1
|
Kalra B, Parkash R. A trade-off between desiccation resistance and developmental humidity for pupation height in the North Indian seasonal population of Drosophilid-Zaprionus indianus. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111684. [PMID: 38909649 DOI: 10.1016/j.cbpa.2024.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Drosophila larvae and pupae are vulnerable to seasonal abiotic stressors such as humidity and temperature. In wild low-humidity habitats, desiccation stress can occur as Drosophila larvae forsake wet food in search of a drier pupation site. Henceforth, the hypothesis that developmental humidity impacts pupation height, affecting larval and pupae water balance and fitness-related traits, was examined. Accordingly, warm-adapted Drosophilid- Zaprionus indianus from two seasons were reared under season-specific simulated conditions, with significantly varying relative humidity (summer RH: 40%; rainy RH: 80%), but nearly identical temperatures. A trade-off between pupation height and developmental humidity was observed. Drier summer conditions lead to pupae wandering farther from drier glass surfaces, resulting in higher pupation height (17.3 cm) while rainy pupae prefer wet food, resulting in lower pupation height (7.12 cm). Additionally, density-dependent pupation height was developmental humidity-specific, with most rainy-season pupae pupated on wetter food, while dry summer pupae pupated on glass surfaces or cotton. Nevertheless, flies from far pupation exhibited greater desiccation resistance, fecundity, and copulation duration than those from near pupation. The cuticular lipid mass of larvae and pupae was higher during far-than-near pupation, indicating decreased water loss rates compared to near-pupation. Finally, pupae eclosion (%) was unaffected by greater humidity (85%) in either season. Still, it considerably decreased at lower humidity (RH: 0% and 38%) for rainy pupae, further supporting the selection of low-humidity desiccation resistance in pupae. In conclusion, low humidity is crucial for survival of pre-adult stages of Zaprionus indianus under desiccation stress and for preference of pupation site.
Collapse
Affiliation(s)
- Bhawna Kalra
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, SGT University, Budhera, Gurugram, Haryana 122505, India.
| | - Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
2
|
Zamora-Briseño JA, Schunke JM, Arteaga-Vázquez MA, Arredondo J, Tejeda MT, Ascencio-Ibáñez JT, Díaz-Fleischer F. Transcriptional response of laboratory-reared Mexican fruit flies ( Anastrepha ludens Loew) to desiccation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:563-570. [PMID: 39295441 DOI: 10.1017/s0007485324000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Confronting environments with low relative humidity is one of the main challenges faced by insects with expanding distribution ranges. Anastrepha ludens (the Mexican fruit fly) has evolved to cope with the variable conditions encountered during its lifetime, which allows it to colonise a wide range of environments. However, our understanding of the mechanisms underpinning the ability of this species to confront environments with low relative humidity is incomplete. In this sense, omic approaches such as transcriptomics can be helpful for advancing our knowledge on how this species copes with desiccation stress. Considering this, in this study, we performed transcriptomic analyses to compare the molecular responses of laboratory-reared A. ludens exposed and unexposed to desiccation. Data from the transcriptome analyses indicated that the responses to desiccation are shared by both sexes. We identified the up-regulation of transcripts encoding proteins involved in lipid metabolism and membrane remodelling, as well as proteases and cuticular proteins. Our results provide a framework for understanding the response to desiccation stress in one of the most invasive fruit fly species in the world.
Collapse
Affiliation(s)
| | - James M Schunke
- Department of Structural and Molecular Biochemistry, North Carolina State University
| | | | - José Arredondo
- PROGRAMA MOSCAMED, SADER-IICA, Metapa de Domínguez, Chiapas, México
| | - Marco T Tejeda
- PROGRAMA MOSCAMED, SADER-IICA, Metapa de Domínguez, Chiapas, México
| | | | | |
Collapse
|
3
|
Moskowitz NA, D’Agui R, Alvarez-Buylla A, Fiocca K, O’Connell LA. Poison frog dietary preference depends on prey type and alkaloid load. PLoS One 2022; 17:e0276331. [PMID: 36454945 PMCID: PMC9714857 DOI: 10.1371/journal.pone.0276331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
The ability to acquire chemical defenses through the diet has evolved across several major taxa. Chemically defended organisms may need to balance chemical defense acquisition and nutritional quality of prey items. However, these dietary preferences and potential trade-offs are rarely considered in the framework of diet-derived defenses. Poison frogs (Family Dendrobatidae) acquire defensive alkaloids from their arthropod diet of ants and mites, although their dietary preferences have never been investigated. We conducted prey preference assays with the Dyeing Poison frog (Dendrobates tinctorius) to test the hypothesis that alkaloid load and prey traits influence frog dietary preferences. We tested size preferences (big versus small) within each of four prey groups (ants, beetles, flies, and fly larvae) and found that frogs preferred interacting with smaller prey items of the fly and beetle groups. Frog taxonomic prey preferences were also tested as we experimentally increased their chemical defense load by feeding frogs decahydroquinoline, an alkaloid compound similar to those naturally found in their diet. Contrary to our expectations, overall preferences did not change during alkaloid consumption, as frogs across groups preferred fly larvae over other prey. Finally, we assessed the protein and lipid content of prey items and found that small ants have the highest lipid content while large fly larvae have the highest protein content. Our results suggest that consideration of toxicity and prey nutritional value are important factors in understanding the evolution of acquired chemical defenses and niche partitioning.
Collapse
Affiliation(s)
- Nora A. Moskowitz
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Rachel D’Agui
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | | | - Katherine Fiocca
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA, United States of America
- * E-mail:
| |
Collapse
|
4
|
Adaptive changes in energy reserves and effects of body melanization on thermal tolerance in Drosophila simulans. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111258. [PMID: 35705113 DOI: 10.1016/j.cbpa.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Seasonally polyphenic types have been documented in many Drosophilids, which differ significantly during thermal stress. Although Drosophila simulans is a sibling species to Drosophila melanogaster, both thrive in the temperate and tropical climates, but various climatic factors are expected to impact their distribution and abundance. As a result, D. simulans may use phenotypic plasticity to adapt to colder and drier circumstances in temperate zones, although such studies are less known. In the present study, our main aim was to find a link between adaptive plasticity and thermal tolerance in D. simulans. We characterized two morphs in D. simulans flies based on the abdominal melanization collected from the same locality and season, as this trait is highly associated with the larval developmental conditions. Our results suggested that flies reared from dark and light morph showed significant differences in the basal level of proline, carbohydrates (trehalose, glycogen), and lipids (cuticular lipids and total body lipids) within simulated seasons and morph lineages in D. simulans flies. We further showed that D. simulans reared from dark morph are better adapted to cold conditions, whereas light flies are more adapted to warm conditions. The flies, both from light and dark morph lineages, when reared at 15 °C, showed an increase in the level of total body lipids after acclimation at 0 °C but a decrease in the level of proline and carbohydrates (trehalose, glycogen). Heat acclimation increases glycogen levels in the flies from light morph lineage while decreases trehalose and proline.
Collapse
|
5
|
Parkash R, Lambhod C. Plastic changes in cold and drought tolerance of Drosophila nepalensis correlate with sex-specific differences in body melanization, cuticular lipid mass, proline accumulation, and seasonal abundance. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110985. [PMID: 34023536 DOI: 10.1016/j.cbpa.2021.110985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022]
Abstract
Autumn-collected flies of Himalayan Drosophila nepalensis differ in body color phenotypes (males more melanized relative to females) and in their behavior (males abundant in the open sites vs. shelters-seeking females). In contrast, winter-collected flies of both sexes are equally melanized and abundant in the open sites. We tested developmental and adult plasticity changes in cold or drought tolerance in D. nepalensis flies reared under winter or autumn simulated conditions. In D. nepalensis flies reared at 21 °C, male flies were more cold tolerant (as shown by shorter chill-coma recovery time and lower cold-shock mortality). Further, male flies also exhibited greater drought tolerance (increased levels of desiccation resistance, cuticular lipid mass, melanization, hydration level, and dehydration tolerance) as compared to females. We observed sex-specific differences in the adult plasticity responses due to rapid cold or drought hardening (RCH or RDH); and for the persistence of cold acclimation effects. RCH or RDH-induced changes in the level of proline accumulations are negatively correlated with a decrease in the chill-coma recovery time. Therefore, cold or drought hardening treatments are likely to influence cold tolerance through proline accumulation. Developmental acclimation and adult hardening responses revealed significant interaction effects between sexes and thermal treatments. Thus, sex-specific differences in morphological traits (body melanization and cuticular lipid mass) and physiological traits (adult plasticity changes in cold tolerance and proline accumulation) correlate with behavioral divergence (habitat usage) across sexes.
Collapse
Affiliation(s)
- Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India.
| | | |
Collapse
|
6
|
Bong LJ, Wang CY, Shiodera S, Haraguchi TF, Itoh M, Neoh KB. Effect of body lipid content is linked to nutritional adaptation in the acclimation responses of mesic-adapted Paederus to seasonal variations in desiccation stress. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104226. [PMID: 33736982 DOI: 10.1016/j.jinsphys.2021.104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Desiccation stress causes mesic-adapted arthropods to lose their body water content. However, mesic-adapted Paederus beetles can survive over prolonged periods under dry field conditions, suggesting that these beetles adopt an array of water conservation mechanisms. We investigated the water balance mechanisms of field-collected Paederus adults over a 14-month sampling period. We also assessed their nutritional adaptations by performing a stable isotope analysis to examine their diet. The water loss rate (WLR) of the beetles was significantly associated with the rice crop cycle and saturation deficit. The cuticular permeability (CP) of adult beetles was maintained at < 30 µg cm-2h-1 mmHg-1; however, CP increased significantly with the WLR. This result indicates that CP might play a minor role in reducing excessive water loss in beetles. The beetles' body water content and percentage total body water content increased when the WLR was high. Trehalose, glucose, and glycogen did not appear to play a central role in enhancing the water reserves in the insects. The body lipid content ranged from 0.22 ± 0.06 to 0.87 ± 0.07 mg and was negatively associated with the WLR. This association indicates that the increase in internal metabolic water was mediated by lipid catabolism. Stable isotope analysis results revealed that the Paederus beetles shifted their diet to carbohydrate-rich plants when the saturation deficit increased and the associated WLR reached its peak; otherwise, they consumed a high amount of staple carbohydrate-poor herbivore prey. The accumulation of energy reserves in the form of lipids through seasonal dietary shifts may exert major effects on the survival and population success of mesic-adapted Paederus beetles.
Collapse
Affiliation(s)
- Lee-Jin Bong
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung 402, Taiwan
| | - Chia-Yu Wang
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung 402, Taiwan
| | - Satomi Shiodera
- Research Institute for Humanity and Nature, 457-4, Motoyama, Kamigamo, Kyoto 603-8047, Japan; Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachi-cho, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi F Haraguchi
- Biodiversity Research Center, Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 10-4 Koyamotomachi, Neyagawa, Osaka 572-0088, Japan
| | - Masayuki Itoh
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shin-zaike, Himeji, Hyogo, 670-0092, Japan
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung 402, Taiwan.
| |
Collapse
|
7
|
Yang Y, Liu D, Liu X, Wang B, Shi X. Divergence of Desiccation-Related Traits in Sitobion avenae from Northwestern China. INSECTS 2020; 11:insects11090626. [PMID: 32932880 PMCID: PMC7565472 DOI: 10.3390/insects11090626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The impact of drought on insects has become increasingly evident in the context of global climate change, but the physiological mechanisms of aphids' responses to desiccating environments are still not well understood. We sampled the wheat aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) from arid areas of northwestern China. Both desiccation-resistant and -nonresistant genotypes were identified, providing direct evidence of genetic divergence in desiccation resistance of S. avenae. Resistant genotypes of wingless S. avenae showed longer survival time and LT50 under the desiccation stress (i.e., 10% relative humidity) than nonresistant genotypes, and wingless individuals tended to have higher desiccation resistance than winged ones. Both absolute and relative water contents did not differ between the two kinds of genotypes. Resistant genotypes had lower water loss rates than nonresistant genotypes for both winged and wingless individuals, suggesting that modulation of water loss rates could be the primary strategy in resistance of this aphid against desiccation stress. Contents of cuticular hydrocarbons (CHC) (especially methyl-branched alkanes) showed significant increase for both resistant and nonresistant genotypes after exposure to the desiccation stress for 24 h. Under desiccation stress, survival time was positively correlated with contents of methyl-branched alkanes for resistant genotypes. Thus, the content of methyl-branched alkanes and their high plasticity could be closely linked to water loss rate and desiccation resistance in S. avenae. Our results provide insights into fundamental aspects and underlying mechanisms of desiccation resistance in aphids, and have significant implications for the evolution of aphid populations in the context of global warming.
Collapse
Affiliation(s)
- Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Biyao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Girish TN, Pradeep BE, Parkash R. Heat and humidity induced plastic changes in body lipids and starvation resistance in the tropical Zaprionus indianus of wet - dry seasons. J Exp Biol 2018; 221:jeb.174482. [DOI: 10.1242/jeb.174482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/20/2018] [Indexed: 02/03/2023]
Abstract
Insects from tropical wet or dry seasons are likely to cope starvation stress through plastic changes (developmental as well as adult acclimation) in energy metabolites. Control and experimental groups of flies of Zaprionus indianus were reared under wet or dry conditions but adults were acclimated at different thermal or humidity conditions. Adult flies of control group were acclimated at 27°C and low (50% RH) or high (60% RH) humidity. For experimental groups, adult flies were acclimated at 32℃ for 1 to 6 days and under low (40% RH) or high (70% RH). For humidity acclimation, adult flies were acclimated at 27°C but under low (40% RH) or high (70% RH) for 1 to 6 days. Plastic changes in experimental groups as compared to control group (developmental as well as adult acclimation) revealed significant accumulation of body lipids due to thermal or humidity acclimation of wet season flies but low humidity acclimation did not change the level of body lipids in dry season flies. Starvation resistance and body lipids were higher in the males of dry season but in the females of wet season. Adult acclimation under thermal or humidity conditions exhibited changes in the rate of utilization of body lipids, carbohydrates and proteins. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity; and a reduction in fecundity under starvation. Thus, thermal or humidity acclimation of adults revealed plastic changes in energy metabolites to support starvation resistance of wet or dry seasons flies.
Collapse
Affiliation(s)
- T. N. Girish
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam - 515134, India
| | - B. E. Pradeep
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam - 515134, India
| | - Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak- 124001, India
| |
Collapse
|
9
|
Tamang AM, Kalra B, Parkash R. Cold and desiccation stress induced changes in the accumulation and utilization of proline and trehalose in seasonal populations of Drosophila immigrans. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:304-313. [PMID: 27793614 DOI: 10.1016/j.cbpa.2016.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 01/13/2023]
Abstract
Changes in the levels of energy metabolites can limit survival ability of Drosophila species under stressful conditions but this aspect has received less attention in wild populations collected in different seasons. We tested cold or desiccation triggered changes in the accumulation or utilization of two energy metabolites (trehalose and proline) in Drosophila immigrans flies reared under season specific environmental conditions. Such D.immigrans populations were subjected to different durations of cold (0°C) or desiccation stress (5% RH) or dual stress. We found stress induced effects of cold vs desiccation on the levels of trehalose as well as for proline. Different durations of cold stress led to accumulation of trehalose while desiccation stress durations revealed utilization of trehalose. In contrast, there was accumulation of proline under desiccation and utilization of proline with cold stress. Since accumulation levels were higher than utilization of each energy metabolite, the effects of dual stress showed additive effect. However, there was no utilization of total body lipids under cold or desiccation stress. We observed significant season specific differences in the amount of energy metabolites but the rate of metabolism did not vary across seasons. Stress triggered changes in trehalose and proline suggest possible link between desiccation and cold tolerance. Finally, stress specific (cold or desiccation) compensatory changes in the levels of trehalose and proline suggest possible energetic homeostasis in D.immigrans living under harsh climatic conditions of montane localities.
Collapse
Affiliation(s)
| | - Bhawna Kalra
- Department of Genetics, M. D. University, Rohtak 124001, India
| | - Ravi Parkash
- Department of Genetics, M. D. University, Rohtak 124001, India.
| |
Collapse
|
10
|
Kalra B, Parkash R. Effects of saturation deficit on desiccation resistance and water balance in seasonal populations of the tropical drosophilid Zaprionus indianus. ACTA ACUST UNITED AC 2016; 219:3237-3245. [PMID: 27591313 DOI: 10.1242/jeb.141002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/05/2016] [Indexed: 11/20/2022]
Abstract
Seasonally varying populations of ectothermic insect taxa from a given locality are expected to cope with simultaneous changes in temperature and humidity through phenotypic plasticity. Accordingly, we investigated the effect of saturation deficit on resistance to desiccation in wild-caught flies from four seasons (spring, summer, rainy and autumn) and corresponding flies reared in the laboratory under season-specific simulated temperature and humidity growth conditions. Flies raised under summer conditions showed approximately three times higher desiccation resistance and increased levels of cuticular lipids compared with flies raised in rainy season conditions. In contrast, intermediate trends were observed for water balance-related traits in flies reared under spring or autumn conditions but trait values overlapped across these two seasons. Furthermore, a threefold difference in saturation deficit (an index of evaporative water loss due to a combined thermal and humidity effect) between summer (27.5 mB) and rainy (8.5 mB) seasons was associated with twofold differences in the rate of water loss. Higher dehydration stress due to a high saturation deficit in summer is compensated by storage of higher levels of energy metabolite (trehalose) and cuticular lipids, and these traits correlated positively with desiccation resistance. In Z. indianus, the observed changes in desiccation-related traits due to plastic effects of simulated growth conditions correspond to similar changes exhibited by seasonal wild-caught flies. Our results show that developmental plastic effects under ecologically relevant thermal and humidity conditions can explain seasonal adaptations for water balance-related traits in Z. indianus and are likely to be associated with its invasive potential.
Collapse
Affiliation(s)
- Bhawna Kalra
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| | - Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|