1
|
Barber V, Mielke T, Cartwright J, Díaz-Rodríguez A, Unsworth WP, Grogan G. Unspecific Peroxygenase (UPO) can be Tuned for Oxygenation or Halogenation Activity by Controlling the Reaction pH. Chemistry 2024; 30:e202401706. [PMID: 38700372 DOI: 10.1002/chem.202401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Unspecific Peroxygenases (UPOs) are increasingly significant enzymes for selective oxygenations as they are stable, highly active and catalyze their reactions at the expense of only hydrogen peroxide as the oxidant. Their structural similarity to chloroperoxidase (CPO) means that UPOs can also catalyze halogenation reactions based upon the generation of hypohalous acids from halide and H2O2. Here we show that the halogenation and oxygenation modes of a UPO can be stimulated at different pH values. Using simple aromatic compounds such as thymol, we show that, at a pH of 3.0 and 6.0, either brominated or oxygenated products respectively are produced. Preparative 100 mg scale transformations of substrates were performed with 60-72 % isolated yields of brominated products obtained. A one-pot bromination-oxygenation cascade reaction on 4-ethylanisole, in which the pH was adjusted from 3.0 to 6.0 at the halfway stage, yielded sequentially brominated and oxygenated products 1-(3-bromo-4-methoxyphenyl)ethyl alcohol and 3-bromo-4-methoxy acetophenone with 82 % combined conversion. These results identify UPOs as an unusual example of a biocatalyst that is tunable for entirely different chemical reactions, dependent upon the reaction conditions.
Collapse
Affiliation(s)
- Verity Barber
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Tamara Mielke
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jared Cartwright
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Alba Díaz-Rodríguez
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
2
|
Zhu J, Zhang K, He Y, Zhang Q, Ran Y, Tan Z, Cui L, Feng Y. Metabolic engineering of Saccharomyces cerevisiae for chelerythrine biosynthesis. Microb Cell Fact 2024; 23:183. [PMID: 38902758 PMCID: PMC11191272 DOI: 10.1186/s12934-024-02448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Chelerythrine is an important alkaloid used in agriculture and medicine. However, its structural complexity and low abundance in nature hampers either bulk chemical synthesis or extraction from plants. Here, we reconstructed and optimized the complete biosynthesis pathway for chelerythrine from (S)-reticuline in Saccharomyces cerevisiae using genetic reprogramming. RESULTS The first-generation strain Z4 capable of producing chelerythrine was obtained via heterologous expression of seven plant-derived enzymes (McoBBE, TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, and PsCPR) in S. cerevisiae W303-1 A. When this strain was cultured in the synthetic complete (SC) medium supplemented with 100 µM of (S)-reticuline for 10 days, it produced up to 0.34 µg/L chelerythrine. Furthermore, efficient metabolic engineering was performed by integrating multiple-copy rate-limiting genes (TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, PsCPR, INO2, and AtATR1), tailoring the heme and NADPH engineering, and engineering product trafficking by heterologous expression of MtABCG10 to enhance the metabolic flux of chelerythrine biosynthesis, leading to a nearly 900-fold increase in chelerythrine production. Combined with the cultivation process, chelerythrine was obtained at a titer of 12.61 mg per liter in a 0.5 L bioreactor, which is over 37,000-fold higher than that of the first-generation recombinant strain. CONCLUSIONS This is the first heterologous reconstruction of the plant-derived pathway to produce chelerythrine in a yeast cell factory. Applying a combinatorial engineering strategy has significantly improved the chelerythrine yield in yeast and is a promising approach for synthesizing functional products using a microbial cell factory. This achievement underscores the potential of metabolic engineering and synthetic biology in revolutionizing natural product biosynthesis.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Kai Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yuanzhi He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Qi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yanpeng Ran
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Zaigao Tan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
3
|
O'Connell A, Barry A, Burke AJ, Hutton AE, Bell EL, Green AP, O'Reilly E. Biocatalysis: landmark discoveries and applications in chemical synthesis. Chem Soc Rev 2024; 53:2828-2850. [PMID: 38407834 DOI: 10.1039/d3cs00689a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.
Collapse
Affiliation(s)
- Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Amber Barry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Essert A, Castiglione K. Dimer Stabilization by SpyTag/SpyCatcher Coupling of the Reductase Domains of a Chimeric P450 BM3 Monooxygenase from Bacillus spp. Improves its Stability, Activity, and Purification. Chembiochem 2024; 25:e202300650. [PMID: 37994193 DOI: 10.1002/cbic.202300650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
The vast majority of known enzymes exist as oligomers, which often gives them high catalytic performance but at the same time imposes constraints on structural conformations and environmental conditions. An example of an enzyme with a complex architecture is the P450 BM3 monooxygenase CYP102A1 from Bacillus megaterium. Only active as a dimer, it is highly sensitive to dilution or common immobilization techniques. In this study, we engineered a thermostable P450BM3 chimera consisting of the heme domain of a CYP102A1 variant and the reductase domain of the homologous CYP102A3. The dimerization of the hybrid was even weaker compared to the corresponding CYP102A1 variant. To create a stable dimer, we covalently coupled the C-termini of two monomers of the chimera via SpyTag003/SpyCatcher003 interaction. As a result, purification, thermostability, pH stability, and catalytic activity were improved. Via a bioorthogonal two-step affinity purification, we obtained high purity (94 %) of the dimer-stabilized variant being robust against heme depletion. Long-term stability was increased with a half-life of over 2 months at 20 °C and 80-90 % residual activity after 2 months at 5 °C. Most catalytic features were retained with even an enhancement of the overall activity by ~2-fold compared to the P450BM3 chimera without SpyTag003/SpyCatcher003.
Collapse
Affiliation(s)
- Arabella Essert
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| |
Collapse
|
5
|
Pardhe BD, Oh TJ. Analysis of critical residues for peroxygenation and improved peroxygenase activity via in situ H 2O 2 generation in CYP105D18. Front Microbiol 2023; 14:1296202. [PMID: 38149268 PMCID: PMC10750395 DOI: 10.3389/fmicb.2023.1296202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Limited numbers of CYPs have been reported to work naturally as peroxygenases. The peroxide shunt pathway can be efficiently used as an alternative for the NAD(P)H and reductase systems, particularly in high hydrogen peroxide (H2O2) resistance CYPs. We reported the structural and biochemical features of CYP105D18 peroxygenase for its high H2O2 tolerance capacity. Q348 was a crucial residue for the stability of CYP105D18 during the exposure to H2O2. In addition, the role of the hydrophilic amino acid T239 from the I helix for peroxygenation and regiospecificity toward testosterone was investigated. Interestingly, T239E differs in product formation from wild type, catalyzing testosterone to androstenedione in the presence of H2O2. The other variant, T239A, worked with the Pdx/Pdr system and was unable to catalyze testosterone conversion in the presence of H2O2, suggesting the transformation of peroxygenase into monooxygenase. CYP105D18 supported the alternative method of H2O2 used for the catalysis of testosterone. The use of the same concentration of urea hydrogen peroxide adducts in place of direct H2O2 was more efficient for 2β-hydroxytestosterone conversion. Furthermore, in situ H2O2 generation using GOx/glucose system enhanced the catalytic efficiency (kcat/Km) for wild type and F184A by 1.3- and 1.9-fold, respectively, compared to direct use of H2O2 The engineering of CYP105D18, its improved peroxygenase activity, and alteration in the product oxidation facilitate CYP105D18 as a potential candidate for biotechnological applications.
Collapse
Affiliation(s)
- Bashu Dev Pardhe
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
6
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
7
|
Yu H, Zhang X, Acevedo-Rocha CG, Li A, Reetz MT. Protein engineering using mutability landscapes: Controlling site-selectivity of P450-catalyzed steroid hydroxylation. Methods Enzymol 2023; 693:191-229. [PMID: 37977731 DOI: 10.1016/bs.mie.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Directed evolution and rational design have been used widely in engineering enzymes for their application in synthetic organic chemistry and biotechnology. With stereoselectivity playing a crucial role in catalysis for the synthesis of valuable chemical and pharmaceutical compounds, rational design has not achieved such wide success in this specific area compared to directed evolution. Nevertheless, one bottleneck of directed evolution is the laborious screening efforts and the observed trade-offs in catalytic profiles. This has motivated researchers to develop more efficient protein engineering methods. As a prime approach, mutability landscaping avoids such trade-offs by providing more information of sequence-function relationships. Here, we describe an application of this efficient protein engineering method to improve the regio-/stereoselectivity and activity of P450BM3 for steroid hydroxylation, while keeping the mutagenesis libraries small so that they will require only minimal screening.
Collapse
Affiliation(s)
- Huili Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China
| | - Carlos G Acevedo-Rocha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of life science, Hubei University, Wuhan, P.R. China.
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Muelheim, Germany; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, P. R. China.
| |
Collapse
|
8
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Agustinus B, Gillam EMJ. Solar-powered P450 catalysis: Engineering electron transfer pathways from photosynthesis to P450s. J Inorg Biochem 2023; 245:112242. [PMID: 37187017 DOI: 10.1016/j.jinorgbio.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
With the increasing focus on green chemistry, biocatalysis is becoming more widely used in the pharmaceutical and other chemical industries for sustainable production of high value and structurally complex chemicals. Cytochrome P450 monooxygenases (P450s) are attractive biocatalysts for industrial application due to their ability to transform a huge range of substrates in a stereo- and regiospecific manner. However, despite their appeal, the industrial application of P450s is limited by their dependence on costly reduced nicotinamide adenine dinucleotide phosphate (NADPH) and one or more auxiliary redox partner proteins. Coupling P450s to the photosynthetic machinery of a plant allows photosynthetically-generated electrons to be used to drive catalysis, overcoming this cofactor dependency. Thus, photosynthetic organisms could serve as photobioreactors with the capability to produce value-added chemicals using only light, water, CO2 and an appropriate chemical as substrate for the reaction/s of choice, yielding new opportunities for producing commodity and high-value chemicals in a carbon-negative and sustainable manner. This review will discuss recent progress in using photosynthesis for light-driven P450 biocatalysis and explore the potential for further development of such systems.
Collapse
Affiliation(s)
- Bernadius Agustinus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| |
Collapse
|
10
|
Zhao P, Kong F, Jiang Y, Qin X, Tian X, Cong Z. Enabling Peroxygenase Activity in Cytochrome P450 Monooxygenases by Engineering Hydrogen Peroxide Tunnels. J Am Chem Soc 2023; 145:5506-5511. [PMID: 36790023 DOI: 10.1021/jacs.3c00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Given prominent physicochemical similarities between H2O2 and water, we report a new strategy for promoting the peroxygenase activity of P450 enzymes by engineering their water tunnels to facilitate H2O2 access to the heme center buried therein. Specifically, the H2O2-driven activities of two native NADH-dependent P450 enzymes (CYP199A4 and CYP153AM.aq) increase significantly (by >183-fold and >15-fold, respectively). Additionally, the amount of H2O2 required for an artificial P450 peroxygenase facilitated by a dual-functional small molecule to obtain the desired product is reduced by 95%-97.5% (with ∼95% coupling efficiency). Structural analysis suggests that mutating the residue at the bottleneck of the water tunnel may open a second pathway for H2O2 to flow to the heme center (in addition to the natural substrate tunnel). This study highlights a promising, generalizable strategy whereby P450 monooxygenases can be modified to adopt peroxygenase activity through H2O2 tunnel engineering, thus broadening the application scope of P450s in synthetic chemistry and synthetic biology.
Collapse
Affiliation(s)
- Panxia Zhao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanhui Kong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiaoxia Tian
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shandong Energy Institute, Qingdao, Shandong 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| |
Collapse
|
11
|
Wang Q, Jiang X, Gao Y, Yin L, Wei X, Guo K, Gao X, Wang L, Zhang C. Studies on Biosynthesis of Chiral Sulfoxides by Using P450 119 Peroxygenase and Its Mutants. ChemistrySelect 2022. [DOI: 10.1002/slct.202204031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qin Wang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
- Dazhou Vocational College of Chinese Medicine Luojiang Town, Tongchuan District Dazhou 635000 China
| | - Xin‐Meng Jiang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Yan‐Ping Gao
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Li‐Ping Yin
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Xiao‐Yao Wei
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Kai Guo
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Xiao‐Wei Gao
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Li Wang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
- Department of Nuclear Medicine The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Chun Zhang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| |
Collapse
|
12
|
Sethi A, Bhandawat A, Pati PK. Engineering medicinal plant-derived CYPs: a promising strategy for production of high-valued secondary metabolites. PLANTA 2022; 256:119. [PMID: 36378350 PMCID: PMC9664027 DOI: 10.1007/s00425-022-04024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Cytochorme P450s (CYPs) play a critical role in the catalysis of secondary metabolite biosynthetic pathways. For their commercial use, various strategies for metabolic pathway engineering using CYP as a potential target have been explored. Plants produce a vast diversity of secondary metabolites which are being used to treat various ailments and diseases. Some of these metabolites are difficult to obtain in large quantities limiting their industrial use. Cytochrome P450 enzymes (CYPs) are important catalysts in the biosynthesis of highly valued secondary metabolites, and are found in all domains of life. With the development of high-throughput sequencing and high-resolution mass spectrometry, new biosynthetic pathways and associated CYPs are being identified. In this review, we present CYPs identified from medicinal plants as a potential game changer in the metabolic engineering of secondary metabolic pathways. We present the achievements made so far in enhancing the production of important bioactivities through pathway engineering, giving some popular examples. At last, current challenges and possible strategies to overcome the limitations associated with CYP engineering to enhance the biosynthesis of target secondary metabolites are also highlighted.
Collapse
Affiliation(s)
- Anshika Sethi
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Abhishek Bhandawat
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India.
| |
Collapse
|
13
|
Ma Y, Liang H, Zhao Z, Wu B, Lan D, Hollmann F, Wang Y. A Novel Unspecific Peroxygenase from Galatian marginata for Biocatalytic Oxyfunctionalization Reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Zhang K, Yu A, Chu X, Li F, Liu J, Liu L, Bai W, He C, Wang X. Biocatalytic Enantioselective β‐Hydroxylation of Unactivated C−H Bonds in Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2022; 61:e202204290. [DOI: 10.1002/anie.202204290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kun Zhang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Aiqin Yu
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xuan Chu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China
| | - Juan Liu
- Testing Center Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lin Liu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Wen‐Ju Bai
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Chao He
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Xiqing Wang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
15
|
Zhang K, Yu A, Chu X, Li F, Liu J, Liu L, Bai W, He C, Wang X. Biocatalytic Enantioselective β‐Hydroxylation of Unactivated C−H Bonds in Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kun Zhang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Aiqin Yu
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xuan Chu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China
| | - Juan Liu
- Testing Center Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lin Liu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Wen‐Ju Bai
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Chao He
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Xiqing Wang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
16
|
Di S, Fan S, Jiang F, Cong Z. A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants (Basel) 2022; 11:antiox11030529. [PMID: 35326179 PMCID: PMC8944620 DOI: 10.3390/antiox11030529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.
Collapse
Affiliation(s)
- Siyu Di
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxian Fan
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjie Jiang
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662758
| |
Collapse
|
17
|
Zhou Y, Mumtaz MA, Zhang Y, Yang Z, Hao Y, Shu H, Zhu J, Bao W, Cheng S, Zhu G, Wang Z. Response of anthocyanin biosynthesis to light by strand-specific transcriptome and miRNA analysis in Capsicum annuum. BMC PLANT BIOLOGY 2022; 22:79. [PMID: 35193520 PMCID: PMC8862587 DOI: 10.1186/s12870-021-03423-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/30/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Anthocyanins have distinct biological functions in plant coloring, plant defense against strong light, UV irradiation, and pathogen infection. Aromatic hydroxyl groups and ortho-dihydroxyl groups in anthocyanins are able to inhibit free-radical chain reactions and hydroxyl radicals. Thus, anthocyanins play an antioxidative role by removing various types of ROS. Pepper is one of the solanaceous vegetables with the largest cultivation area in China. The purple-fruited pepper is rich in anthocyanins, which not only increases the ornamental nature of the pepper fruit but also benefits the human body. In this experiment, light-induced regulatory pathways and related specific regulators of anthocyanin biosynthesis were examined through integrative transcriptomic and metabolomic analysis. RESULTS Results revealed that delphinium 3-O-glucoside significantly accumulated in light exposed surface of pepper fruit after 48 h as compared to shaded surface. Furthermore, through strand-specific sequencing technology, 1341 differentially expressed genes, 172 differentially expressed lncRNAs, 8 differentially expressed circRNAs, and 28 differentially expressed miRNAs were identified significantly different among both surfaces. The flavonoid synthesis pathway was significantly enriched by KEGG analysis including SHT (XM_016684802.1), AT-like (XM_016704776.1), CCoAOMT (XM_016698340.1, XM_016698341.1), CHI (XM_016697794.1, XM_016697793.1), CHS2 (XM_016718139.1), CHS1B (XM_016710598.1), CYP98A2-like (XM_016688489.1), DFR (XM_016705224.1), F3'5'H (XM_016693437.1), F3H (XM_016705025.1), F3'M (XM_016707872.1), LDOX (XM_016712446.1), TCM (XM_016722116.1) and TCM-like (XM_016722117.1). Most of these significantly enriched flavonoid synthesis pathway genes may be also regulated by lncRNA. Some differentially expressed genes encoding transcription factors were also identified including MYB4-like (XM_016725242.1), MYB113-like (XM_016689220.1), MYB308-like (XM_016696983.1, XM_016702244.1), and EGL1 (XM_016711673.1). Three 'lncRNA-miRNA-mRNA' regulatory networks with sly-miR5303, stu-miR5303g, stu-miR7997a, and stu-miR7997c were constructed, including 28 differentially expressed mRNAs and 6 differentially expressed lncRNAs. CONCLUSION Possible light regulated anthocyanin biosynthesis and transport genes were identified by transcriptome analysis, and confirmed by qRT-PCR. These results provide important data for further understanding of the anthocyanin metabolism in response to light in pepper.
Collapse
Affiliation(s)
- Yan Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Yonghao Zhang
- Institute of Tropical Horticulture Research in Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhuang Yang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Jie Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Wenlong Bao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province/Engineering Research Center of the Ministry of Education for New Variety Breeding of Tropical Crop, School of Horticulture, Hainan University, Haikou, 570228, China.
| |
Collapse
|
18
|
Yao Y, Wang W, Shi W, Yan R, Zhang J, Wei G, Liu L, Che Y, An C, Gao SS. Overproduction of medicinal ergot alkaloids based on a fungal platform. Metab Eng 2021; 69:198-208. [PMID: 34902590 DOI: 10.1016/j.ymben.2021.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/17/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
Privileged ergot alkaloids (EAs) produced by the fungal genus Claviceps are used to treat a wide range of diseases. However, their use and research have been hampered by the challenging genetic engineering of Claviceps. Here we systematically refactored and rationally engineered the EA biosynthetic pathway in heterologous host Aspergillus nidulans by using a Fungal-Yeast-Shuttle-Vector protocol. The obtained strains allowed the production of diverse EAs and related intermediates, including prechanoclavine (PCC, 333.8 mg/L), chanoclavine (CC, 241.0 mg/L), agroclavine (AC, 78.7 mg/L), and festuclavine (FC, 99.2 mg/L), etc. This fungal platform also enabled the access to the methyl-oxidized EAs (MOEAs), including elymoclavine (EC), lysergic acid (LA), dihydroelysergol (DHLG), and dihydrolysergic acid (DHLA), by overexpressing a P450 enzyme CloA. Furthermore, by optimizing the P450 electron transfer (ET) pathway and using multi-copy of cloA, the titers of EC and DHLG have been improved by 17.3- and 9.4-fold, respectively. Beyond our demonstration of A. nidulans as a robust platform for EA overproduction, our study offers a proof of concept for engineering the eukaryotic P450s-contained biosynthetic pathways in a filamentous fungal host.
Collapse
Affiliation(s)
- Yongpeng Yao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Wei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenyu Shi
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Rui Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jun Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Guangzheng Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yongsheng Che
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Chunyan An
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
19
|
Increased carvone production in Escherichia coli by balancing limonene conversion enzyme expression via targeted quantification concatamer proteome analysis. Sci Rep 2021; 11:22126. [PMID: 34764337 PMCID: PMC8586248 DOI: 10.1038/s41598-021-01469-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
(−)-Carvone is a monoterpenoid with a spearmint flavor. A sustainable biotechnological production process for (−)-carvone is desirable. Although all enzymes in (−)-carvone biosynthesis have been functionally expressed in Escherichia coli independently, the yield was low in previous studies. When cytochrome P450 limonene-6-hydroxylase (P450)/cytochrome P450 reductase (CPR) and carveol dehydrogenase (CDH) were expressed in a single strain, by-product formation (dihydrocarveol and dihydrocarvone) was detected. We hypothesized that P450 and CDH expression levels differ in E. coli. Thus, two strains independently expressing P450/CPR and CDH were mixed with different ratios, confirming increased carvone production and decreased by-product formation when CDH input was reduced. The optimum ratio of enzyme expression to maximize (−)-carvone production was determined using the proteome analysis quantification concatamer (QconCAT) method. Thereafter, a single strain expressing both P450/CPR and CDH was constructed to imitate the optimum expression ratio. The upgraded strain showed a 15-fold improvement compared to the initial strain, showing a 44 ± 6.3 mg/L (−)-carvone production from 100 mg/L (−)-limonene. Our study showed the usefulness of the QconCAT proteome analysis method for strain development in the industrial biotechnology field.
Collapse
|
20
|
Wang DH, Chen Q, Yin SN, Ding XW, Zheng YC, Zhang Z, Zhang YH, Chen FF, Xu JH, Zheng GW. Asymmetric Reductive Amination of Structurally Diverse Ketones with Ammonia Using a Spectrum-Extended Amine Dehydrogenase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dong-Hao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Sai-Nan Yin
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Xu-Wei Ding
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Zhi Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yu-Hui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
21
|
Zhang L, Wang Q. Harnessing P450 Enzyme for Biotechnology and Synthetic Biology. Chembiochem 2021; 23:e202100439. [PMID: 34542923 DOI: 10.1002/cbic.202100439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/18/2021] [Indexed: 12/29/2022]
Abstract
Cytochrome P450 enzymes (P450s, CYPs) catalyze the oxidative transformation of a wide range of organic substrates. Their functions are crucial to xenobiotic metabolism and steroid transformation in humans and other organisms. The enzymes are promising for synthetic biology applications but limited by several drawbacks including low turnover rates, poor stability, the dependance of expensive cofactors and redox partners, and the narrow substrate scope. To conquer these obstacles, emerging strategies including substrate engineering, usage of decoy and decoy-based small molecules auxiliaries, designing of artificial enzyme cascades and the incorporation of materials have been explored based on the unique properties of P450s. These strategies can be applied to a wide range of P450s and can be combined with protein engineering to improve the enzymatic activities. This minireview will focus on some recent developments of these strategies which have been used to leverage P450 catalysis. Remaining challenges and future opportunities will also be discussed.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry and Biochemistry University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.,Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
22
|
Valikhani D, Bolivar JM, Pelletier JN. An Overview of Cytochrome P450 Immobilization Strategies for Drug Metabolism Studies, Biosensing, and Biocatalytic Applications: Challenges and Opportunities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Donya Valikhani
- Department of Chemistry, Université de Montréal and Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux Ave., Montréal, Quebec H2 V 0B3, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec City Quebec G1 V 0A6, Canada
| | - Juan M. Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., 28040 Madrid, Spain
| | - Joelle N. Pelletier
- Department of Chemistry, Université de Montréal and Center for Green Chemistry and Catalysis (CGCC), 1375 Thérèse-Lavoie-Roux Ave., Montréal, Quebec H2 V 0B3, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec City Quebec G1 V 0A6, Canada
- Department of Biochemistry, Université de Montréal, 2900 Édouard-Montpetit ave, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
23
|
Wu L, Qin L, Nie Y, Xu Y, Zhao YL. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol Adv 2021; 54:107793. [PMID: 34217814 DOI: 10.1016/j.biotechadv.2021.107793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Enzymes offering chemo-, regio-, and stereoselectivity enable the asymmetric synthesis of high-value chiral molecules. Unfortunately, the drawback that naturally occurring enzymes are often inefficient or have undesired selectivity toward non-native substrates hinders the broadening of biocatalytic applications. To match the demands of specific selectivity in asymmetric synthesis, biochemists have implemented various computer-aided strategies in understanding and engineering enzymatic selectivity, diversifying the available repository of artificial enzymes. Here, given that the entire asymmetric catalytic cycle, involving precise interactions within the active pocket and substrate transport in the enzyme channel, could affect the enzymatic efficiency and selectivity, we presented a comprehensive overview of the computer-aided workflow for enzymatic selectivity. This review includes a mechanistic understanding of enzymatic selectivity based on quantum mechanical calculations, rational design of enzymatic selectivity guided by enzyme-substrate interactions, and enzymatic selectivity regulation via enzyme channel engineering. Finally, we discussed the computational paradigm for designing enzyme selectivity in silico to facilitate the advancement of asymmetric biosynthesis.
Collapse
Affiliation(s)
- Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Ma N, Fang W, Liu C, Qin X, Wang X, Jin L, Wang B, Cong Z. Switching an Artificial P450 Peroxygenase into Peroxidase via Mechanism-Guided Protein Engineering. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhan Fang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Xiling Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Longyi Jin
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Binju Wang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Ye Y, Fu H, Hyster TK. Activation modes in biocatalytic radical cyclization reactions. J Ind Microbiol Biotechnol 2021; 48:kuab021. [PMID: 33674826 PMCID: PMC8210684 DOI: 10.1093/jimb/kuab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Radical cyclizations are essential reactions in the biosynthesis of secondary metabolites and the chemical synthesis of societally valuable molecules. In this review, we highlight the general mechanisms utilized in biocatalytic radical cyclizations. We specifically highlight cytochrome P450 monooxygenases (P450s) involved in the biosynthesis of mycocyclosin and vancomycin, nonheme iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGDs) used in the biosynthesis of kainic acid, scopolamine, and isopenicillin N, and radical S-adenosylmethionine (SAM) enzymes that facilitate the biosynthesis of oxetanocin A, menaquinone, and F420. Beyond natural mechanisms, we also examine repurposed flavin-dependent "ene"-reductases (ERED) for non-natural radical cyclization. Overall, these general mechanisms underscore the opportunity for enzymes to augment and enhance the synthesis of complex molecules using radical mechanisms.
Collapse
Affiliation(s)
- Yuxuan Ye
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
26
|
Schnepel C, Dodero VI, Sewald N. Novel Arylindigoids by Late-Stage Derivatization of Biocatalytically Synthesized Dibromoindigo. Chemistry 2021; 27:5404-5411. [PMID: 33496351 PMCID: PMC8048522 DOI: 10.1002/chem.202005191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/18/2022]
Abstract
Indigoids represent natural product-based compounds applicable as organic semiconductors and photoresponsive materials. Yet modified indigo derivatives are difficult to access by chemical synthesis. A biocatalytic approach applying several consecutive selective C-H functionalizations was developed that selectively provides access to various indigoids: Enzymatic halogenation of l-tryptophan followed by indole generation with tryptophanase yields 5-, 6- and 7-bromoindoles. Subsequent hydroxylation using a flavin monooxygenase furnishes dibromoindigo that is derivatized by acylation. This four-step one-pot cascade gives dibromoindigo in good isolated yields. Moreover, the halogen substituent allows for late-stage diversification by cross-coupling directly performed in the crude mixture, thus enabling synthesis of a small set of 6,6'-diarylindigo derivatives. This chemoenzymatic approach provides a modular platform towards novel indigoids with attractive spectral properties.
Collapse
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
- Present address: School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Veronica I. Dodero
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
27
|
Heinemann PM, Armbruster D, Hauer B. Active-site loop variations adjust activity and selectivity of the cumene dioxygenase. Nat Commun 2021; 12:1095. [PMID: 33597523 PMCID: PMC7889853 DOI: 10.1038/s41467-021-21328-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Active-site loops play essential roles in various catalytically important enzyme properties like activity, selectivity, and substrate scope. However, their high flexibility and diversity makes them challenging to incorporate into rational enzyme engineering strategies. Here, we report the engineering of hot-spots in loops of the cumene dioxygenase from Pseudomonas fluorescens IP01 with high impact on activity, regio- and enantioselectivity. Libraries based on alanine scan, sequence alignments, and deletions along with a novel insertion approach result in up to 16-fold increases in activity and the formation of novel products and enantiomers. CAVER analysis suggests possible increases in the active pocket volume and formation of new active-site tunnels, suggesting additional degrees of freedom of the substrate in the pocket. The combination of identified hot-spots with the Linker In Loop Insertion approach proves to be a valuable addition to future loop engineering approaches for enhanced biocatalysts.
Collapse
Affiliation(s)
- Peter M Heinemann
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Daniel Armbruster
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
28
|
Advances in enzymatic oxyfunctionalization of aliphatic compounds. Biotechnol Adv 2021; 51:107703. [PMID: 33545329 DOI: 10.1016/j.biotechadv.2021.107703] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
Selective oxyfunctionalizations of aliphatic compounds are difficult chemical reactions, where enzymes can play an important role due to their stereo- and regio-selectivity and operation under mild reaction conditions. P450 monooxygenases are well-known biocatalysts that mediate oxyfunctionalization reactions in different living organisms (from bacteria to humans). Unspecific peroxygenases (UPOs), discovered in fungi, have arisen as "dream biocatalysts" of great biotechnological interest because they catalyze the oxyfunctionalization of aliphatic and aromatic compounds, avoiding the necessity of expensive cofactors and regeneration systems, and only depending on H2O2 for their catalysis. Here, we summarize recent advances in aliphatic oxyfunctionalization reactions by UPOs, as well as the molecular determinants of the enzyme structures responsible for their activities, emphasizing the differences found between well-known P450s and the novel fungal peroxygenases.
Collapse
|
29
|
|
30
|
Grobe S, Badenhorst CPS, Bayer T, Hamnevik E, Wu S, Grathwol CW, Link A, Koban S, Brundiek H, Großjohann B, Bornscheuer UT. Modifikation der Regioselektivität einer P450‐Monooxygenase ermöglicht die Synthese von Ursodeoxycholsäure durch die 7β‐Hydroxylierung von Lithocholsäure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sascha Grobe
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Christoffel P. S. Badenhorst
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Thomas Bayer
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Emil Hamnevik
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Shuke Wu
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| | - Christoph W. Grathwol
- Institut für Pharmazie Universität Greifswald Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Deutschland
| | - Andreas Link
- Institut für Pharmazie Universität Greifswald Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Deutschland
| | - Sven Koban
- Enzymicals AG Walther-Rathenau-Str. 49 17487 Greifswald Deutschland
| | - Henrike Brundiek
- Enzymicals AG Walther-Rathenau-Str. 49 17487 Greifswald Deutschland
| | - Beatrice Großjohann
- HERBRAND PharmaChemicals GmbH, Betriebsstätte Anklam An der Redoute 1 17390 Murchin Deutschland
| | - Uwe T. Bornscheuer
- Abteilung für Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix Hausdorff-Str. 4 17487 Greifswald Deutschland
| |
Collapse
|
31
|
Grobe S, Badenhorst CPS, Bayer T, Hamnevik E, Wu S, Grathwol CW, Link A, Koban S, Brundiek H, Großjohann B, Bornscheuer UT. Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β-Hydroxylation of Lithocholic Acid. Angew Chem Int Ed Engl 2021; 60:753-757. [PMID: 33085147 PMCID: PMC7839452 DOI: 10.1002/anie.202012675] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 12/11/2022]
Abstract
We engineered the cytochrome P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus for the stereo- and regioselective 7β-hydroxylation of lithocholic acid (LCA) to yield ursodeoxycholic acid (UDCA). OleP was previously shown to hydroxylate testosterone at the 7β-position but LCA is exclusively hydroxylated at the 6β-position, forming murideoxycholic acid (MDCA). Structural and 3DM analysis, and molecular docking were used to identify amino acid residues F84, S240, and V291 as specificity-determining residues. Alanine scanning identified S240A as a UDCA-producing variant. A synthetic "small but smart" library based on these positions was screened using a colorimetric assay for UDCA. We identified a nearly perfectly regio- and stereoselective triple mutant (F84Q/S240A/V291G) that produces 10-fold higher levels of UDCA than the S240A variant. This biocatalyst opens up new possibilities for the environmentally friendly synthesis of UDCA from the biological waste product LCA.
Collapse
Affiliation(s)
- Sascha Grobe
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Emil Hamnevik
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| | - Christoph W. Grathwol
- Institute of PharmacyUniversity of GreifswaldFriedrich-Ludwig-Jahn-Str. 1717487GreifswaldGermany
| | - Andreas Link
- Institute of PharmacyUniversity of GreifswaldFriedrich-Ludwig-Jahn-Str. 1717487GreifswaldGermany
| | - Sven Koban
- Enzymicals AGWalther-Rathenau-Str. 4917487GreifswaldGermany
| | | | - Beatrice Großjohann
- HERBRAND PharmaChemicals GmbH, Betriebsstätte AnklamAn der Redoute 117390MurchinGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme CatalysisInstitute of BiochemistryUniversity of GreifswaldFelix Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
32
|
Wang C, Wu P, Wang Z, Wang B. The molecular mechanism of P450-catalyzed amination of the pyrrolidine derivative of lidocaine: insights from multiscale simulations. RSC Adv 2021; 11:27674-27680. [PMID: 35480638 PMCID: PMC9037892 DOI: 10.1039/d1ra04564d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Nitrogen heterocycles are key and prevalent motifs in drugs. Evolved variants of cytochrome P450BM3 (CYP102A1) from Bacillus megaterium employ high-valent oxo-iron(iv) species to catalyze the synthesis of imidazolidine-4-ones via an intramolecular C–H amination. Herein, we use multi-scale simulations, including classical molecular dynamics (MD) simulations, quantum mechanical/molecular mechanical (QM/MM) calculations and QM calculations, to reveal the molecular mechanism of the intramolecular C–H amination of the pyrrolidine derivative of lidocaine bearing cyclic amino moieties catalyzed by the variant RP/FV/EV of P450BM3, which bears five mutations compared to wild type. Our calculations show that overall catalysis includes both the enzymatic transformation in P450 and non-enzymatic transformation in water solution. The enzymatic transformation involves the exclusive hydroxylation of the C–H bond of the pyrrolidine derivative of lidocaine, leading to the hydroxylated intermediate, during which the substrate radical would be bypassed. The following dehydration and C–N coupling reactions are found to be much favored in aqueous situation compared to that in the non-polar protein environment. The present findings expand our understanding of the P450-catalyzed C(sp3)–H amination reaction. Nitrogen heterocycles are key and prevalent motifs in drugs.![]()
Collapse
Affiliation(s)
- Conger Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhanfeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
33
|
Eidenschenk C, Cheruzel L. Ru(II)-diimine complexes and cytochrome P450 working hand-in-hand. J Inorg Biochem 2020; 213:111254. [PMID: 32979791 PMCID: PMC7686262 DOI: 10.1016/j.jinorgbio.2020.111254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
With a growing interest in utilizing visible light to drive biocatalytic processes, several light-harvesting units and approaches have been employed to harness the synthetic potential of heme monooxygenases and carry out selective oxyfunctionalization of a wide range of substrates. While the fields of cytochrome P450 and Ru(II) photochemistry have separately been prolific, it is not until the turn of the 21st century that they converged. Non-covalent and subsequently covalently attached Ru(II) complexes were used to promote rapid intramolecular electron transfer in bacterial P450 enzymes. Photocatalytic activity with Ru(II)-modified P450 enzymes was achieved under reductive conditions with a judicious choice of a sacrificial electron donor. The initial concept of Ru(II)-modified P450 enzymes was further improved using protein engineering, photosensitizer functionalization and was successfully applied to other P450 enzymes. In this review, we wish to present the recent contributions from our group and others in utilizing Ru(II) complexes coupled with P450 enzymes in the broad context of photobiocatalysis, protein assemblies and chemoenzymatic reactions. The merging of chemical catalysts with the synthetic potential of P450 enzymes has led to the development of several chemoenzymatic approaches. Moreover, strained Ru(II) compounds have been shown to selectively inhibit P450 enzymes by releasing aromatic heterocycle containing molecules upon visible light excitation taking advantage of the rapid ligand loss feature in those complexes.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department Biochemical and Cellular Pharmacology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|
34
|
Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnol Adv 2020; 44:107628. [DOI: 10.1016/j.biotechadv.2020.107628] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
|
35
|
Louka S, Barry SM, Heyes DJ, Mubarak MQE, Ali HS, Alkhalaf LM, Munro AW, Scrutton NS, Challis GL, de Visser SP. Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate. J Am Chem Soc 2020; 142:15764-15779. [PMID: 32811149 PMCID: PMC7586343 DOI: 10.1021/jacs.0c05070] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
cytochromes P450 are heme-dependent enzymes that catalyze many
vital reaction processes in the human body related to biodegradation
and biosynthesis. They typically act as mono-oxygenases; however,
the recently discovered P450 subfamily TxtE utilizes O2 and NO to nitrate aromatic substrates such as L-tryptophan.
A direct and selective aromatic nitration reaction may be useful in
biotechnology for the synthesis of drugs or small molecules. Details
of the catalytic mechanism are unknown, and it has been suggested
that the reaction should proceed through either an iron(III)-superoxo
or an iron(II)-nitrosyl intermediate. To resolve this controversy,
we used stopped-flow kinetics to provide evidence for a catalytic
cycle where dioxygen binds prior to NO to generate an active iron(III)-peroxynitrite
species that is able to nitrate l-Trp efficiently. We show
that the rate of binding of O2 is faster than that of NO
and also leads to l-Trp nitration, while little evidence
of product formation is observed from the iron(II)-nitrosyl complex.
To support the experimental studies, we performed density functional
theory studies on large active site cluster models. The studies suggest
a mechanism involving an iron(III)-peroxynitrite that splits homolytically
to form an iron(IV)-oxo heme (Compound II) and a free NO2 radical via a small free energy of activation. The latter activates
the substrate on the aromatic ring, while compound II picks up the ipso-hydrogen to form the product. The calculations give
small reaction barriers for most steps in the catalytic cycle and,
therefore, predict fast product formation from the iron(III)-peroxynitrite
complex. These findings provide the first detailed insight into the
mechanism of nitration by a member of the TxtE subfamily and highlight
how the enzyme facilitates this novel reaction chemistry.
Collapse
Affiliation(s)
- Savvas Louka
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| | - Sarah M Barry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Derren J Heyes
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - M Qadri E Mubarak
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| | - Hafiz Saqib Ali
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lona M Alkhalaf
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew W Munro
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Nigel S Scrutton
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia.,ARC Centre for Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC 3800, Australia
| | - Sam P de Visser
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| |
Collapse
|
36
|
Zhang C, Lu M, Lin L, Huang Z, Zhang R, Wu X, Chen Y. Riboflavin Is Directly Involved in N-Dealkylation Catalyzed by Bacterial Cytochrome P450 Monooxygenases. Chembiochem 2020; 21:2297-2305. [PMID: 32243060 DOI: 10.1002/cbic.202000071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Indexed: 11/09/2022]
Abstract
Like a vast number of enzymes in nature, bacterial cytochrome P450 monooxygenases require an activated form of flavin as a cofactor for catalytic activity. Riboflavin is the precursor of FAD and FMN that serves as indispensable cofactor for flavoenzymes. In contrast to previous notions, herein we describe the identification of an electron-transfer process that is directly mediated by riboflavin for N-dealkylation by bacterial P450 monooxygenases. The electron relay from NADPH to riboflavin and then via activated oxygen to heme was proposed based on a combination of X-ray crystallography, molecular modeling and molecular dynamics simulation, site-directed mutagenesis and biochemical analysis of representative bacterial P450 monooxygenases. This study provides new insights into the electron transfer mechanism in bacterial P450 enzyme catalysis and likely in yeasts, fungi, plants and mammals.
Collapse
Affiliation(s)
- Chengchang Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, P. R. China
| | - Meiling Lu
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, P. R. China
| | - Lin Lin
- National Center for Protein Science and Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, P. R. China
| | - Zhangjian Huang
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, P. R. China
| | - Rongguang Zhang
- National Center for Protein Science and Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, P. R. China
| | - Xuri Wu
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, P. R. China
| | - Yijun Chen
- Laboratory of Chemical Biology and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu Province, 211198, P. R. China
| |
Collapse
|
37
|
Zhu J, Shen C, Zhao W, Liu X, Liu J, Yu B. Regio- and stereoselective hydroxylation of testosterone by cytochrome P450 from Streptomyces griseus ATCC 13273. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1799990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jinqian Zhu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chen Shen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wanli Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiufeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Gao S, Zhou H, Zhou J, Chen J. Promoter-Library-Based Pathway Optimization for Efficient (2 S)-Naringenin Production from p-Coumaric Acid in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6884-6891. [PMID: 32458684 DOI: 10.1021/acs.jafc.0c01130] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Pathway optimization plays an important role in fine-tuning metabolic pathways. In most conditions, more than three genes are involved in the biosynthesis pathway of a specific target product. To improve the titer of products, rational regulation of a group of genes by a series of promoters with different strengths is essential. On the basis of a series of RNA-Seq data, a set of 66 native promoters was chosen to fine-tune gene expression in Saccharomyces cerevisiae. Promoter strength was characterized by measuring the fluorescence strength of the enhanced green fluorescent protein through fluorescence-activated cell sorting. The expressions of PTDH1, PPGK1, PINO1, PSED1, and PCCW12 were stronger than that of PTDH3, whereas those of another 15 promoters were stronger than that of PTEF1. Then, 30 promoters were chosen to optimize the biosynthesis pathway of (2S)-naringenin from p-coumaric acid. With a high-throughput screening method, the highest titer of (2S)-naringenin in a 5 L bioreactor reached 1.21 g/L from p-coumaric acid, which is the highest titer according to the currently available reports.
Collapse
Affiliation(s)
- Song Gao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Hengrui Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
39
|
Nguyen NA, Jang J, Le TK, Nguyen THH, Woo SM, Yoo SK, Lee YJ, Park KD, Yeom SJ, Kim GJ, Kang HS, Yun CH. Biocatalytic Production of a Potent Inhibitor of Adipocyte Differentiation from Phloretin Using Engineered CYP102A1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6683-6691. [PMID: 32468814 DOI: 10.1021/acs.jafc.0c03156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we investigated an efficient enzymatic strategy for producing potentially valuable phloretin metabolites from phlorizin, a glucoside of phloretin that is rich in apple pomace. Almond β-glucosidase efficiently removed phlorizin's glucose moiety to produce phloretin. CYP102A1 engineered by site-directed mutagenesis, domain swapping, and random mutagenesis catalyzed the highly regioselective C-hydroxylation of phloretin into 3-OH phloretin with high conversion yields. Under the optimal hydroxylation conditions of 15 g cells L-1 and a 20 mM substrate for whole-cell biocatalysis, phloretin was regioselectively hydroxylated into 3.1 mM 3-OH phloretin each hour. Furthermore, differentiation of 3T3-L1 preadipocytes into adipocytes and lipid accumulation were dramatically inhibited by 3-OH phloretin but promoted by phloretin. Consistent with these inhibitory effects, the expression of adipogenic regulator genes was downregulated by 3-OH phloretin. We propose a platform for the sustainable production and value creation of phloretin metabolites from apple pomace capable of inhibiting adipogenesis.
Collapse
Affiliation(s)
- Ngoc Anh Nguyen
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Jin Jang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Thi Huong Ha Nguyen
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Su-Min Woo
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Su-Kyoung Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea
| | - Ki Deok Park
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| |
Collapse
|
40
|
Buergler MB, Dennig A, Nidetzky B. Process intensification for cytochrome P450 BM3-catalyzed oxy-functionalization of dodecanoic acid. Biotechnol Bioeng 2020; 117:2377-2388. [PMID: 32369187 PMCID: PMC7384007 DOI: 10.1002/bit.27372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
Selective oxy‐functionalization of nonactivated C‐H bonds is a long‐standing “dream reaction” of organic synthesis for which chemical methodology is not well developed. Mono‐oxygenase enzymes are promising catalysts for such oxy‐functionalization to establish. Limitation on their applicability arises from low reaction output. Here, we showed an integrated approach of process engineering to the intensification of the cytochrome P450 BM3‐catalyzed hydroxylation of dodecanoic acid (C12:0). Using P450 BM3 together with glucose dehydrogenase for regeneration of nicotinamide adenine dinucleotide phosphate (NADPH), we compared soluble and co‐immobilized enzymes in O2‐gassed and pH‐controlled conversions at high final substrate concentrations (≥40mM). We identified the main engineering parameters of process output (i.e., O2 supply; mixing correlated with immobilized enzyme stability; foam control correlated with product isolation; substrate solubilization) and succeeded in disentangling their complex interrelationship for systematic process optimization. Running the reaction at O2‐limited conditions at up to 500‐ml scale (10% dimethyl sulfoxide; silicone antifoam), we developed a substrate feeding strategy based on O2 feedback control. Thus, we achieved high reaction rates of 1.86g·L−1·hr−1 and near complete conversion (≥90%) of 80mM (16g/L) C12:0 with good selectivity (≤5% overoxidation). We showed that “uncoupled reaction” of the P450 BM3 (~95% utilization of NADPH and O2 not leading to hydroxylation) with the C12:0 hydroxylated product limited the process efficiency at high product concentration. Hydroxylated product (~7g; ≥92% purity) was recovered from 500ml reaction in 82% yield using ethyl‐acetate extraction. Collectively, these results demonstrate key engineering parameters for the biocatalytic oxy‐functionalization and show their integration into a coherent strategy for process intensification.
Collapse
Affiliation(s)
- Moritz B Buergler
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
41
|
Bokel A, Rühlmann A, Hutter MC, Urlacher VB. Enzyme-Mediated Two-Step Regio- and Stereoselective Synthesis of Potential Rapid-Acting Antidepressant (2S,6S)-Hydroxynorketamine. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ansgar Bokel
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Ansgar Rühlmann
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael C. Hutter
- Center for Bioinformatics, Saarland University, Campus E2.1, 66123 Saarbruecken, Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
42
|
Dugé de Bernonville T, Papon N, Clastre M, O’Connor SE, Courdavault V. Identifying Missing Biosynthesis Enzymes of Plant Natural Products. Trends Pharmacol Sci 2020; 41:142-146. [DOI: 10.1016/j.tips.2019.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/07/2019] [Accepted: 12/29/2019] [Indexed: 11/16/2022]
|
43
|
Kuzikov A, Masamrekh R, Ershov P, Mezentsev Y, Ivanov A, Gilep A, Usanov S, Shumyantseva V. Interaction of Isatin with Cytochrome P450 Isoenzymes: Investigation by Means of Spectral and Electrochemical Methods The role of Isatin in Cytochromes P450 Ligand-Protein Binding Events. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-019-00707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR, Schwaneberg U. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev 2020; 49:233-262. [PMID: 31815263 DOI: 10.1039/c8cs00981c] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are versatile catalysts and their synthetic potential has been recognized for a long time. In order to exploit their full potential, enzymes often need to be re-engineered or optimized for a given application. (Semi-) rational design has emerged as a powerful means to engineer proteins, but requires detailed knowledge about structure function relationships. In turn, directed evolution methodologies, which consist of iterative rounds of diversity generation and screening, can improve an enzyme's properties with virtually no structural knowledge. Current diversity generation methods grant us access to a vast sequence space (libraries of >1012 enzyme variants) that may hide yet unexplored catalytic activities and selectivity. However, the time investment for conventional agar plate or microtiter plate-based screening assays represents a major bottleneck in directed evolution and limits the improvements that are obtainable in reasonable time. Ultrahigh-throughput screening (uHTS) methods dramatically increase the number of screening events per time, which is crucial to speed up biocatalyst design, and to widen our knowledge about sequence function relationships. In this review, we summarize recent advances in uHTS for directed enzyme evolution. We shed light on the importance of compartmentalization to preserve the essential link between genotype and phenotype and discuss how cells and biomimetic compartments can be applied to serve this function. Finally, we discuss how uHTS can inspire novel functional metagenomics approaches to identify natural biocatalysts for novel chemical transformations.
Collapse
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem 2020; 295:833-849. [PMID: 31811088 PMCID: PMC6970918 DOI: 10.1074/jbc.rev119.008758] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 enzymes (P450s) are broadly distributed among living organisms and play crucial roles in natural product biosynthesis, degradation of xenobiotics, steroid biosynthesis, and drug metabolism. P450s are considered as the most versatile biocatalysts in nature because of the vast variety of substrate structures and the types of reactions they catalyze. In particular, P450s can catalyze regio- and stereoselective oxidations of nonactivated C-H bonds in complex organic molecules under mild conditions, making P450s useful biocatalysts in the production of commodity pharmaceuticals, fine or bulk chemicals, bioremediation agents, flavors, and fragrances. Major efforts have been made in engineering improved P450 systems that overcome the inherent limitations of the native enzymes. In this review, we focus on recent progress of different strategies, including protein engineering, redox-partner engineering, substrate engineering, electron source engineering, and P450-mediated metabolic engineering, in efforts to more efficiently produce pharmaceuticals and other chemicals. We also discuss future opportunities for engineering and applications of the P450 systems.
Collapse
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| |
Collapse
|
46
|
Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnol Adv 2020; 40:107504. [PMID: 31926255 DOI: 10.1016/j.biotechadv.2020.107504] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022]
Abstract
Cytochrome P450s (CYPs) are heme-thiolated enzymes that catalyze the oxidation of CH bonds in a regio and stereoselective manner. Activation of the non-activated carbon atom can be further enhanced by multistep chemo-enzymatic reactions; moreover, several useful chemicals can be synthesized to provide alternative organic synthesis routes. Given their versatile functionality, CYPs show promise in a number of biotechnological fields. Recently, various CYPs, along with their sequences and functionalities, have been identified owing to rapid developments in sequencing technology and molecular biotechnology. In addition to these discoveries, attempts have been made to utilize CYPs to industrially produce biochemicals from available and sustainable bioresources such as oil, amino acids, carbohydrates, and lignin. Here, these accomplishments, particularly those involving the use of CYP enzymes as whole-cell biocatalysts for bioresource biotransformation, will be reviewed. Further, recently developed biotransformation pathways that result in gram-scale yields of fatty acids and fatty alkanes as well as aromatic amino acids, which depend on the hosts used for CYP expression, and the nature of the multistep reactions will be discussed. These pathways are similar regardless of whether the hosts are CYP-producing or non-CYP-producing; the limitations of these methods and the ways to overcome them are reviewed here.
Collapse
|
47
|
Jiang Y, Wang C, Ma N, Chen J, Liu C, Wang F, Xu J, Cong Z. Regioselective aromatic O-demethylation with an artificial P450BM3 peroxygenase system. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00241k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly regioselective O-demethylation of aromatic ethers related to the bioconversion of lignin was achieved by the H2O2-dependent engineered P450BM3 enzymes with assistance of a dual-functional small molecule (DFSM) for the first time.
Collapse
Affiliation(s)
- Yihui Jiang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Chunlan Wang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
48
|
Song JW, Seo JH, Oh DK, Bornscheuer UT, Park JB. Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01802f] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review presents the key factors to construct a productive whole-cell biocatalytic cascade exemplified for the biotransformation of renewable fatty acids.
Collapse
Affiliation(s)
- Ji-Won Song
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
| | - Joo-Hyun Seo
- Department of Bio and Fermentation Convergence Technology
- Kookmin University
- Seoul 02707
- Republic of Korea
| | - Doek-Kun Oh
- Department of Bioscience and Biotechnology
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Uwe T. Bornscheuer
- Institute of Biochemistry
- Department of Biotechnology & Enzyme Catalysis
- Greifswald University
- 17487 Greifswald
- Germany
| | - Jin-Byung Park
- Department of Food Science and Engineering
- Ewha Womans University
- Seoul 03760
- Republic of Korea
- Institute of Molecular Microbiology and Biosystems Engineering
| |
Collapse
|
49
|
|
50
|
Abstract
Through the application of the engineering paradigm of ‘design–build–test–learn’ allied to recent advances in DNA sequencing, bioinformatics and, critically, the falling cost of DNA synthesis, Synthetic Biology promises to make existing therapies more accessible and be at the centre of the development of new types of advanced therapies. As existing pharmaceutical companies integrate Synthetic Biology tools into their normal ways of working, existing products are being produced by cheaper and more sustainable methods. Vaccine design and production is becoming driven by the molecular design allied to rapidly scalable production methods to combat the threat of pandemics and the ability of pathogens to escape the immune system by mutation. Advanced therapies, such as chimeric antigen receptor T cell therapy, are able to capitalise on the tools of Synthetic Biology to design new proteins and molecular ‘kill switches’ as well as design scalable and effective vectors for cellular transduction. This review highlights how Synthetic Biology is having an impact across the various therapeutic modalities from existing products to new therapies.
Collapse
|