to drive energetically unfavorable conformational changes in catalytic loops, from inactive open to catalytically competent closed conformations. However, computational studies have historically been unable to capture the activating role of these conformational changes. Here, we discuss recent experimental and computational studies, which can remarkably pinpoint the role of ligand-gated conformational changes in enzyme catalysis, even when not modeling the loop dynamics explicitly. Finally, through our joint analyses of these data, we demonstrate how the synergy between theory and experiment is crucial for furthering our understanding of enzyme catalysis.
Collapse
|
34
|
Witkin KR, Vance NR, Caldwell C, Li Q, Yu L, Spies MA. An Atomistic Understanding of Allosteric Inhibition of Glutamate Racemase: a Dampening of Native Activation Dynamics. ChemMedChem 2020; 15:376-384. [PMID: 31876113 PMCID: PMC7337235 DOI: 10.1002/cmdc.201900642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Indexed: 11/07/2022]
Abstract
Glutamate racemases (GR) are members of the family of bacterial enzymes known as cofactor-independent racemases and epimerases and catalyze the stereoinversion of glutamate. D-amino acids are universally important for the proper construction of viable bacterial cell walls, and thus have been repeatedly validated as attractive targets for novel antimicrobial drug design. Significant aspects of the mechanism of this challenging stereoinversion remain unknown. The current study employs a combination of MD and QM/MM computational approaches to show that the GR from H. pylori must proceed via a pre-activation step, which is dependent on the enzyme's flexibility. This mechanism is starkly different from previously proposed mechanisms. These findings have immediate pharmaceutical relevance, as the H. pylori GR enzyme is a very attractive allosteric drug target. The results presented in this study offer a distinctly novel understanding of how AstraZeneca's lead series of inhibitors cripple the H. pylori GR's native motions, via prevention of this critical chemical pre-activation step. Our experimental studies, using SPR, fluorescence and NMR WaterLOGSY, show that H. pylori GR is not inhibited by the uncompetitive mechanism originally put forward by Lundqvist et al.. The current study supports a deep connection between native enzyme motions and chemical reactivity, which has strong relevance to the field of allosteric drug discovery.
Collapse
Affiliation(s)
- Katie R Witkin
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutics and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52246, USA
| | - Nicholas R Vance
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutics and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52246, USA
| | - Colleen Caldwell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52246, USA
| | - Quinn Li
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52246, USA
| | - Liping Yu
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52246, USA
- NMR Core Facility, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52246, USA
| | - M Ashley Spies
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutics and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52246, USA
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52246, USA
| |
Collapse
|
35
|
Kulkarni YS, Amyes TL, Richard JP, Kamerlin SCL. Uncovering the Role of Key Active-Site Side Chains in Catalysis: An Extended Brønsted Relationship for Substrate Deprotonation Catalyzed by Wild-Type and Variants of Triosephosphate Isomerase. J Am Chem Soc 2019; 141:16139-16150. [PMID: 31508957 PMCID: PMC7032883 DOI: 10.1021/jacs.9b08713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report results of detailed empirical valence bond simulations that model the effect of several amino acid substitutions on the thermodynamic (ΔG°) and kinetic activation (ΔG⧧) barriers to deprotonation of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) bound to wild-type triosephosphate isomerase (TIM), as well as to the K12G, E97A, E97D, E97Q, K12G/E97A, I170A, L230A, I170A/L230A, and P166A variants of this enzyme. The EVB simulations model the observed effect of the P166A mutation on protein structure. The E97A, E97Q, and E97D mutations of the conserved E97 side chain result in ≤1.0 kcal mol-1 decreases in the activation barrier for substrate deprotonation. The agreement between experimental and computed activation barriers is within ±1 kcal mol-1, with a strong linear correlation between ΔG⧧ and ΔG° for all 11 variants, with slopes β = 0.73 (R2 = 0.994) and β = 0.74 (R2 = 0.995) for the deprotonation of DHAP and GAP, respectively. These Brønsted-type correlations show that the amino acid side chains examined in this study function to reduce the standard-state Gibbs free energy of reaction for deprotonation of the weak α-carbonyl carbon acid substrate to form the enediolate phosphate reaction intermediate. TIM utilizes the cationic side chain of K12 to provide direct electrostatic stabilization of the enolate oxyanion, and the nonpolar side chains of P166, I170, and L230 are utilized for the construction of an active-site cavity that provides optimal stabilization of the enediolate phosphate intermediate relative to the carbon acid substrate.
Collapse
Affiliation(s)
- Yashraj S Kulkarni
- Science for Life Laboratory, Department of Chemistry - BMC , Uppsala University, BMC , Box 576, S-751 23 Uppsala , Sweden
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Chemistry - BMC , Uppsala University, BMC , Box 576, S-751 23 Uppsala , Sweden
| |
Collapse
|
36
|
Goryanova B, Amyes TL, Richard JP. Role of the Carboxylate in Enzyme-Catalyzed Decarboxylation of Orotidine 5'-Monophosphate: Transition State Stabilization Dominates Over Ground State Destabilization. J Am Chem Soc 2019; 141:13468-13478. [PMID: 31365243 PMCID: PMC6735427 DOI: 10.1021/jacs.9b04823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Kinetic
parameters kex (s–1)
and kex/Kd (M–1 s–1) are reported
for exchange
for deuterium in D2O of the C-6 hydrogen of 5-fluororotidine
5′-monophosphate (FUMP) catalyzed by the Q215A,
Y217F, and Q215A/Y217F variants of yeast orotidine 5′-monophosphate
decarboxylase (ScOMPDC) at pD 8.1, and by the Q215A
variant at pD 7.1–9.3. The pD rate profiles for wildtype ScOMPDC and the Q215A variant are identical, except for
a 2.5 log unit downward displacement in the profile for the Q215A
variant. The Q215A, Y217F and Q215A/Y217F substitutions cause 1.3–2.0
kcal/mol larger increases in the activation barrier for wildtype ScOMPDC-catalyzed deuterium exchange compared with decarboxylation,
because of the stronger apparent side chain interaction with the transition
state for the deuterium exchange reaction. The stabilization of the
transition state for the OMPDC-catalyzed deuterium exchange reaction
of FUMP is ca. 19 kcal/mol smaller than the transition
state for decarboxylation of OMP, and ca. 8 kcal/mol
smaller than for OMPDC-catalyzed deprotonation of FUMP to form the vinyl carbanion intermediate common to OMPDC-catalyzed
reactions OMP/FOMP and UMP/FUMP. We propose
that ScOMPDC shows similar stabilizing interactions
with the common portions of decarboxylation and deprotonation transition
states that lead to formation of this vinyl carbanion intermediate,
and that there is a large ca. (19–8) = 11 kcal/mol stabilization
of the former transition state from interactions with the nascent
CO2 of product. The effects of Q215A and Y217F substitutions
on kcat/Km for decarboxylation of OMP are expressed mainly as
an increase in Km for the reactions catalyzed
by the variant enzymes, while the effects on kex/Kd for deuterium exchange are
expressed mainly as an increase in kex. This shows that the Q215 and Y217 side chains stabilize the Michaelis
complex to OMP for the decarboxylation reaction, compared
with the complex to FUMP for the deuterium exchange reaction.
These results provide strong support for the conclusion that interactions
which stabilize the transition state for ScOMPDC-catalyzed
decarboxylation at a nonpolar enzyme active site dominate over interactions
that destabilize the ground-state Michaelis complex.
Collapse
Affiliation(s)
- Bogdana Goryanova
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
37
|
Bearne SL. The role of Brønsted base basicity in estimating carbon acidity at enzyme active sites: a caveat. Org Biomol Chem 2019; 17:7161-7165. [PMID: 31317156 DOI: 10.1039/c9ob00863b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many enzymes catalyze the abstraction of a proton from a carbon acid substrate to initiate a variety of reactions; however, the development of a complete quantitative description of enzyme-catalyzed heterolytic cleavage of a C-H bond remains a challenge to enzymologists. To determine the pK value for such substrates bound at the active site, recent studies have estimated the equilibrium for formation of the deprotonated intermediate at the active site, however, accurate knowledge of the pK of the conjugate acid of the Brønsted base catalyst (BH+) is also required. Herein, it is shown that using the value of pK of the enzyme-substrate complex can underestimate the value of pK by an amount between zero and pδ, where pδ is the change in basicity of BH+ upon going from the enzyme-substrate complex to the enzyme-intermediate complex.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada. and Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
38
|
Ruiz-Pernía JJ, Tuñón I, Moliner V, Allemann RK. Why are some Enzymes Dimers? Flexibility and Catalysis in Thermotoga Maritima Dihydrofolate Reductase. ACS Catal 2019; 9:5902-5911. [PMID: 31289693 PMCID: PMC6614790 DOI: 10.1021/acscatal.9b01250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Dihydrofolate
reductase from Thermotoga maritima (TmDFHFR) is a
dimeric thermophilic enzyme that catalyzes the hydride
transfer from the cofactor NADPH to dihydrofolate less efficiently
than other DHFR enzymes, such as the mesophilic analogue Escherichia
coli DHFR (EcDHFR). Using QM/MM potentials, we show that
the reduced catalytic efficiency of TmDHFR is most likely due to differences
in the amino acid sequence that stabilize the M20 loop in an open
conformation, which prevents the formation of some interactions in
the transition state and increases the number of water molecules in
the active site. However, dimerization provides two advantages to
the thermophilic enzyme: it protects its structure against denaturation
by reducing thermal fluctuations and it provides a less negative activation
entropy, toning down the increase of the activation free energy with
temperature. Our molecular picture is confirmed by the analysis of
the temperature dependence of enzyme kinetic isotope effects in different
DHFR enzymes.
Collapse
Affiliation(s)
- J. Javier Ruiz-Pernía
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Valencia, Spain
| | - Iñaki Tuñón
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Valencia, Spain
| | - Vicent Moliner
- Departamento de Química Física y Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
39
|
Calixto AR, Moreira C, Pabis A, Kötting C, Gerwert K, Rudack T, Kamerlin SCL. GTP Hydrolysis Without an Active Site Base: A Unifying Mechanism for Ras and Related GTPases. J Am Chem Soc 2019; 141:10684-10701. [PMID: 31199130 DOI: 10.1021/jacs.9b03193] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GTP hydrolysis is a biologically crucial reaction, being involved in regulating almost all cellular processes. As a result, the enzymes that catalyze this reaction are among the most important drug targets. Despite their vital importance and decades of substantial research effort, the fundamental mechanism of enzyme-catalyzed GTP hydrolysis by GTPases remains highly controversial. Specifically, how do these regulatory proteins hydrolyze GTP without an obvious general base in the active site to activate the water molecule for nucleophilic attack? To answer this question, we perform empirical valence bond simulations of GTPase-catalyzed GTP hydrolysis, comparing solvent- and substrate-assisted pathways in three distinct GTPases, Ras, Rab, and the Gαi subunit of a heterotrimeric G-protein, both in the presence and in the absence of the corresponding GTPase activating proteins. Our results demonstrate that a general base is not needed in the active site, as the preferred mechanism for GTP hydrolysis is a conserved solvent-assisted pathway. This pathway involves the rate-limiting nucleophilic attack of a water molecule, leading to a short-lived intermediate that tautomerizes to form H2PO4- and GDP as the final products. Our fundamental biochemical insight into the enzymatic regulation of GTP hydrolysis not only resolves a decades-old mechanistic controversy but also has high relevance for drug discovery efforts. That is, revisiting the role of oncogenic mutants with respect to our mechanistic findings would pave the way for a new starting point to discover drugs for (so far) "undruggable" GTPases like Ras.
Collapse
Affiliation(s)
- Ana R Calixto
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Cátia Moreira
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Anna Pabis
- Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 , Uppsala , Sweden
| | - Carsten Kötting
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Klaus Gerwert
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Till Rudack
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Shina C L Kamerlin
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| |
Collapse
|
40
|
Deng H, Dyer RB, Callender R. Active-Site Glu165 Activation in Triosephosphate Isomerase and Its Deprotonation Kinetics. J Phys Chem B 2019; 123:4230-4241. [PMID: 31013084 DOI: 10.1021/acs.jpcb.9b02981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) via an enediol(ate) intermediate. The active-site residue Glu165 serves as the catalytic base during catalysis. It abstracts a proton from C1 carbon of DHAP to form the reaction intermediate and donates a proton to C2 carbon of the intermediate to form product GAP. Our difference Fourier transform infrared spectroscopy studies on the yeast TIM (YeTIM)/phosphate complex revealed a C═O stretch band at 1706 cm-1 from the protonated Glu165 carboxyl group at pH 7.5, indicating that the p Ka of the catalytic base is increased by >3.0 pH units upon phosphate binding, and that the Glu165 carboxyl environment in the complex is still hydrophilic in spite of the increased p Ka. Hence, the results show that the binding of the phosphodianion group is part of the activation mechanism which involves the p Ka elevation of the catalytic base Glu165. The deprotonation kinetics of Glu165 in the μs to ms time range were determined via infrared (IR) T-jump studies on the YeTIM/phosphate and ("heavy enzyme") [U-13C,-15N]YeTIM/phosphate complexes. The slower deprotonation kinetics in the ms time scale is due to phosphate dissociation modulated by the loop motion, which slows down by enzyme mass increase to show a normal heavy enzyme kinetic isotope effect (KIE) ∼1.2 (i.e., slower rate in the heavy enzyme). The faster deprotonation kinetics in the tens of μs time scale is assigned to temperature-induced p Ka decrease, while phosphate is still bound, and it shows an inverse heavy enzyme KIE ∼0.89 (faster rate in the heavy enzyme). The IR static and T-jump spectroscopy provides atomic-level resolution of the catalytic mechanism because of its ability to directly observe the bond breaking/forming process.
Collapse
Affiliation(s)
- Hua Deng
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx, New York 10461 , United States
| | - R Brian Dyer
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Robert Callender
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx, New York 10461 , United States
| |
Collapse
|
41
|
Abstract
The pKa values for substrates acting as carbon acids (i.e., C-H deprotonation reactions) in several enzyme active sites are presented. The information needed to calculate them includes the pKa of the active site acid/base catalyst and the equilibrium constant for the deprotonation step. Carbon acidity is obtained from the relation pKeq = pKar–pKap = ΔpKa for a proton transfer reaction. Five enzymatic free energy profiles (FEPs) were calculated to obtain the equilibrium constants for proton transfer from carbon in the active site, and six additional proton transfer equilibrium constants were extracted from data available in the literature, allowing substrate C-H pKas to be calculated for 11 enzymes. Active site-bound substrate C-H pKa values range from 5.6 for ketosteroid isomerase to 16 for proline racemase. Compared to values in water, enzymes lower substrate C-H pKas by up to 23 units, corresponding to 31 kcal/mol of carbanion stabilization energy. Calculation of Marcus intrinsic barriers (ΔG0‡) for pairs of non-enzymatic/enzymatic reactions shows significant reductions in ΔG0‡ for cofactor-independent enzymes, while pyridoxal phosphate dependent enzymes appear to increase ΔG0‡ to a small extent as a consequence of carbanion resonance stabilization. The large increases in carbon acidity found here are central to the large rate enhancements observed in enzymes that catalyze carbon deprotonation.
Collapse
Affiliation(s)
- Michael D Toney
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
42
|
Abstract
![]()
The enormous rate accelerations observed
for many enzyme catalysts
are due to strong stabilizing interactions between the protein and
reaction transition state. The defining property of these catalysts
is their specificity for binding the transition state with a much
higher affinity than substrate. Experimental results are presented
which show that the phosphodianion-binding energy of phosphate monoester
substrates is used to drive conversion of their protein catalysts
from flexible and entropically rich ground states to stiff and catalytically
active Michaelis complexes. These results are generalized to other
enzyme-catalyzed reactions. The existence of many enzymes in flexible,
entropically rich, and inactive ground states provides a mechanism
for utilization of ligand-binding energy to mold these catalysts into
stiff and active forms. This reduces the substrate-binding energy
expressed at the Michaelis complex, while enabling the full and specific
expression of large transition-state binding energies. Evidence is
presented that the complexity of enzyme conformational changes increases
with increases in the enzymatic rate acceleration. The requirement
that a large fraction of the total substrate-binding energy be utilized
to drive conformational changes of floppy enzymes is proposed to favor
the selection and evolution of protein folds with multiple flexible
unstructured loops, such as the TIM-barrel fold. The effect of protein
motions on the kinetic parameters for enzymes that undergo ligand-driven
conformational changes is considered. The results of computational
studies to model the complex ligand-driven conformational change in
catalysis by triosephosphate isomerase are presented.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry , SUNY, University at Buffalo , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
43
|
Mydy LS, Cristobal JR, Katigbak RD, Bauer P, Reyes AC, Kamerlin SCL, Richard JP, Gulick AM. Human Glycerol 3-Phosphate Dehydrogenase: X-ray Crystal Structures That Guide the Interpretation of Mutagenesis Studies. Biochemistry 2019; 58:1061-1073. [PMID: 30640445 DOI: 10.1021/acs.biochem.8b01103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human liver glycerol 3-phosphate dehydrogenase ( hlGPDH) catalyzes the reduction of dihydroxyacetone phosphate (DHAP) to form glycerol 3-phosphate, using the binding energy associated with the nonreacting phosphodianion of the substrate to properly orient the enzyme-substrate complex within the active site. Herein, we report the crystal structures for unliganded, binary E·NAD, and ternary E·NAD·DHAP complexes of wild type hlGPDH, illustrating a new position of DHAP, and probe the kinetics of multiple mutant enzymes with natural and truncated substrates. Mutation of Lys120, which is positioned to donate a proton to the carbonyl of DHAP, results in similar increases in the activation barrier to hlGPDH-catlyzed reduction of DHAP and to phosphite dianion-activated reduction of glycolaldehyde, illustrating that these transition states show similar interactions with the cationic K120 side chain. The K120A mutation results in a 5.3 kcal/mol transition state destabilization, and 3.0 kcal/mol of the lost transition state stabilization is rescued by 1.0 M ethylammonium cation. The 6.5 kcal/mol increase in the activation barrier observed for the D260G mutant hlGPDH-catalyzed reaction represents a 3.5 kcal/mol weakening of transition state stabilization by the K120A side chain and a 3.0 kcal/mol weakening of the interactions with other residues. The interactions, at the enzyme active site, between the K120 side chain and the Q295 and R269 side chains were likewise examined by double-mutant analyses. These results provide strong evidence that the enzyme rate acceleration is due mainly or exclusively to transition state stabilization by electrostatic interactions with polar amino acid side chains.
Collapse
Affiliation(s)
- Lisa S Mydy
- Department of Structural Biology , University at Buffalo, SUNY , Buffalo , New York 14203 , United States
| | - Judith R Cristobal
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Roberto D Katigbak
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Paul Bauer
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 Uppsala , Sweden
| | - Archie C Reyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 Uppsala , Sweden
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Andrew M Gulick
- Department of Structural Biology , University at Buffalo, SUNY , Buffalo , New York 14203 , United States
| |
Collapse
|
44
|
Reyes AC, Plache DC, Koudelka AP, Amyes TL, Gerlt JA, Richard JP. Enzyme Architecture: Breaking Down the Catalytic Cage that Activates Orotidine 5'-Monophosphate Decarboxylase for Catalysis. J Am Chem Soc 2018; 140:17580-17590. [PMID: 30475611 PMCID: PMC6317530 DOI: 10.1021/jacs.8b09609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the results of a study of the catalytic role of a network of four interacting amino acid side chains at yeast orotidine 5'-monophosphate decarboxylase ( ScOMPDC), by the stepwise replacement of all four side chains. The H-bond, which links the -CH2OH side chain of S154 from the pyrimidine umbrella loop of ScOMPDC to the amide side chain of Q215 in the phosphodianion gripper loop, creates a protein cage for the substrate OMP. The role of this interaction in optimizing transition state stabilization from the dianion gripper side chains Q215, Y217, and R235 was probed by determining the kinetic parameter kcat/ Km for 16 enzyme variants, which include all combinations of single, double, triple, and quadruple S154A, Q215A, Y217F, and R235A mutations. The effects of consecutive Q215A, Y217F, and R235A mutations on Δ G⧧ for wild-type enzyme-catalyzed decarboxylation sum to 11.6 kcal/mol, but to only 7.6 kcal/mol when starting from S154A mutant. This shows that the S154A mutation results in a (11.6-7.6) = 4.0 kcal/mol decrease in transition state stabilization from interactions with Q215, Y217, and R235. Mutant cycles show that ca. 2 kcal/mol of this 4 kcal/mol effect is from the direct interaction between the S154 and Q215 side chains and that ca. 2 kcal/mol is from a tightening in the stabilizing interactions of the Y217 and R235 side chains. The sum of the effects of individual A154S, A215Q, F217Y and A235R substitutions at the quadruple mutant of ScOMPDC to give the corresponding triple mutants, 5.6 kcal/mol, is much smaller than 16.0 kcal/mol, the sum of the effects of the related four substitutions in wild-type ScOMPDC to give the respective single mutants. The small effect of substitutions at the quadruple mutant is consistent with a large entropic cost to holding the flexible loops of ScOMPDC in the active closed conformation.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - David C Plache
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Astrid P Koudelka
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John A Gerlt
- Department of Chemistry and Biochemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
45
|
Liao Q, Kulkarni Y, Sengupta U, Petrović D, Mulholland AJ, van der Kamp MW, Strodel B, Kamerlin SCL. Loop Motion in Triosephosphate Isomerase Is Not a Simple Open and Shut Case. J Am Chem Soc 2018; 140:15889-15903. [PMID: 30362343 DOI: 10.1021/jacs.8b09378] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conformational changes are crucial for the catalytic action of many enzymes. A prototypical and well-studied example is loop opening and closure in triosephosphate isomerase (TIM), which is thought to determine the rate of catalytic turnover in many circumstances. Specifically, TIM loop 6 "grips" the phosphodianion of the substrate and, together with a change in loop 7, sets up the TIM active site for efficient catalysis. Crystal structures of TIM typically show an open or a closed conformation of loop 6, with the tip of the loop moving ∼7 Å between conformations. Many studies have interpreted this motion as a two-state, rigid-body transition. Here, we use extensive molecular dynamics simulations, with both conventional and enhanced sampling techniques, to analyze loop motion in apo and substrate-bound TIM in detail, using five crystal structures of the dimeric TIM from Saccharomyces cerevisiae. We find that loop 6 is highly flexible and samples multiple conformational states. Empirical valence bond simulations of the first reaction step show that slight displacements away from the fully closed-loop conformation can be sufficient to abolish most of the catalytic activity; full closure is required for efficient reaction. The conformational change of the loops in TIM is thus not a simple "open and shut" case and is crucial for its catalytic action. Our detailed analysis of loop motion in a highly efficient enzyme highlights the complexity of loop conformational changes and their role in biological catalysis.
Collapse
Affiliation(s)
- Qinghua Liao
- Department of Chemistry - BMC , Uppsala University , BMC Box 576, 751 23 Uppsala , Sweden
| | - Yashraj Kulkarni
- Department of Chemistry - BMC , Uppsala University , BMC Box 576, 751 23 Uppsala , Sweden
| | - Ushnish Sengupta
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich , 52425 Jülich , Germany.,German Research School for Simulation Sciences , RWTH Aachen University , 52062 Aachen , Germany
| | - Dušan Petrović
- Department of Chemistry - BMC , Uppsala University , BMC Box 576, 751 23 Uppsala , Sweden.,Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS Bristol , United Kingdom
| | - Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS Bristol , United Kingdom.,School of Biochemistry , University of Bristol , University Walk , BS8 1TD Bristol , United Kingdom
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | | |
Collapse
|
46
|
Mhashal AR, Pshetitsky Y, Cheatum CM, Kohen A, Major DT. Evolutionary Effects on Bound Substrate pKa in Dihydrofolate Reductase. J Am Chem Soc 2018; 140:16650-16660. [DOI: 10.1021/jacs.8b09089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yaron Pshetitsky
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
47
|
Saez DA, Zinovjev K, Tuñón I, Vöhringer-Martinez E. Catalytic Reaction Mechanism in Native and Mutant Catechol-O-methyltransferase from the Adaptive String Method and Mean Reaction Force Analysis. J Phys Chem B 2018; 122:8861-8871. [DOI: 10.1021/acs.jpcb.8b07339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David Adrian Saez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070371 Concepcion, Chile
| | - Kirill Zinovjev
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070371 Concepcion, Chile
| |
Collapse
|
48
|
Reyes AC, Amyes TL, Richard JP. Primary Deuterium Kinetic Isotope Effects: A Probe for the Origin of the Rate Acceleration for Hydride Transfer Catalyzed by Glycerol-3-Phosphate Dehydrogenase. Biochemistry 2018; 57:4338-4348. [PMID: 29927590 PMCID: PMC6091503 DOI: 10.1021/acs.biochem.8b00536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Large
primary deuterium kinetic isotope effects (1° DKIEs)
on enzyme-catalyzed hydride transfer may be observed when the transferred
hydride tunnels through the energy barrier. The following 1°
DKIEs on kcat/Km and relative reaction driving force are reported for wild-type and
mutant glycerol-3-phosphate dehydrogenase (GPDH)-catalyzed reactions
of NADL (L = H, D): wild-type GPDH, ΔΔG⧧ = 0 kcal/mol, 1° DKIE = 1.5;
N270A, 5.6 kcal/mol, 3.1; R269A, 9.1 kcal/mol, 2.8; R269A + 1.0 M
guanidine, 2.4 kcal/mol, 2.7; R269A/N270A, 11.5 kcal/mol, 2.4. Similar
1° DKIEs were observed on kcat. The
narrow range of 1° DKIEs (2.4–3.1) observed for a 9.1
kcal/mol change in reaction driving force provides strong evidence
that these are intrinsic 1° DKIEs on rate-determining hydride
transfer. Evidence is presented that the intrinsic DKIE on wild-type
GPDH-catalyzed reduction of DHAP lies in this range. A similar range
of 1° DKIEs (2.4–2.9) on (kcat/KGA, M–1 s–1) was reported for dianion-activated hydride transfer from NADL to
glycolaldehyde (GA) [Reyes, A. C.; Amyes, T. L.; Richard, J.
P. J. Am. Chem. Soc.2016, 138, 14526–14529].
These 1° DKIEs are much smaller than those observed for enzyme-catalyzed
hydrogen transfer that occurs mainly by quantum mechanical tunneling.
These results support the conclusion that the rate acceleration for
GPDH-catalyzed reactions is due to the stabilization of the transition
state for hydride transfer by interactions with the protein catalyst.
The small 1° DKIEs reported for mutant GPDH-catalyzed and for
wild-type dianion-activated reactions are inconsistent with a model
where the dianion binding energy is utilized in the stabilization
of a tunneling ready state.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
49
|
Zhai X, Reinhardt CJ, Malabanan MM, Amyes TL, Richard JP. Enzyme Architecture: Amino Acid Side-Chains That Function To Optimize the Basicity of the Active Site Glutamate of Triosephosphate Isomerase. J Am Chem Soc 2018; 140:8277-8286. [PMID: 29862813 PMCID: PMC6037162 DOI: 10.1021/jacs.8b04367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
We report pH rate profiles for kcat and Km for the
isomerization reaction
of glyceraldehyde 3-phosphate catalyzed by wildtype triosephosphate
isomerase (TIM) from three organisms and by ten mutants of TIM; and,
for Ki for inhibition of this reaction
by phosphoglycolate trianion (I3–). The pH profiles for Ki show
that the binding of I3– to TIM (E) to form EH·I3– is accompanied by
uptake of a proton by the carboxylate side-chain of E165, whose function
is to abstract a proton from substrate. The complexes for several
mutants exist mainly as E–·I3– at high pH, in which cases the pH profiles define the pKa for deprotonation of EH·I3–. The linear
free energy correlation, with slope of 0.73 (r2 = 0.96), between kcat/Km for TIM-catalyzed isomerization and the disassociation
constant of PGA trianion for TIM shows that EH·I3– and the
transition state are stabilized by similar interactions with the protein
catalyst. Values of pKa = 10–10.5
were estimated for deprotonation of EH·I3– for wildtype TIM.
This pKa decreases to as low as 6.3 for
the severely crippled Y208F mutant. There is a correlation between
the effect of several mutations on kcat/Km and on pKa for EH·I3–. The results support a model where the strong basicity of
E165 at the complex to the enediolate reaction intermediate is promoted
by side-chains from Y208 and S211, which serve to clamp loop 6 over
the substrate; I170, which assists in the creation of a hydrophobic
environment for E165; and P166, which functions in driving the carboxylate
side-chain of E165 toward enzyme-bound substrate.
Collapse
Affiliation(s)
- Xiang Zhai
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 United States
| | - Christopher J Reinhardt
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 S Mathews Avenue , Urbana , Illinois 61801 , United States
| | - M Merced Malabanan
- Department of Biochemistry , Vanderbilt University , 842 Robinson Research Building , Nashville , Tennessee 37205 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 United States
| |
Collapse
|
50
|
Richard JP, Amyes TL, Reyes AC. Orotidine 5'-Monophosphate Decarboxylase: Probing the Limits of the Possible for Enzyme Catalysis. Acc Chem Res 2018; 51:960-969. [PMID: 29595949 PMCID: PMC6016548 DOI: 10.1021/acs.accounts.8b00059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
The mystery associated with catalysis by what were once regarded
as protein black boxes, diminished with the X-ray crystallographic
determination of the three-dimensional structures of enzyme–substrate
complexes. The report that several high-resolution X-ray crystal structures
of orotidine 5′-monophosphate decarboxylase (OMPDC) failed
to provide a consensus mechanism for enzyme-catalyzed decarboxylation
of OMP to form uridine 5′-monophosphate, therefore, provoked
a flurry of controversy. This controversy was fueled by the enormous
1023-fold rate acceleration for this enzyme, which had
“jolted many biochemists’ assumptions about
the catalytic potential of enzymes.” Our studies on
the mechanism of action of OMPDC provide strong evidence that catalysis
by this enzyme is not fundamentally different from less proficient
catalysts, while highlighting important architectural elements that
enable a peak level of performance. Many enzymes undergo substrate-induced
protein conformational changes that trap their substrates in solvent
occluded protein cages, but the conformational change induced by ligand
binding to OMPDC is incredibly complex, as required to enable the
development of 22 kcal/mol of stabilizing binding interactions with
the phosphodianion and ribosyl substrate fragments of OMP. The binding
energy from these fragments is utilized to activate OMPDC for catalysis
of decarboxylation at the orotate fragment of OMP, through the creation
of a tight, catalytically active, protein cage from the floppy, open,
unliganded form of OMPDC. Such utilization of binding energy for ligand-driven
conformational changes provides a general mechanism to obtain specificity
in transition state binding. The rate enhancement that results from
the binding of carbon acid substrates to enzymes is partly due to
a reduction in the carbon acid pKa that
is associated with ligand binding. The binding of UMP to OMPDC results
in an unusually large >12 unit decrease in the pKa = 29 for abstraction of the C-6 substrate hydrogen,
due to stabilization of an enzyme-bound vinyl carbanion, which is
also an intermediate of OMPDC-catalyzed decarboxylation. The protein–ligand
interactions operate to stabilize the vinyl carbanion at the enzyme
active site compared to aqueous solution, rather than to stabilize
the transition state for the concerted electrophilic displacement
of CO2 by H+ that avoids formation of this reaction
intermediate. There is evidence that OMPDC induces strain into the
bound substrate. The interaction between the amide side chain of Gln-215
from the phosphodianion gripper loop and the hydroxymethylene side
chain of Ser-154 from the pyrimidine umbrella of ScOMPDC position the amide side chain to interact with the phosphodianion
of OMP. There are no direct stabilizing interactions between dianion
gripper protein side chains Gln-215, Tyr-217, and Arg-235 and the
pyrimidine ring at the decarboxylation transition state. Rather these
side chains function solely to hold OMPDC in the catalytically active
closed conformation. The hydrophobic side chains that line the active
site of OMPDC in the region of the departing CO2 product
may function to stabilize the decarboxylation transition state by
providing hydrophobic solvation of this product.
Collapse
Affiliation(s)
- John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tina L. Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Archie C. Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|