1
|
Patel A, Chowdhry Z, Prabhakar A, Rathi A, Bhallamudi VP. Single and double quantum transitions in spin-mixed states under photo-excitation. Sci Rep 2024; 14:22421. [PMID: 39341935 PMCID: PMC11439063 DOI: 10.1038/s41598-024-73118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Electronic spins associated with the Nitrogen-Vacancy (NV) center in diamond offer an opportunity to study spin-related phenomena with extremely high sensitivity owing to their high degree of optical polarization. Here, we study both single- and double-quantum transitions (SQT and DQT) in NV centers between spin-mixed states, which arise from magnetic fields that are non-collinear to the NV axis. We demonstrate the amplification of the ESR signal from both these types of transition under laser illumination. We obtain hyperfine-resolved X-band ESR signal as a function of both excitation laser power and misalignment of static magnetic field with the NV axis. This, combined with our analysis using a seven-level model that incorporates thermal polarization and double quantum relaxation, allows us to comprehensively analyze the polarization of NV spins under off-axis fields. Such detailed understanding of spin-mixed states in NV centers under photo-excitation can help greatly in realizing NV-diamond platform's potential in sensing correlated magnets and biological samples, as well as other emerging applications, such as masing and nuclear hyperpolarization.
Collapse
Affiliation(s)
- Anand Patel
- Quantum Center of Excellence for Diamond and Emergent Materials, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Z Chowdhry
- Quantum Center of Excellence for Diamond and Emergent Materials, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Anil Prabhakar
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - A Rathi
- Quantum Center of Excellence for Diamond and Emergent Materials, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Vidya Praveen Bhallamudi
- Quantum Center of Excellence for Diamond and Emergent Materials, Indian Institute of Technology Madras, Chennai, 600036, India.
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
2
|
Priyadarshni N, Singh R, Mishra MK. Nanodiamonds: Next generation nano-theranostics for cancer therapy. Cancer Lett 2024; 587:216710. [PMID: 38369006 PMCID: PMC10961193 DOI: 10.1016/j.canlet.2024.216710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Cancer remains a leading global cause of mortality, demanding early diagnosis and effective treatment. Traditional therapeutic methods often fall short due to their need for more specificity and systemic toxicity. In this challenging landscape, nanodiamonds (ND) emerge as a potential solution, mitigating the limitations of conventional approaches. ND are tiny carbon particles that mimic traditional diamonds chemical stability and hardness and harness nanomaterials' advantages. ND stands out for the unique properties that make them promising nanotheranostics candidates, combining therapeutic and imaging capabilities in one platform. Many of these applications depend on the design of the particle's surface, as the surface's role is crucial in transporting bioactive molecules, preventing aggregation, and building composite materials. This review delves into ND's distinctive features, structural and optical characteristics, and their profound relevance in advancing cancer diagnosis and treatment methods. The report delves into how these exceptional ND properties drive the development of state-of-the-art techniques for precise tumor targeting, boosting the effectiveness of chemotherapy as a chemosensitizer, harnessing immunotherapy strategies, facilitating precision medicine, and creating localized microfilm devices for targeted therapies.
Collapse
Affiliation(s)
- Nivedita Priyadarshni
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Rajesh Singh
- Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
3
|
Hyder A, Ali A, Buledi JA, Memon AA, Iqbal M, Bangalni TH, Solangi AR, Thebo KH, Akhtar J. Nanodiamonds: A Cutting-Edge Approach to Enhancing Biomedical Therapies and Diagnostics in Biosensing. CHEM REC 2024; 24:e202400006. [PMID: 38530037 DOI: 10.1002/tcr.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing, 100F190, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur, 22620, Pakistan
| | - Talib Hussain Bangalni
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| |
Collapse
|
4
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
5
|
Li Y, Zheng D, Liu Z, Wang H, Liu Y, Hou C, Guo H, Li Z, Sugawara Y, Tang J, Ma Z, Liu J. Noise Suppression of Nitrogen-Vacancy Magnetometer in Lock-In Detection Method by Using Common Mode Rejection. MICROMACHINES 2023; 14:1823. [PMID: 37893260 PMCID: PMC10608991 DOI: 10.3390/mi14101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Nitrogen-vacancy (NV) centers in diamonds are promising solid-state magnetic sensors with potential applications in power systems, geomagnetic navigation, and diamond NV color center current transformers, in which both high bandwidth and high magnetic field resolution are required. The wide bandwidth requirement often necessitates high laser power, but this induces significant laser fluctuation noise that affects the detection magnetic field resolution severely. Therefore, enhancement of the magnetic field resolution of wide-bandwidth NV center magnetic sensors is highly important because of the reciprocal effects of the bandwidth and magnetic field resolution. In this article, we develop a common mode rejection (CMR) model to eliminate the laser noise effectively. The simulation results show that the noise level of the light-detected magnetic resonance signal is significantly reduced by a factor of 6.2 after applying the CMR technique. After optimization of the laser power and modulation frequency parameters, the optimal system bandwidth was found to be 75 Hz. Simultaneously, the system's detection magnetic field resolution was enhanced significantly, increasing from 4.49 nT/Hz1/2 to 790.8 pT/Hz1/2, which represents an improvement of nearly 5.7 times. This wide-bandwidth, high-magnetic field resolution NV color center magnetic sensor will have applications including power systems, geomagnetic navigation, and diamond NV color center current transformers.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | - Doudou Zheng
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | - Zhenhua Liu
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | - Hui Wang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | - Yankang Liu
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | - Chenyu Hou
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | - Zhonghao Li
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | - Yashuhiro Sugawara
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | - Zongmin Ma
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China; (Y.L.); (D.Z.); (Z.L.); (H.W.); (C.H.); (H.G.); (Z.L.); (J.T.)
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China;
| |
Collapse
|
6
|
Hudak BM, Stroud RM. Atomically Precise Detection and Manipulation of Nitrogen-Vacancy Centers in Nanodiamonds. ACS NANO 2023; 17:7241-7249. [PMID: 37027786 PMCID: PMC10134494 DOI: 10.1021/acsnano.2c10122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen-vacancy (NV) centers in nanodiamonds are a promising quantum communication system offering robust and discrete single photon emission, but a more thorough understanding of properties of the NV centers is critical for real world implementation in functional devices. The first step to understanding how factors such as surface, depth, and charge state affect NV center properties is to directly characterize these defects on the atomic scale. Here we use Angstrom-resolution scanning transmission electron microscopy (STEM) to identify a single NV center in a ∼4 nm natural nanodiamond through simultaneous acquisition of electron energy loss and energy dispersive X-ray spectra, which provide a characteristic NV center peak and a nitrogen peak, respectively. In addition, we identify NV centers in larger, ∼15 nm synthetic nanodiamonds, although without the single-defect resolution afforded by the lower background of the smaller natural nanodiamonds. We have further demonstrated the potential to directly position these technologically relevant defects at the atomic scale using the scanning electron beam to "herd" NV centers and nitrogen atoms across their host nanodiamonds.
Collapse
|
7
|
Saul P, Schröder L, Schmidt AB, Hövener JB. Nanomaterials for hyperpolarized nuclear magnetic resonance and magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1879. [PMID: 36781151 DOI: 10.1002/wnan.1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 02/15/2023]
Abstract
Nanomaterials play an important role in the development and application of hyperpolarized materials for magnetic resonance imaging (MRI). In this context they can not only act as hyperpolarized materials which are directly imaged but also play a role as carriers for hyperpolarized gases and catalysts for para-hydrogen induced polarization (PHIP) to generate hyperpolarized substrates for metabolic imaging. Those three application possibilities are discussed, focusing on carbon-based materials for the directly imaged particles. An overview over recent developments in all three fields is given, including the early developments in each field as well as important steps towards applications in MRI, such as making the initially developed methods more biocompatible and first imaging experiments with spatial resolution in either phantoms or in vivo studies. Focusing on the important features nanomaterials need to display to be applicable in the MRI context, a wide range of different approaches to that extent is covered, giving the reader a general idea of different possibilities as well as recent developments in those different fields of hyperpolarized magnetic resonance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Philip Saul
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Leif Schröder
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andreas B Schmidt
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
8
|
Savitsky A, Zhang J, Suter D. Variable bandwidth, high efficiency microwave resonator for control of spin-qubits in nitrogen-vacancy centers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:023101. [PMID: 36859032 DOI: 10.1063/5.0125628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen-Vacancy (NV) centers in diamond are attractive tools for sensing and quantum information. Realization of this potential requires effective tools for controlling the spin degree of freedom by microwave (mw) magnetic fields. In this work, we present a planar microwave resonator optimized for microwave-optical double resonance experiments on single NV centers in diamond. It consists of a piece of wide microstrip line, which is symmetrically connected to two 50 Ω microstrip feed lines. In the center of the resonator, an Ω-shaped loop focuses the current and the mw magnetic field. It generates a relatively homogeneous magnetic field over a volume of 0.07 × 0.1 mm3. It can be operated at 2.9 GHz in both transmission and reflection modes with bandwidths of 1000 and 400 MHz, respectively. The high power-to-magnetic field conversion efficiency allows us to produce π-pulses with a duration of 50 ns with only about 200 and 50 mW microwave power in transmission and reflection, respectively. The transmission mode also offers capability for efficient radio frequency excitation. The resonance frequency can be tuned between 1.3 and 6 GHz by adjusting the length of the resonator. This will be useful for experiments on NV-centers at higher external magnetic fields and on different types of optically active spin centers.
Collapse
Affiliation(s)
- Anton Savitsky
- Faculty of Physics, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Jingfu Zhang
- Faculty of Physics, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Dieter Suter
- Faculty of Physics, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| |
Collapse
|
9
|
Fluorescent nanodiamond for nanotheranostic applications. Mikrochim Acta 2022; 189:447. [DOI: 10.1007/s00604-022-05545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
10
|
Bonsir M, Kennedy AR, Geerts Y. Synthesis and Structural Properties of Adamantane-Substituted Amines and Amides Containing an Additional Adamantane, Azaadamantane or Diamantane Moiety. ChemistryOpen 2022; 11:e202200031. [PMID: 35243816 PMCID: PMC9535505 DOI: 10.1002/open.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/11/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction of adamantane moieties on diamondoids such as adamantane, 2-azaadamantane or diamantane by amide formation and reduction to the corresponding amine was performed in a straightforward and easy way by amidation under Schotten-Baumann conditions and reduction with BH3 ⋅ THF. The obtained amides and amines were studied in terms of structural properties towards the perspective of transformation into nanodiamonds. Crystal structure and dynamic NMR experiments of the most crowded amide obtained gave structural insights into the effect of bulkiness and steric strain on out-of-planarity of amide bonds (16.0°) and the kinetics and thermodynamics of amide bond rotation (ΔG≠ 298K =11.5-13.3 kcal ⋅ mol-1 ).
Collapse
Affiliation(s)
- Maxime Bonsir
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/011050BruxellesBelgium
| | - Alan R. Kennedy
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowScotlandUK
| | - Yves Geerts
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/011050BruxellesBelgium
- International Solvay Institutes for Physics and ChemistryUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 2311050BruxellesBelgium
| |
Collapse
|
11
|
Gritchenko AS, Kalmykov AS, Kulnitskiy BA, Vainer YG, Wang SP, Kang B, Melentiev PN, Balykin VI. Ultra-bright and narrow-band emission from Ag atomic sized nanoclusters in a self-assembled plasmonic resonator. NANOSCALE 2022; 14:9910-9917. [PMID: 35781487 DOI: 10.1039/d2nr01650h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have proposed, implemented and investigated a novel, efficient quantum emitter based on an atomic-sized Ag nanocluster in a plasmonic resonator. The quantum emitter enables the realization of: (1) ultra-bright fluorescence, (2) narrow-band emission down to 4 nm, (3) ultra-short fluorescence lifetime. The fluorescence cross-section of a quantum emitter is on the order of σ ∼ 10-14 cm2, which is comparable to the largest fluorescence cross-sections of dye molecules and quantum dots, and enables a light source with a record high intensity known only for plasmon nanolasers. The results presented suggest a unique method for fabricating nanoprobes with high brightness and wavelength-tunable spectrally narrow fluorescence, which is needed for multiplex diagnostics and detection of substances at extremely low concentrations.
Collapse
Affiliation(s)
| | | | - Boris A Kulnitskiy
- Technological Institute for Superhard and Novel Carbon Materials, Moscow, Troitsk 108840, Russia
- Moscow Institute of Physics and Technology, Moscow reg., Dolgoprudny, 141700, Russia
| | - Yuri G Vainer
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia.
| | - Shao-Peng Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | | | | |
Collapse
|
12
|
Ghanimi Fard M, Khabir Z, Reineck P, Cordina NM, Abe H, Ohshima T, Dalal S, Gibson BC, Packer NH, Parker LM. Targeting cell surface glycans with lectin-coated fluorescent nanodiamonds. NANOSCALE ADVANCES 2022; 4:1551-1564. [PMID: 36134370 PMCID: PMC9418452 DOI: 10.1039/d2na00036a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/06/2022] [Indexed: 06/02/2023]
Abstract
Glycosylation is arguably the most important functional post-translational modification in brain cells and abnormal cell surface glycan expression has been associated with neurological diseases and brain cancers. In this study we developed a novel method for uptake of fluorescent nanodiamonds (FND), carbon-based nanoparticles with low toxicity and easily modifiable surfaces, into brain cell subtypes by targeting their glycan receptors with carbohydrate-binding lectins. Lectins facilitated uptake of 120 nm FND with nitrogen-vacancy centers in three types of brain cells - U87-MG astrocytes, PC12 neurons and BV-2 microglia cells. The nanodiamond/lectin complexes used in this study target glycans that have been described to be altered in brain diseases including sialic acid glycans via wheat (Triticum aestivum) germ agglutinin (WGA), high mannose glycans via tomato (Lycopersicon esculentum) lectin (TL) and core fucosylated glycans via Aleuria aurantia lectin (AAL). The lectin conjugated nanodiamonds were taken up differently by the various brain cell types with fucose binding AAL/FNDs taken up preferentially by glioblastoma phenotype astrocyte cells (U87-MG), sialic acid binding WGA/FNDs by neuronal phenotype cells (PC12) and high mannose binding TL/FNDs by microglial cells (BV-2). With increasing recognition of glycans having a role in many diseases, the lectin bioconjugated nanodiamonds developed here are well suited for further investigation into theranostic applications.
Collapse
Affiliation(s)
- Mina Ghanimi Fard
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Zahra Khabir
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University Melbourne VIC 3001 Australia
| | - Nicole M Cordina
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Hiroshi Abe
- Quantum Beam Science Research Directorate, The Institute for Quantum Life Science, National Institutes for Quantum Science and Technology Takasaki Gunma 3701292 Japan
| | - Takeshi Ohshima
- Quantum Beam Science Research Directorate, The Institute for Quantum Life Science, National Institutes for Quantum Science and Technology Takasaki Gunma 3701292 Japan
| | - Sagar Dalal
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University Melbourne VIC 3001 Australia
| | - Nicolle H Packer
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
- Institute for Glycomics, Griffith University Southport QLD 4222 Australia
| | - Lindsay M Parker
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| |
Collapse
|
13
|
Schmidheini L, Tiefenauer RF, Gatterdam V, Frutiger A, Sannomiya T, Aramesh M. Self-Assembly of Nanodiamonds and Plasmonic Nanoparticles for Nanoscopy. BIOSENSORS 2022; 12:bios12030148. [PMID: 35323419 PMCID: PMC8946096 DOI: 10.3390/bios12030148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 06/01/2023]
Abstract
Nanodiamonds have emerged as promising agents for sensing and imaging due to their exceptional photostability and sensitivity to the local nanoscale environment. Here, we introduce a hybrid system composed of a nanodiamond containing nitrogen-vacancy center that is paired to a gold nanoparticle via DNA hybridization. Using multiphoton optical studies, we demonstrate that the harmonic mode emission generated in gold nanoparticles induces a coupled fluorescence emission in nanodiamonds. We show that the flickering of harmonic emission in gold nanoparticles directly influences the nanodiamonds' emissions, resulting in stochastic blinking. By utilizing the stochastic emission fluctuations, we present a proof-of-principle experiment to demonstrate the potential application of the hybrid system for super-resolution microscopy. The introduced system may find applications in intracellular biosensing and bioimaging due to the DNA-based coupling mechanism and also the attractive characteristics of harmonic generation, such as low power, low background and tissue transparency.
Collapse
Affiliation(s)
- Lukas Schmidheini
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Raphael F. Tiefenauer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Volker Gatterdam
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
| | - Takumi Sannomiya
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
| | - Morteza Aramesh
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland; (L.S.); (R.F.T.); (V.G.); (A.F.)
- Department of Materials Science and Engineering, Division of Biomedical Engineering, Uppsala University, 751 21 Uppsala, Sweden
| |
Collapse
|
14
|
Li S, Francaviglia L, Kohler DD, Jones ZR, Zhao ET, Ogletree DF, Weber-Bargioni A, Melosh NA, Hamers RJ. Ag-Diamond Core-Shell Nanostructures Incorporated with Silicon-Vacancy Centers. ACS MATERIALS AU 2021; 2:85-93. [PMID: 36855764 PMCID: PMC9888652 DOI: 10.1021/acsmaterialsau.1c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Silicon-vacancy (SiV) centers in diamond have attracted attention as highly stable fluorophores for sensing and as possible candidates for quantum information science. While prior studies have shown that the formation of hybrid diamond-metal structures can increase the rates of optical absorption and emission, many practical applications require diamond plasmonic structures that are stable in harsh chemical and thermal environments. Here, we demonstrate that Ag nanospheres, produced both in quasi-random arrays by thermal dewetting and in ordered arrays using electron-beam lithography, can be completely encapsulated with a thin diamond coating containing SiV centers, leading to hybrid core-shell nanostructures exhibiting extraordinary chemical and thermal stability as well as enhanced optical properties. Diamond shells with a thickness on the order of 20-100 nm are sufficient to encapsulate and protect the Ag nanostructures with different sizes ranging from 20 nm to hundreds of nanometers, allowing them to withstand heating to temperatures of 1000 °C and immersion in harsh boiling acid for 24 h. Ultrafast photoluminescence lifetime and super-resolution optical imaging experiments were used to study the SiV properties on and off the core-shell structures, which show that the SiV on core-shell structures have higher brightness and faster decay rate. The stability and optical properties of the hybrid Ag-diamond core-shell structures make them attractive candidates for high-efficiency imaging and quantum-based sensing applications.
Collapse
Affiliation(s)
- Shuo Li
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States,Stanford
Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States,Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Luca Francaviglia
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel D. Kohler
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Zachary R. Jones
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eric T. Zhao
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - D. Frank Ogletree
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander Weber-Bargioni
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicholas A. Melosh
- Stanford
Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States,Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States,
| | - Robert J. Hamers
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States,
| |
Collapse
|
15
|
Gorrini F, Dorigoni C, Olivares-Postigo D, Giri R, Aprà P, Picollo F, Bifone A. Long-Lived Ensembles of Shallow NV - Centers in Flat and Nanostructured Diamonds by Photoconversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43221-43232. [PMID: 34468122 PMCID: PMC8447188 DOI: 10.1021/acsami.1c09825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/02/2021] [Indexed: 05/29/2023]
Abstract
Shallow, negatively charged nitrogen-vacancy centers (NV-) in diamond have been proposed for high-sensitivity magnetometry and spin-polarization transfer applications. However, surface effects tend to favor and stabilize the less useful neutral form, the NV0 centers. Here, we report the effects of green laser irradiation on ensembles of nanometer-shallow NV centers in flat and nanostructured diamond surfaces as a function of laser power in a range not previously explored (up to 150 mW/μm2). Fluorescence spectroscopy, optically detected magnetic resonance (ODMR), and charge-photoconversion detection are applied to characterize the properties and dynamics of NV- and NV0 centers. We demonstrate that high laser power strongly promotes photoconversion of NV0 to NV- centers. Surprisingly, the excess NV- population is stable over a timescale of 100 ms after switching off the laser, resulting in long-lived enrichment of shallow NV-. The beneficial effect of photoconversion is less marked in nanostructured samples. Our results are important to inform the design of samples and experimental procedures for applications relying on ensembles of shallow NV- centers in diamond.
Collapse
Affiliation(s)
- Federico Gorrini
- Istituto
Italiano di Tecnologia, Center for Sustainable
Future Technologies, via Livorno 60, 10144 Torino, Italy
- Molecular
Biology Center, University of Torino, via Nizza 52, 10126 Torino, Italy
| | - Carla Dorigoni
- Istituto
Italiano di Tecnologia, Center for Neuroscience
and Cognitive System, corso Bettini 31, 38068 Rovereto (Tn), Italy
| | - Domingo Olivares-Postigo
- Molecular
Biology Center, University of Torino, via Nizza 52, 10126 Torino, Italy
- Istituto
Italiano di Tecnologia, Center for Neuroscience
and Cognitive System, corso Bettini 31, 38068 Rovereto (Tn), Italy
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy
| | - Rakshyakar Giri
- Istituto
Italiano di Tecnologia, Center for Neuroscience
and Cognitive System, corso Bettini 31, 38068 Rovereto (Tn), Italy
| | - Pietro Aprà
- Department
of Physics and “NIS Inter-departmental Centre”, University of Torino, Via Pietro Giuria, 1, 10125 Torino, Italy
- National
Institute of Nuclear Physics, Section of Torino, Torino 10125, Italy
| | - Federico Picollo
- Department
of Physics and “NIS Inter-departmental Centre”, University of Torino, Via Pietro Giuria, 1, 10125 Torino, Italy
- National
Institute of Nuclear Physics, Section of Torino, Torino 10125, Italy
| | - Angelo Bifone
- Istituto
Italiano di Tecnologia, Center for Sustainable
Future Technologies, via Livorno 60, 10144 Torino, Italy
- Molecular
Biology Center, University of Torino, via Nizza 52, 10126 Torino, Italy
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
16
|
Krečmarová M, Gulka M, Vandenryt T, Hrubý J, Fekete L, Hubík P, Taylor A, Mortet V, Thoelen R, Bourgeois E, Nesládek M. A Label-Free Diamond Microfluidic DNA Sensor Based on Active Nitrogen-Vacancy Center Charge State Control. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18500-18510. [PMID: 33849273 DOI: 10.1021/acsami.1c01118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We propose a label-free biosensor concept based on the charge state manipulation of nitrogen-vacancy (NV) quantum color centers in diamond, combined with an electrochemical microfluidic flow cell sensor, constructed on boron-doped diamond. This device can be set at a defined electrochemical potential, locking onto the particular chemical reaction, whilst the NV center provides the sensing function. The NV charge state occupation is initially prepared by applying a bias voltage on a gate electrode and then subsequently altered by exposure to detected charged molecules. We demonstrate the functionality of the device by performing label-free optical detection of DNA molecules. In this experiment, a monolayer of strongly cationic charged polymer polyethylenimine is used to shift the charge state of near surface NV centers from negatively charged NV- to neutral NV0 or dark positively charged NV+. Immobilization of negatively charged DNA molecules on the surface of the sensor restores the NV centers charge state back to the negatively charged NV-, which is detected using confocal photoluminescence microscopy. Biochemical reactions in the microfluidic channel are characterized by electrochemical impedance spectroscopy. The use of the developed electrochemical device can also be extended to nuclear magnetic resonance spin sensing.
Collapse
Affiliation(s)
- Marie Krečmarová
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítna sq. 3105, 27201 Kladno, Czech Republic
| | - Michal Gulka
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítna sq. 3105, 27201 Kladno, Czech Republic
- Institute for Materials Research, Material Physics Division University of Hasselt, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czechia
| | - Thijs Vandenryt
- Institute for Materials Research, Material Physics Division University of Hasselt, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
- IMOMEC division of MEC, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
| | - Jaroslav Hrubý
- Institute for Materials Research, Material Physics Division University of Hasselt, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
| | - Ladislav Fekete
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Pavel Hubík
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Andrew Taylor
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Vincent Mortet
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítna sq. 3105, 27201 Kladno, Czech Republic
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Ronald Thoelen
- Institute for Materials Research, Material Physics Division University of Hasselt, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
- IMOMEC division of MEC, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
| | - Emilie Bourgeois
- Institute for Materials Research, Material Physics Division University of Hasselt, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
- IMOMEC division of MEC, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
| | - Miloš Nesládek
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítna sq. 3105, 27201 Kladno, Czech Republic
- IMOMEC division of MEC, Wetenschapspark 1, B 3590 Diepenbeek, Belgium
| |
Collapse
|
17
|
Choquet D, Sainlos M, Sibarita JB. Advanced imaging and labelling methods to decipher brain cell organization and function. Nat Rev Neurosci 2021; 22:237-255. [PMID: 33712727 DOI: 10.1038/s41583-021-00441-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The brain is arguably the most complex organ. The branched and extended morphology of nerve cells, their subcellular complexity, the multiplicity of brain cell types as well as their intricate connectivity and the scattering properties of brain tissue present formidable challenges to the understanding of brain function. Neuroscientists have often been at the forefront of technological and methodological developments to overcome these hurdles to visualize, quantify and modify cell and network properties. Over the last few decades, the development of advanced imaging methods has revolutionized our approach to explore the brain. Super-resolution microscopy and tissue imaging approaches have recently exploded. These instrumentation-based innovations have occurred in parallel with the development of new molecular approaches to label protein targets, to evolve new biosensors and to target them to appropriate cell types or subcellular compartments. We review the latest developments for labelling and functionalizing proteins with small localization and functionalized reporters. We present how these molecular tools are combined with the development of a wide variety of imaging methods that break either the diffraction barrier or the tissue penetration depth limits. We put these developments in perspective to emphasize how they will enable step changes in our understanding of the brain.
Collapse
Affiliation(s)
- Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France. .,University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, Bordeaux, France.
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| | - Jean-Baptiste Sibarita
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
18
|
|
19
|
Perevedentseva E, Lin YC, Cheng CL. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin Drug Deliv 2020; 18:369-382. [PMID: 33047984 DOI: 10.1080/17425247.2021.1832988] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Nanodiamond (ND) refers to diamond particles with sizes from few to near 100 nanometers. For its superb physical, chemical and spectroscopic properties, it has been proposed and studied with the aims for bio imaging and drug delivery. Many modalities on conjugating drug molecules on ND to form ND-X for more efficient drug delivery have been demonstrated in the cellular and animal models. AREA COVERED Many novel drug delivery approaches utilizing nanodiamond as a platform have been demonstrated recently. This review summarizes recent developments on the nanodiamond facilitated drug delivery, from the ND-X complexes preparations to tests in the cellular and animal models. The outlook on clinical translation is discussed. EXPERT OPINION Nanodiamond and drug complexes (ND-X) produced from different methods are realized for drug delivery; almost all studies reported ND-X being more efficient compared to pure drug alone. However, ND of particle size less than 10 nm are found more toxic due to size and surface structure, and strongly aggregate. In vivo studies demonstrate ND accumulation in animal organs and no confirmed long-term effect studies on their release from organs are available. Standardized nanodiamond materials and drug delivery approaches are needed to advance the applications to the clinical level.
Collapse
Affiliation(s)
- Elena Perevedentseva
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan.,Russian Academy of Sciences, P.N. Lebedev Physics Institute, Moskva, Russian Federation
| | - Yu-Chung Lin
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| |
Collapse
|
20
|
Foy C, Zhang L, Trusheim ME, Bagnall KR, Walsh M, Wang EN, Englund DR. Wide-Field Magnetic Field and Temperature Imaging Using Nanoscale Quantum Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26525-26533. [PMID: 32321237 DOI: 10.1021/acsami.0c01545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally coated nanodiamonds to realize simultaneous wide-field MT imaging at the device level. Our "quantum conformally attached thermo-magnetic" (Q-CAT) imaging enables (i) wide-field, high-frame rate imaging (100-1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields.
Collapse
Affiliation(s)
- Christopher Foy
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Lenan Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthew E Trusheim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Kevin R Bagnall
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Walsh
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Evelyn N Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, Massachusetts 02139, United States
| | - Dirk R Englund
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Zhang Y, Li Z, Feng Y, Guo H, Wen H, Tang J, Liu J. High-sensitivity DC magnetic field detection with ensemble NV centers by pulsed quantum filtering technology. OPTICS EXPRESS 2020; 28:16191-16201. [PMID: 32549446 DOI: 10.1364/oe.392279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Continuous wave optically detected magnetic resonance (CW-ODMR) is a practical way to study the sensitivity of the DC magnetic field. However, in large ensemble nitrogen-vacancy (NV) defects, the simultaneous excitation of microwave and laser will deteriorate the parameters of the ODMR spectrum and some unwanted sideband excitations caused by P1 electron spins will also bring challenges to further improve the sensitivity and signal quality. Here, we first achieve the CW-ODMR and acquire DC photon-shot-noise-limited magnetic sensitivity of 12nT/Hz. Different from the conventional method, we take advantage of pulsed quantum filtering (PQF) technology to eliminate such impacts above and demonstrate a sensitivity of about 1nT/Hz, which an order of magnitude enhancement over CW-ODMR. We find this method provides simple but effective support for relevant high-sensitivity DC magnetometry and obtains pure resonance signal when using large ensemble NV- defects.
Collapse
|
22
|
Radu V, Price JC, Levett SJ, Narayanasamy KK, Bateman-Price TD, Wilson PB, Mather ML. Dynamic Quantum Sensing of Paramagnetic Species Using Nitrogen-Vacancy Centers in Diamond. ACS Sens 2020; 5:703-710. [PMID: 31867948 PMCID: PMC7106109 DOI: 10.1021/acssensors.9b01903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Naturally occurring paramagnetic species (PS), such as free radicals and paramagnetic metalloproteins, play an essential role in a multitude of critical physiological processes including metabolism, cell signaling, and immune response. These highly dynamic species can also act as intrinsic biomarkers for a variety of disease states, while synthetic paramagnetic probes targeted to specific sites on biomolecules enable the study of functional information such as tissue oxygenation and redox status in living systems. The work presented herein describes a new sensing method that exploits the spin-dependent emission of photoluminescence (PL) from an ensemble of nitrogen-vacancy centers in diamond for rapid, nondestructive detection of PS in living systems. Uniquely this approach involves simple measurement protocols that assess PL contrast with and without the application of microwaves. The method is demonstrated to detect concentrations of paramagnetic salts in solution and the widely used magnetic resonance imaging contrast agent gadobutrol with a limit of detection of less than 10 attomol over a 100 μm × 100 μm field of view. Real-time monitoring of changes in the concentration of paramagnetic salts is demonstrated with image exposure times of 20 ms. Further, dynamic tracking of chemical reactions is demonstrated via the conversion of low-spin cyanide-coordinated Fe3+ to hexaaqua Fe3+ under acidic conditions. Finally, the capability to map paramagnetic species in model cells with subcellular resolution is demonstrated using lipid membranes containing gadolinium-labeled phospholipids under ambient conditions in the order of minutes. Overall, this work introduces a new sensing approach for the realization of fast, sensitive imaging of PS in a widefield format that is readily deployable in biomedical settings. Ultimately, this new approach to nitrogen vacancy-based quantum sensing paves the way toward minimally invasive real-time mapping and observation of free radicals in in vitro cellular environments.
Collapse
Affiliation(s)
- Valentin Radu
- Optics
and Photonics Research Group, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Joshua Colm Price
- Optics
and Photonics Research Group, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Simon James Levett
- Optics
and Photonics Research Group, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
| | | | - Thomas David Bateman-Price
- Optics
and Photonics Research Group, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Philippe Barrie Wilson
- Leicester
School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
| | - Melissa Louise Mather
- Optics
and Photonics Research Group, Faculty of Engineering, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
23
|
Singam SKR, Nesladek M, Goovaerts E. Nitrogen-vacancy nanodiamond based local thermometry using frequency-jump modulation. NANOTECHNOLOGY 2020; 31:105501. [PMID: 31751974 DOI: 10.1088/1361-6528/ab5a0c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A straightforward and sensitive approach is presented for contact-free thermal sensing with high spatial resolution based on optically detected magnetic resonance (ODMR) of negatively charged nitrogen-vacancy (NV) centers in fluorescent nanodiamonds. The frequency-jump procedure is a frequency modulation technique between two discrete frequencies at the inflection points at both sides of the NV ODMR resonance, which yields a signal proportional to the temperature shift over a wide temperature range. The approach is generic and is demonstrated by time-dependent measurements of the local temperature at different spots on a microelectronics circuit under electrical switching operation of one of the devices.
Collapse
Affiliation(s)
- Shashi K R Singam
- Physics Department, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | |
Collapse
|
24
|
Frese CD, Schiller S. 3D tomographic magnetofluorescence imaging of nanodiamonds. BIOMEDICAL OPTICS EXPRESS 2020; 11:533-553. [PMID: 32206386 PMCID: PMC7041470 DOI: 10.1364/boe.11.000533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 05/28/2023]
Abstract
We demonstrate lensless imaging of three-dimensional phantoms of fluorescent nanodiamonds in solution. Magnetofluorescence imaging is employed, which relies on a dependence of the fluorescence yield on the magnetic field, and pervading the object with an inhomogeneous magnetic field. This field provides a field-free field line, which is rastered through the object. A 3D image of the object is obtained by imaging a set of 2D slices. Each 2D slice image is computed from a set of 1D projections, obtained under different projection directions, using a backprojection algorithm. Reconstructed images containing up to 36 × 36 × 8 voxels are obtained. A spatial resolution better than 2 mm is achieved in three dimensions. The approach has the potential for scalability.
Collapse
Affiliation(s)
- Claire-Denise Frese
- Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephan Schiller
- Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Torelli MD, Nunn NA, Shenderova OA. A Perspective on Fluorescent Nanodiamond Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902151. [PMID: 31215753 PMCID: PMC6881523 DOI: 10.1002/smll.201902151] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Indexed: 05/28/2023]
Abstract
The field of fluorescent nanodiamonds (FNDs) has advanced greatly over the past few years. Though historically limited primarily to red fluorescence, the wavelengths available for nanodiamonds have increased due to continuous technical advancement. This Review summarizes the strides made in the synthesis, functionalization, and application of FNDs to bioimaging. Highlights range from super-resolution microscopy, through cellular and whole animal imaging, up to constantly emerging fields including sensing and hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- Marco D. Torelli
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Nicholas A. Nunn
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Olga A. Shenderova
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| |
Collapse
|
26
|
Ozvat TM, Peña ME, Zadrozny JM. Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry. Chem Sci 2019; 10:6727-6734. [PMID: 31367328 PMCID: PMC6625495 DOI: 10.1039/c9sc01689a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/04/2019] [Indexed: 11/21/2022] Open
Abstract
This manuscript details the first investigation of ligand encapsulation on thermometry by cobalt-59 nuclear spins.
Thermometry via magnetic resonance imaging (MRI) would provide a powerful noninvasive window into physiological temperature management. Cobalt-59 nuclear spins demonstrate exceptional temperature dependence of their NMR chemical shifts, yet the insight to control this dependence via molecular design is lacking. We present the first systematic evidence that encapsulation of this spin system amplifies the temperature sensitivity. We tested the temperature dependence of the 59Co chemical shift (Δδ/ΔT) in a series of five low-spin cobalt(iii) complexes as a function of increasing encapsulation within the 1st coordination sphere. This study spans from [Co(NH3)6]Cl3, with no interligand connectivity, to a fully encapsulated dinitrosarcophagine (diNOsar) complex, [Co(diNOsar)]Cl3. We discovered Δδ/ΔT values that span from 1.44(2) ppm °C–1 in [Co(NH3)6]Cl3 to 2.04(2) ppm °C–1 in [Co(diNOsar)]Cl3, the latter among the highest for a molecular complex. The data herein suggest that designing 59Co NMR thermometers toward high chemical stability can be coincident with high Δδ/ΔT. To better understand this phenomenon, variable-temperature UV-Vis, 59Co NMR relaxation, Raman spectroscopic, and variable-solvent investigations were performed. Data from these measurements highlight an unexpected impact of encapsulation – an increasingly dynamic and flexible inner coordination sphere. These results comprise the first systematic studies to reveal insight into the molecular factors that govern Δδ/ΔT and provide the first evidence of 59Co nuclear-spin control via vibrational means.
Collapse
Affiliation(s)
- Tyler M Ozvat
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| | - Manuel E Peña
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| | - Joseph M Zadrozny
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| |
Collapse
|
27
|
Gorrini F, Giri R, Avalos CE, Tambalo S, Mannucci S, Basso L, Bazzanella N, Dorigoni C, Cazzanelli M, Marzola P, Miotello A, Bifone A. Fast and Sensitive Detection of Paramagnetic Species Using Coupled Charge and Spin Dynamics in Strongly Fluorescent Nanodiamonds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24412-24422. [PMID: 31199615 DOI: 10.1021/acsami.9b05779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sensing of a few unpaired electron spins, such as in metal ions and radicals, is a useful but difficult task in nanoscale physics, biology, and chemistry. Single negatively charged nitrogen-vacancy (NV-) centers in diamond offer high sensitivity and spatial resolution in the optical detection of weak magnetic fields produced by a spin bath but often require long acquisition times on the order of seconds. Here, we present an approach based on coupled spin and charge dynamics in dense NV ensembles in strongly fluorescent nanodiamonds (NDs) to sense external magnetic dipoles. We apply this approach to various paramagnetic species, including gadolinium complexes, magnetite nanoparticles, and hemoglobin in whole blood. Taking advantage of the high NV density, we demonstrate a dramatic reduction in acquisition time (down to tens of milliseconds) while maintaining high sensitivity to paramagnetic centers. Strong luminescence, high sensitivity, and short acquisition time make dense NV- ensembles in NDs a potentially promising tool for biosensing and bioimaging applications.
Collapse
Affiliation(s)
- F Gorrini
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
| | - R Giri
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
| | - C E Avalos
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime , CH-1015 Lausanne , Switzerland
| | - S Tambalo
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
| | - S Mannucci
- Department of Neuroscience, Biomedicine and Movement Sciences , University of Verona , Strada Le Grazie 8 , 37134 Verona , Italy
| | - L Basso
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
- Department of Physics , University of Trento , via Sommarive 14, Povo , 38123 Trento , Italy
| | - N Bazzanella
- Department of Physics , University of Trento , via Sommarive 14, Povo , 38123 Trento , Italy
| | - C Dorigoni
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
| | - M Cazzanelli
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
- Department of Physics , University of Trento , via Sommarive 14, Povo , 38123 Trento , Italy
| | - P Marzola
- Department of Computer Science , University of Verona , Strada Le Grazie 15 , 37134 Verona , Italy
| | - A Miotello
- Department of Physics , University of Trento , via Sommarive 14, Povo , 38123 Trento , Italy
| | - A Bifone
- Center for Neuroscience and Cognitive Systems , Istituto Italiano di Tecnologia , Corso Bettini 31 , Rovereto, 38068 Trento , Italy
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Torino 10126 , Italy
| |
Collapse
|
28
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
29
|
Huang TY, Grote RR, Mann SA, Hopper DA, Exarhos AL, Lopez GG, Kaighn GR, Garnett EC, Bassett LC. A monolithic immersion metalens for imaging solid-state quantum emitters. Nat Commun 2019; 10:2392. [PMID: 31160564 PMCID: PMC6546684 DOI: 10.1038/s41467-019-10238-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/15/2019] [Indexed: 11/09/2022] Open
Abstract
Quantum emitters such as the diamond nitrogen-vacancy (NV) center are the basis for a wide range of quantum technologies. However, refraction and reflections at material interfaces impede photon collection, and the emitters’ atomic scale necessitates the use of free space optical measurement setups that prevent packaging of quantum devices. To overcome these limitations, we design and fabricate a metasurface composed of nanoscale diamond pillars that acts as an immersion lens to collect and collimate the emission of an individual NV center. The metalens exhibits a numerical aperture greater than 1.0, enabling efficient fiber-coupling of quantum emitters. This flexible design will lead to the miniaturization of quantum devices in a wide range of host materials and the development of metasurfaces that shape single-photon emission for coupling to optical cavities or route photons based on their quantum state. Photon collection from quantum emitters is difficult, and their scale requires the use of free-space optical measurement setups which prevent packaging of quantum devices. Here, the authors design and fabricate a metasurface that acts as an immersion lens to collect and collimate the emission of an individual emitter.
Collapse
Affiliation(s)
- Tzu-Yung Huang
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, 200 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Richard R Grote
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, 200 S. 33rd Street, Philadelphia, PA, 19104, USA.,Rockley Photonics Inc., 234 E. Colorado Blvd, Suite 600, Pasadena, CA, 91101, USA
| | - Sander A Mann
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands.,Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - David A Hopper
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, 200 S. 33rd Street, Philadelphia, PA, 19104, USA.,Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Annemarie L Exarhos
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, 200 S. 33rd Street, Philadelphia, PA, 19104, USA.,Department of Physics, Lafayette College, Easton, PA, 18042, USA
| | - Gerald G Lopez
- Singh Center for Nanotechnology, University of Pennsylvania, 3205 Walnut St., Philadelphia, PA, 19104, USA
| | - Garrett R Kaighn
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, 200 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Erik C Garnett
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Lee C Bassett
- Quantum Engineering Laboratory, Department of Electrical and Systems Engineering, University of Pennsylvania, 200 S. 33rd Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Yokota H. Fluorescence microscopy for visualizing single-molecule protein dynamics. Biochim Biophys Acta Gen Subj 2019; 1864:129362. [PMID: 31078674 DOI: 10.1016/j.bbagen.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Single-molecule fluorescence imaging (smFI) has evolved into a valuable method used in biophysical and biochemical studies as it can observe the real-time behavior of individual protein molecules, enabling understanding of their detailed dynamic features. smFI is also closely related to other state-of-the-art microscopic methods, optics, and nanomaterials in that smFI and these technologies have developed synergistically. SCOPE OF REVIEW This paper provides an overview of the recently developed single-molecule fluorescence microscopy methods, focusing on critical techniques employed in higher-precision measurements in vitro and fluorescent nanodiamond, an emerging promising fluorophore that will improve single-molecule fluorescence microscopy. MAJOR CONCLUSIONS smFI will continue to improve regarding the photostability of fluorophores and will develop via combination with other techniques based on nanofabrication, single-molecule manipulation, and so on. GENERAL SIGNIFICANCE Quantitative, high-resolution single-molecule studies will help establish an understanding of protein dynamics and complex biomolecular systems.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, Graduate School for the Creation of New Photonics Industries, Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan.
| |
Collapse
|
31
|
Jira J, Rezek B, Kriha V, Artemenko A, Matolínová I, Skakalova V, Stenclova P, Kromka A. Inhibition of E. coli Growth by Nanodiamond and Graphene Oxide Enhanced by Luria-Bertani Medium. NANOMATERIALS 2018; 8:nano8030140. [PMID: 29494507 PMCID: PMC5869631 DOI: 10.3390/nano8030140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/16/2018] [Accepted: 02/24/2018] [Indexed: 11/16/2022]
Abstract
Nanodiamonds (NDs) and graphene oxide (GO) are modern carbon-based nanomaterials with promising features for the inhibition of microorganism growth ability. Here we compare the effects of nanodiamond and graphene oxide in both annealed (oxidized) and reduced (hydrogenated) forms in two types of cultivation media—Luria-Bertani (LB) and Mueller-Hinton (MH) broths. The comparison shows that the number of colony forming unit (CFU) of Escherichia coli is significantly lowered (45%) by all the nanomaterials in LB medium for at least 24 h against control. On the contrary, a significant long-term inhibition of E. coli growth (by 45%) in the MH medium is provided only by hydrogenated NDs terminated with C-HX groups. The use of salty agars did not enhance the inhibition effects of nanomaterials used, i.e. disruption of bacterial membrane or differences in ionic concentrations do not play any role in bactericidal effects of nanomaterials used. The specific role of the ND and GO on the enhancement of the oxidative stress of bacteria or possible wrapping bacteria by GO nanosheets, therefore isolating them from both the environment and nutrition was suggested. Analyses by infrared spectroscopy, photoelectron spectroscopy, scanning electron microscopy and dynamic light scattering corroborate these conclusions.
Collapse
Affiliation(s)
- Jaroslav Jira
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
- Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Prague 6, Czech Republic.
| | - Bohuslav Rezek
- Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Prague 6, Czech Republic.
| | - Vitezslav Kriha
- Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Prague 6, Czech Republic.
| | - Anna Artemenko
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
| | - Iva Matolínová
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 181 00 Prague 8, Czech Republic.
| | - Viera Skakalova
- Danubia NanoTech, s.r.o., Ilkovicova 3, 841 04 Bratislava, Slovakia.
| | - Pavla Stenclova
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
| | - Alexander Kromka
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
| |
Collapse
|
32
|
Guarina L, Calorio C, Gavello D, Moreva E, Traina P, Battiato A, Ditalia Tchernij S, Forneris J, Gai M, Picollo F, Olivero P, Genovese M, Carbone E, Marcantoni A, Carabelli V. Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits. Sci Rep 2018; 8:2221. [PMID: 29396456 PMCID: PMC5797106 DOI: 10.1038/s41598-018-20528-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/11/2018] [Indexed: 01/31/2023] Open
Abstract
Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can efficiently incorporate optically active photoluminescent centers such as the nitrogen-vacancy complex, thus making them promising candidates as optical biolabels and drug-delivery agents. FNDs exhibit bright fluorescence without photobleaching combined with high uptake rate and low cytotoxicity. Focusing on FNDs interference with neuronal function, here we examined their effect on cultured hippocampal neurons, monitoring the whole network development as well as the electrophysiological properties of single neurons. We observed that FNDs drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and excitatory (from 1.61 to 0.68 Hz) miniature postsynaptic currents, and consistently reduced action potential (AP) firing frequency (by 36%), as measured by microelectrode arrays. On the contrary, bursts synchronization was preserved, as well as the amplitude of spontaneous inhibitory and excitatory events. Current-clamp recordings revealed that the ratio of neurons responding with AP trains of high-frequency (fast-spiking) versus neurons responding with trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs exerted a comparable action on neuronal subpopulations. At the single cell level, rapid onset of the somatic AP (“kink”) was drastically reduced in FND-treated neurons, suggesting a reduced contribution of axonal and dendritic components while preserving neuronal excitability.
Collapse
Affiliation(s)
- L Guarina
- Department of Drug Science and Technology, "NIS" inter-departmental centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - C Calorio
- Department of Drug Science and Technology, "NIS" inter-departmental centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - D Gavello
- Department of Drug Science and Technology, "NIS" inter-departmental centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - E Moreva
- Istituto Nazionale Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy
| | - P Traina
- Istituto Nazionale Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy
| | - A Battiato
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Via P. Giuria 1, 10125, Torino, Italy
| | - S Ditalia Tchernij
- Department of Physics and "NIS" inter-departmental centre, University of Torino, Via P. Giuria 1, 10125, Torino, Italy.,Istituto Nazionale di Fisica Nucleare, sezione di Torino, Via P. Giuria 1, 10125, Torino, Italy
| | - J Forneris
- Istituto Nazionale di Fisica Nucleare, sezione di Torino, Via P. Giuria 1, 10125, Torino, Italy
| | - M Gai
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - F Picollo
- Department of Physics and "NIS" inter-departmental centre, University of Torino, Via P. Giuria 1, 10125, Torino, Italy.,Istituto Nazionale di Fisica Nucleare, sezione di Torino, Via P. Giuria 1, 10125, Torino, Italy
| | - P Olivero
- Department of Physics and "NIS" inter-departmental centre, University of Torino, Via P. Giuria 1, 10125, Torino, Italy.,Istituto Nazionale di Fisica Nucleare, sezione di Torino, Via P. Giuria 1, 10125, Torino, Italy
| | - M Genovese
- Istituto Nazionale Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy.,Istituto Nazionale di Fisica Nucleare, sezione di Torino, Via P. Giuria 1, 10125, Torino, Italy
| | - E Carbone
- Department of Drug Science and Technology, "NIS" inter-departmental centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - A Marcantoni
- Department of Drug Science and Technology, "NIS" inter-departmental centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - V Carabelli
- Department of Drug Science and Technology, "NIS" inter-departmental centre, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
33
|
Bray K, Cheung L, Hossain KR, Aharonovich I, Valenzuela SM, Shimoni O. Versatile multicolor nanodiamond probes for intracellular imaging and targeted labeling. J Mater Chem B 2018; 6:3078-3084. [DOI: 10.1039/c8tb00508g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report on the first demonstration of FNDs containing either silicon or nitrogen vacancy color centers for multi-color bio-imaging.
Collapse
Affiliation(s)
- Kerem Bray
- Institute of Biomedical Materials and Devices (IBMD)
- Faculty of Science
- University of Technology Sydney
- Ultimo
- Australia
| | - Leonard Cheung
- Institute of Biomedical Materials and Devices (IBMD)
- Faculty of Science
- University of Technology Sydney
- Ultimo
- Australia
| | | | - Igor Aharonovich
- Institute of Biomedical Materials and Devices (IBMD)
- Faculty of Science
- University of Technology Sydney
- Ultimo
- Australia
| | - Stella M. Valenzuela
- School of Life Sciences
- Faculty of Science
- University of Technology Sydney
- Ultimo
- Australia
| | - Olga Shimoni
- Institute of Biomedical Materials and Devices (IBMD)
- Faculty of Science
- University of Technology Sydney
- Ultimo
- Australia
| |
Collapse
|
34
|
Deyev SM, Lebedenko EN. Targeted Bifunctional Proteins and Hybrid Nanoconstructs for Cancer Diagnostics and Therapies. Mol Biol 2017. [DOI: 10.1134/s002689331706005x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Brož A, Bačáková L, Štenclová P, Kromka A, Potocký Š. Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1649-1657. [PMID: 28875102 PMCID: PMC5564261 DOI: 10.3762/bjnano.8.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Diamond nanoparticles, known as nanodiamonds (NDs), possess several medically significant properties. Having a tailorable and easily accessible surface gives them great potential for use in sensing and imaging applications and as a component of cell growth scaffolds. In this work we investigate in vitro interactions of human osteoblast-like SAOS-2 cells with four different groups of NDs, namely high-pressure high-temperature (HPHT) NDs (diameter 18-210 nm, oxygen-terminated), photoluminescent HPHT NDs (diameter 40 nm, oxygen-terminated), detonation NDs (diameter 5 nm, H-terminated), and the same detonation NDs further oxidized by annealing at 450 °C. The influence of the NDs on cell viability and cell count was measured by the mitochondrial metabolic activity test and by counting cells with stained nuclei. The interaction of NDs with cells was monitored by phase contrast live-cell imaging in real time. For both types of oxygen-terminated HPHT NDs, the cell viability and the cell number remained almost the same for concentrations up to 100 µg/mL within the whole range of ND diameters tested. The uptake of hydrogen-terminated detonation NDs caused the viability and the cell number to decrease by 80-85%. The oxidation of the NDs hindered the decrease, but on day 7, a further decrease was observed. While the O-terminated NDs showed mechanical obstruction of cells by agglomerates preventing cell adhesion, migration and division, the H-terminated detonation NDs exhibited rapid penetration into the cells from the beginning of the cultivation period, and also rapid cell congestion and a rapid reduction in viability. These findings are discussed with reference to relevant properties of NDs such as surface chemical bonds, zeta potential and nanoparticle types.
Collapse
Affiliation(s)
- Antonín Brož
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Lucie Bačáková
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Pavla Štenclová
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Alexander Kromka
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Štěpán Potocký
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| |
Collapse
|
36
|
Pham MD, Epperla CP, Hsieh CL, Chang W, Chang HC. Glycosaminoglycans-Specific Cell Targeting and Imaging Using Fluorescent Nanodiamonds Coated with Viral Envelope Proteins. Anal Chem 2017; 89:6527-6534. [PMID: 28548489 DOI: 10.1021/acs.analchem.7b00627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding virus-host interactions is crucial for vaccine development. This study investigates such interactions using fluorescent nanodiamonds (FNDs) coated with vaccinia envelope proteins as the model system. To achieve this goal, we noncovalently conjugated 100 nm FNDs with rA27(aa 21-84), a recombinant envelope protein of vaccinia virus, for glycosaminoglycans (GAGs)-specific targeting and imaging of living cells. Another recombinant protein rDA27(aa 33-84) that removes the GAGs-binding sequences was also used for comparison. Three types of A27-coated FNDs were generated, including rA27(aa 21-84)-FND, rDA27(aa 33-84)-FND, and hybrid rA27(aa 21-84)/rDA27(aa 33-84)-FND. The specificity of these viral protein-FND conjugates toward GAGs binding was examined by flow cytometry, fluorescence microscopy, and gel electrophoresis. Results obtained for normal and GAGs-deficient cells showed that the recombinant proteins maintain their GAG-targeting activities even after immobilization on the FND surface. Our studies provide a new nanoparticle-based platform not only to target specific cell types but also to track the fates of these immobilized viral proteins in targeted cells as well as to isolate and enrich GAGs-associated proteins on cell membrane.
Collapse
Affiliation(s)
- Minh D Pham
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan.,Institute of Biotechnology, Vietnam Academy of Science and Technology , 18-Hoang Quoc Viet, Cau Giay, Ha noi, Vietnam
| | - Chandra Prakash Epperla
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan.,Taiwan International Graduate Program-Molecular Science and Technology, Academia Sinica , Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University , Hsinchu 300, Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica , Taipei 115, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan.,Taiwan International Graduate Program-Molecular Science and Technology, Academia Sinica , Taipei 115, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology , Taipei 106, Taiwan
| |
Collapse
|
37
|
Salas-Montiel R, Berthel M, Beltran-Madrigal J, Huant S, Drezet A, Blaize S. Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres. NANOTECHNOLOGY 2017; 28:205207. [PMID: 28323249 DOI: 10.1088/1361-6528/aa6815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the most explored single quantum emitters for the development of nanoscale fluorescence lifetime imaging is the nitrogen-vacancy (NV) color center in diamond. An NV center does not experience fluorescence bleaching or blinking at room temperature. Furthermore, its optical properties are preserved when embedded into nanodiamond hosts. This paper focuses on the modeling of the local density of states (LDOS) in a plasmonic nanofocusing structure with an NV center acting as local illumination sources. Numerical calculations of the LDOS near such a nanostructure were done with a classical electric dipole radiation placed inside a diamond sphere as well as near-field optical fluorescence lifetime imaging of the structure. We found that Purcell factors higher than ten can be reached with diamond nanospheres of radius less than 5 nm and at a distance of less than 20 nm from the surface of the structure. Although the spatial resolution of the experiment is limited by the size of the nanodiamond, our work supports the analysis and interpretation of a single NV color center in a nanodiamond as a probe for scanning near-field optical microscopy.
Collapse
Affiliation(s)
- Rafael Salas-Montiel
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay-CNRS UMR 6281, Université de technologie de Troyes, 12 rue Marie Curie, 10004, Troyes, France
| | | | | | | | | | | |
Collapse
|
38
|
Knauer S, Ortiz Huerta F, López-García M, Rarity JG. Polymer photonic microstructures for quantum applications and sensing. OPTICAL AND QUANTUM ELECTRONICS 2017; 49:102. [PMID: 32214611 PMCID: PMC7064055 DOI: 10.1007/s11082-017-0922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/23/2017] [Indexed: 06/10/2023]
Abstract
We present modelling results for efficient coupling of nanodiamonds containing single colour centres to polymer structures on distributed Bragg reflectors. We explain how hemispherical and super-spherical structures redirect the emission of light into small numerical apertures. Coupling efficiencies of up to 68.5% within a numerical aperture of 0.34 are found. Further, we show how Purcell factors up to 4.5 can be achieved for wavelength scale hemispheres coated with distributed Bragg reflectors. We conclude with an experimental proposal for the realisation of these structures.
Collapse
Affiliation(s)
- Sebastian Knauer
- Bristol Centre for Nanoscience and Quantum Information, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD UK
- Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB UK
| | - Felipe Ortiz Huerta
- Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB UK
| | - Martín López-García
- Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB UK
| | - John G. Rarity
- Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB UK
| |
Collapse
|
39
|
Chen X, Zhang W. Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem Soc Rev 2017; 46:734-760. [DOI: 10.1039/c6cs00109b] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the superior properties of diamond nanoparticles and vertically aligned diamond nanoneedles and their applications in biosensing, bioimaging and drug delivery.
Collapse
Affiliation(s)
- Xianfeng Chen
- Institute for Bioengineering
- School of Engineering
- The University of Edinburgh
- Edinburgh EH9 3JL
- UK
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science
- City University of Hong Kong
- China
| |
Collapse
|
40
|
Selective Labeling of Proteins on Living Cell Membranes Using Fluorescent Nanodiamond Probes. NANOMATERIALS 2016; 6:nano6040056. [PMID: 28335184 PMCID: PMC5302567 DOI: 10.3390/nano6040056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/07/2016] [Accepted: 03/15/2016] [Indexed: 11/23/2022]
Abstract
The impeccable photostability of fluorescent nanodiamonds (FNDs) is an ideal property for use in fluorescence imaging of proteins in living cells. However, such an application requires highly specific labeling of the target proteins with FNDs. Furthermore, the surface of unmodified FNDs tends to adsorb biomolecules nonspecifically, which hinders the reliable targeting of proteins with FNDs. Here, we combined hyperbranched polyglycerol modification of FNDs with the β-lactamase-tag system to develop a strategy for selective imaging of the protein of interest in cells. The combination of these techniques enabled site-specific labeling of Interleukin-18 receptor alpha chain, a membrane receptor, with FNDs, which eventually enabled tracking of the diffusion trajectory of FND-labeled proteins on the membrane surface.
Collapse
|
41
|
Stehlik S, Varga M, Ledinsky M, Jirasek V, Artemenko A, Kozak H, Ondic L, Skakalova V, Argentero G, Pennycook T, Meyer J, Fejfar A, Kromka A, Rezek B. Size and Purity Control of HPHT Nanodiamonds down to 1 nm. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:27708-27720. [PMID: 26691647 PMCID: PMC4677353 DOI: 10.1021/acs.jpcc.5b05259] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/27/2015] [Indexed: 05/19/2023]
Abstract
High-pressure high-temperature (HPHT) nanodiamonds originate from grinding of diamond microcrystals obtained by HPHT synthesis. Here we report on a simple two-step approach to obtain as small as 1.1 nm HPHT nanodiamonds of excellent purity and crystallinity, which are among the smallest artificially prepared nanodiamonds ever shown and characterized. Moreover we provide experimental evidence of diamond stability down to 1 nm. Controlled annealing at 450 °C in air leads to efficient purification from the nondiamond carbon (shells and dots), as evidenced by X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and scanning transmission electron microscopy. Annealing at 500 °C promotes, besides of purification, also size reduction of nanodiamonds down to ∼1 nm. Comparably short (1 h) centrifugation of the nanodiamonds aqueous colloidal solution ensures separation of the sub-10 nm fraction. Calculations show that an asymmetry of Raman diamond peak of sub-10 nm HPHT nanodiamonds can be well explained by modified phonon confinement model when the actual particle size distribution is taken into account. In contrast, larger Raman peak asymmetry commonly observed in Raman spectra of detonation nanodiamonds is mainly attributed to defects rather than to the phonon confinement. Thus, the obtained characteristics reflect high material quality including nanoscale effects in sub-10 nm HPHT nanodiamonds prepared by the presented method.
Collapse
Affiliation(s)
- Stepan Stehlik
- Institute
of Physics ASCR, Cukrovarnická
10, 162 00 Prague
6, Czech Republic
- E-mail:
| | - Marian Varga
- Institute
of Physics ASCR, Cukrovarnická
10, 162 00 Prague
6, Czech Republic
| | - Martin Ledinsky
- Institute
of Physics ASCR, Cukrovarnická
10, 162 00 Prague
6, Czech Republic
| | - Vit Jirasek
- Institute
of Physics ASCR, Cukrovarnická
10, 162 00 Prague
6, Czech Republic
| | - Anna Artemenko
- Institute
of Physics ASCR, Cukrovarnická
10, 162 00 Prague
6, Czech Republic
| | - Halyna Kozak
- Institute
of Physics ASCR, Cukrovarnická
10, 162 00 Prague
6, Czech Republic
| | - Lukas Ondic
- Institute
of Physics ASCR, Cukrovarnická
10, 162 00 Prague
6, Czech Republic
| | - Viera Skakalova
- Physics of Nanostructured
Materials, Faculty of Physics, University
of Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
- SUT Center for Nanodiagnostics, Vazovova 5, 812 43 Bratislava, Slovakia
| | - Giacomo Argentero
- Physics of Nanostructured
Materials, Faculty of Physics, University
of Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
| | - Timothy Pennycook
- Physics of Nanostructured
Materials, Faculty of Physics, University
of Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
| | - Jannik
C. Meyer
- Physics of Nanostructured
Materials, Faculty of Physics, University
of Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
| | - Antonin Fejfar
- Institute
of Physics ASCR, Cukrovarnická
10, 162 00 Prague
6, Czech Republic
| | - Alexander Kromka
- Institute
of Physics ASCR, Cukrovarnická
10, 162 00 Prague
6, Czech Republic
| | - Bohuslav Rezek
- Institute
of Physics ASCR, Cukrovarnická
10, 162 00 Prague
6, Czech Republic
- Faculty of Electrical Engineering, Czech
Technical University in Prague, Technická 2, 16627 Prague 6, Czech Republic
| |
Collapse
|
42
|
Montalti M, Cantelli A, Battistelli G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem Soc Rev 2015; 44:4853-921. [DOI: 10.1039/c4cs00486h] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultra-stability and low-toxicity of silicon quantum dots and fluorescent nanodiamonds for long-termin vitroandin vivobioimaging are demonstrated.
Collapse
Affiliation(s)
- M. Montalti
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - A. Cantelli
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - G. Battistelli
- Department of Chemistry “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| |
Collapse
|