1
|
De Boeck G, Lardon I, Eyckmans M, Vu TN, Laukens K, Dommisse R, Wood CM. Spiny dogfish, Squalus suckleyi, shows a good tolerance for hypoxia but need long recovery times. CONSERVATION PHYSIOLOGY 2024; 12:coae054. [PMID: 39139733 PMCID: PMC11320369 DOI: 10.1093/conphys/coae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Pacific spiny dogfish, Squalus suckleyi, move to shallow coastal waters during critical reproductive life stages and are thus at risk of encountering hypoxic events which occur more frequently in these areas. For effective conservation management, we need to fully understand the consequences of hypoxia on marine key species such as elasmobranchs. Because of their benthic life style, we hypothesized that S. suckleyi are hypoxia tolerant and able to efficiently regulate oxygen consumption, and that anaerobic metabolism is supported by a broad range of metabolites including ketones, fatty acids and amino acids. Therefore, we studied oxygen consumption rates, ventilation frequency and amplitude, blood gasses, acid-base regulation, and changes in plasma and tissue metabolites during progressive hypoxia. Our results show that critical oxygen levels (P crit) where oxyregulation is lost were indeed low (18.1% air saturation or 28.5 Torr at 13°C). However, many dogfish behaved as oxyconformers rather than oxyregulators. Arterial blood PO2 levels mostly decreased linearly with decreasing environmental PO2. Blood gases and acid-base status were dependent on open versus closed respirometry but in both set-ups ventilation frequency increased. Hypoxia below Pcrit resulted in an up-regulation of anaerobic glycolysis, as evidenced by increased lactate levels in all tissues except brain. Elasmobranchs typically rely on ketone bodies as oxidative substrates, and decreased concentrations of acetoacetate and β-hydroxybutyrate were observed in white muscle of hypoxic and/or recovering fish. Furthermore, reductions in isoleucine, glutamate, glutamine and other amino acids were observed. After 6 hours of normoxic recovery, changes persisted and only lactate returned to normal in most tissues. This emphasizes the importance of using suitable bioindicators adjusted to preferred metabolic pathways of the target species in conservation physiology. We conclude that Pacific spiny dogfish can tolerate severe transient hypoxic events, but recovery is slow and negative impacts can be expected when hypoxia persists.
Collapse
Affiliation(s)
- Gudrun De Boeck
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaaan 171, 2020 Antwerp, Belgium
- Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield BC V0R 1B0, Canada
| | - Isabelle Lardon
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaaan 171, 2020 Antwerp, Belgium
- Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield BC V0R 1B0, Canada
- INVE Aquaculture, Hoogveld 93, 9200 Dendermonde, Belgium
| | - Marleen Eyckmans
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaaan 171, 2020 Antwerp, Belgium
- Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield BC V0R 1B0, Canada
- Pharmaceutical, Biomedical and Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Trung Nghia Vu
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 65 Solna, Sweden
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium
| | - Roger Dommisse
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Chris M Wood
- Bamfield Marine Sciences Centre, 100 Pachena Rd, Bamfield BC V0R 1B0, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
2
|
Sena MC, Sterzelecki FC, Gomes PFF, Souza HCA, Correia de Melo NFA, Natividade J, Baldisserotto B, Palheta GDA, Santos SDSD. Maximum storage time of refrigerated blood and frozen plasma samples from tambaqui, Colossoma macropomum. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110969. [PMID: 38604560 DOI: 10.1016/j.cbpb.2024.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Blood analysis is an important tool for monitoring the health status of fish, but the time between collection and analysis can affect the outcome of the analysis. This study sought to determine the maximum time refrigerated blood and frozen plasma samples of the tambaqui, Colossoma macropomum, can be stored without affecting analysis. Samples from 12 fish were obtained, stored under refrigeration at 4 °C and evaluated after 0, 24, 48, 72, and 96 h, while samples from 14 fish were centrifuged, and the resulting plasma was frozen at -20 °C and then evaluated after 0, 8, 12, 16 and 20 weeks. The parameters analyzed were hematocrit (Ht), hemoglobin content (Hb), total erythrocytes (RBC), total (WBC) and differential leukocytes, total thrombocytes (TC), glucose content (Glc), total protein (TP), triglyceride content (TG), total cholesterol (CoT), and the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). For refrigerated whole blood samples, mean corpuscular hemoglobin content (MCHC) showed a transient decline in 24 h, and there were decreases in WBC, TC, Glc and TG that persisted until the 72 h sample point (for Glc and TG) or persisted until the 96 h sample point (for WBC and TC). A decrease in RBC was noted from 48 h on, while ALT was significantly higher in the 96 h sample. Significant decreases in lymphocytes, monocytes, neutrophils and eosinophils were noted from 48 h of storage on, while a significant decline in basophil counts were noted over the last two sampled timepoints. The coefficient of variation was greatest at the 96 h timepoint, indicating increased variability in measured parameters after 4 d of refrigeration. Plasma samples frozen at -20 °C showed a significant variation in ALT after 8 weeks, and increases in TP and TG after 20 weeks. Therefore, it is recommended that refrigerated tambaqui whole blood samples be analyzed within 24 h and frozen tambaqui plasma samples analyzed within 8 weeks.
Collapse
Affiliation(s)
- Marcela C Sena
- Laboratory of in Vitro Fertilization, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| | - Fábio C Sterzelecki
- Amazonian Aquaculture Biosystems Laboratory - BIOAQUAM, Federal Rural University of Amazonia, Avenida Presidente Tancredo Neves, N° 2501 Bairro: Terra Firme, 66077-830 Belém, PA, Brazil
| | - Paola Fabiana F Gomes
- Amazonian Aquaculture Biosystems Laboratory - BIOAQUAM, Federal Rural University of Amazonia, Avenida Presidente Tancredo Neves, N° 2501 Bairro: Terra Firme, 66077-830 Belém, PA, Brazil
| | - Helen Cristiane A Souza
- Amazonian Aquaculture Biosystems Laboratory - BIOAQUAM, Federal Rural University of Amazonia, Avenida Presidente Tancredo Neves, N° 2501 Bairro: Terra Firme, 66077-830 Belém, PA, Brazil
| | - Nuno Filipe A Correia de Melo
- Amazonian Aquaculture Biosystems Laboratory - BIOAQUAM, Federal Rural University of Amazonia, Avenida Presidente Tancredo Neves, N° 2501 Bairro: Terra Firme, 66077-830 Belém, PA, Brazil
| | - J Natividade
- Amazonian Aquaculture Biosystems Laboratory - BIOAQUAM, Federal Rural University of Amazonia, Avenida Presidente Tancredo Neves, N° 2501 Bairro: Terra Firme, 66077-830 Belém, PA, Brazil
| | - B Baldisserotto
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, 970105-900 Santa Maria, RS, Brazil
| | - Glauber David A Palheta
- Amazonian Aquaculture Biosystems Laboratory - BIOAQUAM, Federal Rural University of Amazonia, Avenida Presidente Tancredo Neves, N° 2501 Bairro: Terra Firme, 66077-830 Belém, PA, Brazil
| | - Simone do Socorro D Santos
- Laboratory of in Vitro Fertilization, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
3
|
Cameron LWJ, Roche WK, Beckett K, Payne NL. A review of elasmobranch catch-and-release science: synthesis of current knowledge, implications for best practice and future research directions. CONSERVATION PHYSIOLOGY 2023; 11:coad100. [PMID: 38161598 PMCID: PMC10756054 DOI: 10.1093/conphys/coad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Until relatively recently commercial fisheries have been considered the main driving factor for elasmobranch population declines. However, this belief has begun to shift with the realization that recreational elasmobranch catches may equal or exceed commercial catches in some regions. Many recreational angling fisheries for elasmobranchs involve high participation in catch-and-release angling practices. However, high release rates may not necessarily equate to high survival rates. Therefore, to assist accurate assessment of the potential impact of recreational angling on elasmobranchs, we attempted to summarize and integrate currently available information on specific risk factors associated with recreational angling, alongside associated mortality rates, as well as information on angler behaviour as it relates to identified risk factors. We categorized the major angling-related effects into two groups: injury-induced effects; and biochemical disruption-induced effects; providing a summary of each group and outlining the main lethal and sub-lethal outcomes stemming from these. These outcomes include immediate and delayed post-release mortality, behavioural recovery periods (which may in-turn confer increased predation risks), chronic health impacts and capture-induced parturition and abortion. Additionally, we detailed a range of angling practices and equipment, including hook-type, hook removal and emersion (i.e. air exposure), as well as inter- and intra-specific factors, including aerobic scope, respiratory mode, body size and species-specific behaviours, which are likely to influence injury and/or mortality rates and should therefore be considered when assessing angling-related impacts. We then utilized these data to provide a range of actionable recommendations for both anglers and policymakers which would serve to reduce the population-level impact of recreational angling on these enigmatic animals.
Collapse
Affiliation(s)
- Luke W J Cameron
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, Dublin 2, Ireland
| | - William K Roche
- Inland Fisheries Ireland, 3044 Lake Drive, Citywest Business Campus, Dublin D24 CK66, Ireland
| | - Katy Beckett
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, Dublin 2, Ireland
| | - Nicholas L Payne
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
4
|
de Lima CL, Morales-Gamba RD, Malcher Neto TS, Barcellos JFM, Heinzmann BM, Schmidt D, Baldisserotto B, Marcon JL. Eugenol and Lippia alba essential oils as effective anesthetics for the Amazonian freshwater stingray Potamotrygon wallacei (Chondrichthyes, Potamotrygonidae). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2101-2120. [PMID: 34807332 DOI: 10.1007/s10695-021-01029-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
This study assessed the potential of eugenol and the essential oil of Lippia alba (EOLA) in providing suitable anesthetic induction and recovery times, and their consequent effects on the blood and respiratory physiology, as well as the gill architecture of an Amazonian freshwater stingray, Potamotrygon wallacei, shortly after reaching the recovery and 48 h later. Juveniles of P. wallacei were exposed to increasing concentrations of eugenol (75, 100, 125, and 150 µL L-1) and EOLA (150, 175, 200, and 225 µL L-1) in an immersion bath. Anesthetic induction was found to be faster with the use of eugenol compared to EOLA. On the other hand, the stingrays anesthetized with eugenol displayed a longer recovery time than those exposed to EOLA. The highest concentrations of eugenol caused moderate to severe histological changes in the gills. No significant changes were found for hematocrit and plasma energy metabolites in the stingrays anesthetized with all concentrations of both eugenol and EOLA shortly after reaching the recovery from the ansthesia, when compared to those recovered after 48 h. Investigations regarding the potential use of these natural anesthetics are unprecedented for freshwater stingray species, and 200 μL L-1 EOLA is recommended as the most suitable anesthetic for use in juveniles of P. wallacei.
Collapse
Affiliation(s)
- Cristiano Lopes de Lima
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins, Av. Prof. Nilton Lins, 3259, 69058-030, Manaus, Amazonas, Brasil
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas - IFAM, Campus Manaus Zona Leste- CMZL, Av. Cosme Ferreira, 8045, 69083-000, Manaus, Amazonas, Brasil
| | - Ruben Dario Morales-Gamba
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Amazonas (UFAM), Av. Rodrigo Octavio 1200, 6200, 69080-900, Manaus, Amazonas, Brasil
| | - Thiago Santana Malcher Neto
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas - IFAM, Campus Manaus Zona Leste- CMZL, Av. Cosme Ferreira, 8045, 69083-000, Manaus, Amazonas, Brasil
| | - José Fernando Marques Barcellos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas (UFAM). Av. Gen. Rodrigo Octávio, 6200 Coroado I. 69080-900, Manaus, Amazonas, Brasil
| | - Berta Maria Heinzmann
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| | - Denise Schmidt
- Departamento de Ciências Agronômicas e Ambientais, Universidade Federal de Santa Maria, Campus de Frederico Westphalen, Frederico Westphalen, Rio Grande do Sul, Brasil
| | - Bernardo Baldisserotto
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, Rio Grande do Sul, Brasil
| | - Jaydione Luiz Marcon
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins, Av. Prof. Nilton Lins, 3259, 69058-030, Manaus, Amazonas, Brasil.
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM). Av. Gen. Rodrigo Octávio, 6200. Coroado I. 69080-900. Manaus, Amazonas, Brasil.
| |
Collapse
|
5
|
Schoen AN, Treberg JR, Wheaton CJ, Mylniczenko N, Gary Anderson W. Energy and corticosteroid mobilization following an induced stress response in an elasmobranch fish, the North Pacific spiny dogfish (Squalus acanthias suckleyi). Gen Comp Endocrinol 2021; 310:113799. [PMID: 33961877 DOI: 10.1016/j.ygcen.2021.113799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
The dominant corticosteroid in elasmobranchs, 1α-hydroxycorticosterone (1α-OHB), has a described role in mineral regulation but a presumptive role in energy balance. Energy demand in vertebrates following exposure to a stressor typically involves an immediate but transient release of glucocorticoids as a means of mobilizing available energy stores, usually in the form of glucose. Although a glucocorticoid role for 1α-OHB would be expected, direct glucocorticoid function of this steroid has yet to be reported in any elasmobranch. In addition, elasmobranchs also utilize the metabolite β-hydroxybutyrate (β-HB), which is thought to replace the role fatty acids play in most vertebrates as a predominant fuel source in extrahepatic tissues. To determine the mobilization of metabolites and corticosteroids during a stress event, North Pacific spiny dogfish, Squalus acanthias suckleyi, were cannulated and held in a darkened isolation box to recover (24-48 h) before being subjected to an acute air exposure or corticosterone injection. Dogfish were then serially blood sampled at nine timepoints over 48 h. Glucose, β-HB, 1α-OHB, corticosterone, as well as lactate, pH, and osmolality were quantified in plasma samples. All measured variables increased in control and treatment groups within 48 h from the start of experimentation, and β-HB and 1α-OHB remained elevated for the duration of the experiment. There was no linear correlation between glucose and 1α-OHB, but there was a weak (R2 = 0.230) although significant (p = 0.001), positive correlation between β-HB and 1α-OHB. Interestingly, there were also significant correlations between increasing circulating glucose and corticosterone (R2 = 0.349; p < 0.001), and decreasing β-HB and corticosterone concentrations (R2 = 0.180; p = 0.008). Our data suggest that following successive stressors of capture, surgery, and confinement, 1α-OHB was not correlated with circulating glucose, only weakly correlated with circulating β-HB concentrations (R2 = 0.230; p = 0.001), and that corticosterone may also serve a role in energy mobilization in this species.
Collapse
Affiliation(s)
- Alexandra N Schoen
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada; Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield R3T 0A8, British Columbia, Canada.
| | - Jason R Treberg
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | - Catharine J Wheaton
- Disney Animals, Science and Environment, Disney's Animal Kingdom® and the Seas with Nemo and Friends®, Lake Buena Vista 32830, FL, USA
| | - Natalie Mylniczenko
- Disney Animals, Science and Environment, Disney's Animal Kingdom® and the Seas with Nemo and Friends®, Lake Buena Vista 32830, FL, USA
| | - W Gary Anderson
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada; Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield R3T 0A8, British Columbia, Canada
| |
Collapse
|
6
|
Schoen AN, Bouyoucos IA, Anderson WG, Wheaton CJ, Planes S, Mylniczenko ND, Rummer JL. Simulated heatwave and fishing stressors alter corticosteroid and energy balance in neonate blacktip reef sharks, Carcharhinus melanopterus. CONSERVATION PHYSIOLOGY 2021; 9:coab067. [PMID: 34457309 PMCID: PMC8395585 DOI: 10.1093/conphys/coab067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The increasing frequency and duration of marine heatwaves attributed to climate change threatens coastal elasmobranchs and may exacerbate existing anthropogenic stressors. While the elasmobranch stress response has been well studied, the role of the unique corticosteroid-1α-hydroxycorticosterone (1α-OHB)-in energy balance is not understood. Therefore, 1α-OHB's utility as a stress biomarker in elasmobranch conservation physiology is equivocal. Here, we analyse the roles of corticosteroids, 1α-OHB and corticosterone, and metabolites, glucose and 3-hydroxybutyrate (3-HB), in response to stress in a protected tropical shark species, the blacktip reef shark (Carcharhinus melanopterus). Wild-caught neonates were exposed to ambient (27°C) or heatwave conditions (29°C) and subsequently a simulated fishing stressor (1 min air exposure). Blood samples were taken prior to temperature exposure, prior to air exposure, and 30 min, 1 h, 24 h, and 48 h post-air exposure at treatment temperatures. Plasma 1α-OHB was elevated for 48 h in 27°C-exposed sharks but declined over time in 29°C-exposed sharks. Plasma 1α-OHB was not correlated with either metabolite. Plasma glucose was higher and plasma 3-HB was lower in 29°C-exposed sharks. In a separate experiment, blood samples were collected from both neonate and adult sharks immediately following capture and again 5 min later, and analysed for corticosteroids and metabolites. Plasma 1α-OHB increased in neonates within 5 min, but neonates displayed lower plasma 1α-OHB and higher glucose concentrations than adults. We conclude that 1α-OHB does not serve as a classic glucocorticoid role in C. melanopterus under these stressors. Furthermore, we show for the first time, ontogenetic differences in plasma 1α-OHB. Ultimately, our findings provide insights into hormonal control of energy mobilization during stress in C. melanopterus, particularly during simulated heatwave conditions, which seem to alter both endocrine and energy mobilization. Further work is needed to determine the utility of 1α-OHB as a biomarker for the mobilization of energy during a stress event in elasmobranchs.
Collapse
Affiliation(s)
- Alexandra N Schoen
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Catharine J Wheaton
- Disney Animals, Science and Environment, Disney’s Animal Kingdom® and the Seas with Nemo and Friends®, Lake Buena Vista, FL 32830, USA
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- Laboratoire d’Excellence ‘CORAIL’, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Natalie D Mylniczenko
- Disney Animals, Science and Environment, Disney’s Animal Kingdom® and the Seas with Nemo and Friends®, Lake Buena Vista, FL 32830, USA
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
7
|
Prado AC, Wosnick N, Adams K, Leite RD, Freire CA. Capture‐induced vulnerability in male Shortnose guitarfish during their reproductive period. Anim Conserv 2021. [DOI: 10.1111/acv.12734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aline Cristina Prado
- Laboratório de Fisiologia Comparativa de Osmorregulação Departamento de Fisiologia Universidade Federal do Paraná Curitiba Paraná Brazil
| | - Natascha Wosnick
- Programa de Pós‐graduação em Zoologia Universidade Federal do Paraná Curitiba Paraná Brazil
| | - Kye Adams
- School of Biological Sciences The University of Western Australia, Crawley WA Australia
| | - Renata Daldin Leite
- Laboratório de Fisiologia Comparativa de Osmorregulação Departamento de Fisiologia Universidade Federal do Paraná Curitiba Paraná Brazil
| | - Carolina Arruda Freire
- Laboratório de Fisiologia Comparativa de Osmorregulação Departamento de Fisiologia Universidade Federal do Paraná Curitiba Paraná Brazil
| |
Collapse
|
8
|
Seibel H, Baßmann B, Rebl A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front Vet Sci 2021; 8:616955. [PMID: 33860003 PMCID: PMC8042153 DOI: 10.3389/fvets.2021.616955] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Blood analyses provide substantial information about the physiological aspects of animal welfare assessment, including the activation status of the neuroendocrine and immune system, acute and long-term impacts due to adverse husbandry conditions, potential diseases, and genetic predispositions. However, fish blood is still not routinely analyzed in research or aquaculture for the assessment of health and/or welfare. Over the years, the investigative techniques have evolved from antibody-based or PCR-based single-parameter analyses to now include transcriptomic, metabolomic, and proteomic approaches and from hematological observations to fluorescence-activated blood cell sorting in high-throughput modes. The range of testing techniques established for blood is now broader than for any other biogenic test material. Evaluation of the particular characteristics of fish blood, such as its cell composition, the nucleation of distinct blood cells, or the multiple isoforms of certain immune factors, requires adapted protocols and careful attention to the experimental designs and interpretation of the data. Analyses of fish blood can provide an integrated picture of the endocrine, immunological, reproductive, and genetic functions under defined environmental conditions and treatments. Therefore, the scarcity of high-throughput approaches using fish blood as a test material for fish physiology studies is surprising. This review summarizes the wide range of techniques that allow monitoring of informative fish blood parameters that are modulated by different stressors, conditions, and/or treatments. We provide a compact overview of several simple plasma tests and of multiparametric analyses of fish blood, and we discuss their potential use in the assessment of fish welfare and pathologies.
Collapse
Affiliation(s)
- Henrike Seibel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- Gesellschaft für Marine Aquakultur mbH (GMA), Büsum, Germany
| | - Björn Baßmann
- Department of Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
9
|
Pérez-Rojas JG, Mejía-Falla PA, Navia AF, Tarazona AM, Pardo-Carrasco SC. Hematology and blood biochemistry profile of the freshwater stingray Potamotrygon magdalenae as a tool for population assessment in artificial environments. BRAZ J BIOL 2021; 82:e233780. [PMID: 33787714 DOI: 10.1590/1519-6984.233780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Hematological and blood biochemical reference information is important to establish physiological status of freshwater stingray populations and improve care and management protocols in artificial environments. Here, we used a commercial freshwater stingray with high mortality rates in the market (Potamotrygon magdalenae), as an example to understand how artificial environments and handling protocols influence physiological status of captive freshwater stingrays. To this purpose, blood from five adult males and six adult females was collected to perform complete blood counts and blood chemistry analyses. All sampled animals showed good body condition with no differences between sexes. Differences between sexes were only found for the differential count of lymphocytes. Red blood results were consistent with previously studied potamotrygonids while white blood results showed higher values of leukocytes, thrombocytes, heterophils and lymphocytes in P. magdalenae compared to other Potamotrygonids. All types of leukocytes described for elasmobranchs were found except neutrophils and basophils. Blood metabolites showed an influence of ex situ diet in total protein, triglycerides and cholesterol. Glucose results were consistent while urea showed lower levels than those recorded for other freshwater stingrays. These results highlight the importance of physical, physiological and health analysis in freshwater stingrays as a part of welfare assessment to improve monitoring protocols and survival rates in public or private aquaria.
Collapse
Affiliation(s)
- J G Pérez-Rojas
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas - SQUALUS, Cali, Colombia.,Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Producción Animal, Medellín, Colombia
| | - P A Mejía-Falla
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas - SQUALUS, Cali, Colombia.,Wildlife Conservation Society - WCS Colombia, Cali, Colombia
| | - A F Navia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas - SQUALUS, Cali, Colombia
| | - A M Tarazona
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Producción Animal, Medellín, Colombia
| | - S C Pardo-Carrasco
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Departamento de Producción Animal, Medellín, Colombia
| |
Collapse
|
10
|
Physiology: An Important Tool to Assess the Welfare of Aquatic Animals. BIOLOGY 2021; 10:biology10010061. [PMID: 33467525 PMCID: PMC7830356 DOI: 10.3390/biology10010061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Ensuring a good quality of life for animals is a matter of concern. Welfare assessment has been quite well developed for many terrestrial species, but it is less well characterized for aquatic animals. Classic methodologies, such as behavioral observation, seem unable to improve the wellbeing of aquatic animals when used alone, mainly due to the large number of species and the difficulty to obtain comparative results among taxa. For this reason, it is necessary to identify more methodologies that may be common to the main aquatic taxa of interest to humans: Fish, cephalopods, and crustaceans. Here we present a physiological framework for these taxa as a proxy to evaluate aquatic animal welfare. Physiology is a useful tool in this regard, since animals maintain their homeostasis in a range of values determined for each parameter. Changes occur depending on the type and degree of stress to which animals are subjected. Therefore, understanding the physiology of stress can offer information that helps improve the welfare of aquatic animals. Abstract The assessment of welfare in aquatic animals is currently under debate, especially concerning those kept by humans. The classic concept of animal welfare includes three elements: The emotional state of the organism (including the absence of negative experiences), the possibility of expressing normal behaviors, and the proper functioning of the organism. While methods for evaluating their emotions (such as fear, pain, and anguish) are currently being developed for aquatic species and understanding the natural behavior of all aquatic taxa that interact with humans is a task that requires more time, the evaluation of internal responses in the organisms can be carried out using analytical tools. This review aims to show the potential of the physiology of crustaceans, cephalopods, elasmobranchs, teleosts, and dipnoans to serve as indicators of their wellbeing. Since the classical methods of assessing welfare are laborious and time-consuming by evaluation of fear, pain, and anguish, the assessment may be complemented by physiological approaches. This involves the study of stress responses, including the release of hormones and their effects. Therefore, physiology may be of help in improving animal welfare.
Collapse
|
11
|
Silkin YA, Silkina EN, Silkin MY. Glycogen as an Energy Storage Substrate
in Fish Nucleated Erythrocytes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
de Sousa Rangel B, de Castro Ribeiro D, Chagas JMA, Spada L, Moreira RG, da Silva Ribeiro C. Effects of biological traits on capture-induced parturition in a freshwater stingray and perspectives for species management. JOURNAL OF FISH BIOLOGY 2020; 97:546-551. [PMID: 32447770 DOI: 10.1111/jfb.14412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Elasmobranchs are particularly vulnerable to overexploitation and population depletion, especially due to their life-history traits, such as low reproductive output and slow growth. Given that capture-induced parturition (abortion or premature birth) is a common consequence of fisheries in elasmobranchs, but still little studied, we investigated how the abortion/premature birth process varies in response to reproductive traits in a freshwater stingray, Potamotrygon amandae. Our results revealed that capture-induced parturition was affected by reproductive traits, such as litter size (one to seven) and gestation stage. The event occurred faster in pregnant females with high litter size during late pregnancy. Also, as found in other elasmobranchs, litter size was positively correlated with maternal size. These findings indicate that larger pregnant females in late pregnancy are more vulnerable to capture-induced parturition. This study improves our understanding of the capture-induced parturition process in stingrays, and provides useful information for management strategies and future recommendations for elasmobranch conservation.
Collapse
Affiliation(s)
- Bianca de Sousa Rangel
- Departamento de Fisiologia, Instituto de Biociências, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas de Castro Ribeiro
- Departamento de Zoologia e Botânica, Laboratório de Ictiologia, Rua Cristóvão Colombo, Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto, Brazil
| | - Jumma M A Chagas
- Departamento de Biologia e Zootecnia, Laboratório de Ecologia do Parasitismo, Universidade Estadual Paulista, Ilha Solteira, Brazil
| | - Lucas Spada
- Departamento de Biologia e Zootecnia, Laboratório de Estudos em Fisiologia Animal, Universidade Estadual Paulista, Ilha Solteira, Brazil
- Programa de Pós Graduação em Ciências (Fisiologia) Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Renata G Moreira
- Departamento de Fisiologia, Instituto de Biociências, Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiéle da Silva Ribeiro
- Departamento de Biologia e Zootecnia, Laboratório de Estudos em Fisiologia Animal, Universidade Estadual Paulista, Ilha Solteira, Brazil
| |
Collapse
|
13
|
Iki A, Anderson WG, Deck CA, Ogihara MH, Ikeba K, Kataoka H, Hyodo S. Measurement of 1α hydroxycorticosterone in the Japanese banded houndshark, Triakis scyllium, following exposure to a series of stressors. Gen Comp Endocrinol 2020; 292:113440. [PMID: 32067929 DOI: 10.1016/j.ygcen.2020.113440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 10/25/2022]
Abstract
An endocrine glucocorticoid response following exposure to a stressor has been well described for many vertebrates. However, despite demonstration of secondary stress responses in a number of elasmobranchs, our understanding of the endocrine control of these responses is lacking. This is largely due to the unusual structure of the dominant corticosteroid in elasmobranch fish, 1α-hydroxycorticosterone (1α-OH-B). Here we describe plasma extraction and HPLC separation procedures that allowed for the measurement of 1α-OH-B and corticosterone from plasma samples in the cannulated, conscious free-swimming Japanese banded houndshark, Triakis scyllium. While patterns of concentration in the plasma for 1α-OH-B and corticosterone were found to be similar in all experiments conducted, circulating levels of 1α-OH-B were consistently 100-fold greater than circulating levels of corticosterone. Immediately following cannulation surgery, circulating levels of 1α-OH-B increased 7-fold compared to pre-surgery levels, while the levels were 11-fold higher than pre-stress levels 30 min post a repeated handling/air-exposure stress. A three week period of fasting resulted in a 22-fold increase in circulating levels of 1α-OH-B in the banded houndshark. This is the first report of direct measurement of changes in circulating levels of the primary corticosteroid in elasmobranch fish, 1α-OH-B, following exposure to a stressor such as handling/air-exposure. Data indicate the steroid may respond similarly to the classic glucocorticoid response, such as cortisol in teleosts.
Collapse
Affiliation(s)
- Ayuko Iki
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - W Gary Anderson
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Courtney A Deck
- Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall Campus Box 7614 Raleigh, NC 27695, USA
| | - Mari H Ogihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kiriko Ikeba
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
14
|
Gallagher AJ, Meyer L, Pethybridge HR, Huveneers C, Butcher PA. Effects of short-term capture on the physiology of white sharks Carcharodon carcharias: amino acids and fatty acids. ENDANGER SPECIES RES 2019. [DOI: 10.3354/esr00997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Hou S, Jin Z, Jiang W, Chi L, Xia B, Chen J. Physiological and immunological responses of sea cucumber Apostichopus japonicus during desiccation and subsequent resubmersion. PeerJ 2019; 7:e7427. [PMID: 31396455 PMCID: PMC6681796 DOI: 10.7717/peerj.7427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022] Open
Abstract
Desiccation is one of the extremely stressful situations experienced by aquatic animals, and sea cucumber usually suffers from desiccation stress during transportation without water. The present study was conducted to evaluate the effect of desiccation and subsequent resubmersion on physiological stress, oxidative damage, antioxidant status and non-specific immune response of Apostichopus japonicus, providing valuable information on the health management of sea cucumber culturing. Control and desiccation groups were set up, and each group has three replicates. After 1, 3 and 6 h of desiccation, individuals were resubmersed in aerated seawater for a 24 h recovery in three batches, which were represented as D1, D3 and D6, respectively. The results showed that glucose level in coelomic fluid of sea cucumber significantly decreased after desiccation, whereas lactate, cortisol and osmolality showed remarkable ascending trends. Thereafter, all stress parameters gently recovered towards normal levels as control group during 24 h resubmersion. The prolonged desiccation at D6 treatment induced the significant increases of malondialdehyde (MDA) and reactive oxygen species (ROS) contents, as well as relatively lower superoxide dismutase (SOD) and catalase (CAT) activities. During the period of desiccation and subsequent resubmersion, sea cucumber adjusted antioxidant defense to reduce the concentrations of MDA and ROS as a strategy for protecting against oxidative damage. Desiccation also had significant effects on non-specific immune parameters (total coelomocytes counts, TCC; complement C3; total nitric oxide synthase, T-NOS; lysozyme, LSZ; alkaline phosphatase, AKP) of A. japonicus, which could be recovered to some extent during resubmersion. In conclusion, less than 6 h of desiccation did not induce irreparable damage to sea cucumber, and was recommended for handling and shipping live sea cucumbers.
Collapse
Affiliation(s)
- Shiying Hou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, China
- Weihai Ocean Vocational College, Weihai, Shandong, China
| | - Zewei Jin
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenwen Jiang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Liang Chi
- College of Veterinary medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Bin Xia
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jinghua Chen
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
16
|
Barragán-Méndez C, Ruiz-Jarabo I, Fuentes J, Mancera JM, Sobrino I. Survival rates and physiological recovery responses in the lesser-spotted catshark (Scyliorhinus canicula) after bottom-trawling. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:1-9. [PMID: 30905654 DOI: 10.1016/j.cbpa.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022]
Abstract
In 2019, Europe will adopt a no-discards policy in fisheries. This entails the landing of captured species unless strong evidence is provided supporting their survival and recovery after fishing. Thus, research on this topic is gaining momentum. Bottom-trawling, as a non-selective fishing method, is characterized by a high proportion of discards including vulnerable key species, such as demersal sharks. Their survival may also depend on capture depth. By paralleling onboard and laboratory experiments with the small-spotted catshark, Scyliorhinus canicula, we offer a robust experimental design to assess the survival of discarded sharks. Catsharks were captured by bottom-trawling at two depths (shallow ~89 m and deep ~479 m). Blood samples were collected following trawl capture and analyzed for stress biomarkers (lactate, osmolality, phosphate, urea). During recovery in onboard tanks, behavior was video-recorded and fish were re-sampled after 24 h. A second experiment was conducted in laboratory facilities to simulate air-exposure after trawling and to analyze the physiological recovery. Our results showed that 95.7% of the animals survived 24 h after trawling. We confirmed that trawling elicited acute stress responses in catshark but that they managed to recover. This was demonstrated by lactate concentrations that were 2.6 mM upon capture, but recovered to assumed baselines after 24 h (0.2 mM). Non-invasive video monitoring revealed behavioral differences with depth, whereby those captured at 89 m depth required longer to recover than those captured at 479 m depth. Implementation of standardized survival studies by fishery managers can benefit from holistic physiological approaches, such as the one proposed here.
Collapse
Affiliation(s)
- C Barragán-Méndez
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, International Campus of Excellence of the Sea (CEI-MAR), Av. República Saharaui s/n, E-11510, Puerto Real, Cádiz, Spain
| | - I Ruiz-Jarabo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, International Campus of Excellence of the Sea (CEI-MAR), Av. República Saharaui s/n, E-11510, Puerto Real, Cádiz, Spain.
| | - J Fuentes
- Centre for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, International Campus of Excellence of the Sea (CEI-MAR), Av. República Saharaui s/n, E-11510, Puerto Real, Cádiz, Spain
| | - I Sobrino
- Spanish Institute of Oceanography (IEO), Oceanographic Centre of Cádiz, Puerto Pesquero, Muelle de Levante, s/n, PO Box 2609, E-11006 Cádiz, Spain
| |
Collapse
|
17
|
Tate RD, Cullis BR, Smith SDA, Kelaher BP, Brand CP, Gallen CR, Mandelman JW, Butcher PA. The acute physiological status of white sharks ( Carcharodon carcharias) exhibits minimal variation after capture on SMART drumlines. CONSERVATION PHYSIOLOGY 2019; 7:coz042. [PMID: 31428427 PMCID: PMC6692849 DOI: 10.1093/conphys/coz042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/16/2019] [Accepted: 06/10/2019] [Indexed: 05/21/2023]
Abstract
Drumlines incorporating SMART (Shark-Management-Alert-in-Real-Time) technology are a new tool used in several bather protection programmes globally. In New South Wales (NSW), Australia, the white shark (Carcharodon carcharias) is a target species for SMART drumlines because they are often involved in attacks on humans. To understand white shark sensitivity to capture and to establish protocols around acceptable timeframes for responding to alerts, 47 juvenile and subadult white sharks were caught on SMART drumlines at five locations off the east coast of Australia. There was no at-vessel mortality during the sampling period. After capture, blood was sampled from each shark to assess its acute physiological status. Of the 18 metabolites investigated, only lactate and aspartate aminotransferase exhibited significant positive relationships with the capture duration on SMART drumlines. These results indicate that the capture process is relatively benign and that the current response times used here are appropriate to minimize long-term negative impacts on released white sharks. Where white sharks are likely to interact negatively with beachgoers, SMART drumlines can therefore be a useful addition to bather protection programmes that also aim to minimize harm to captured animals. Other shark species captured on SMART drumlines should also be investigated to gain broader understanding of potential physiological consequences of using this new technology.
Collapse
Affiliation(s)
- R D Tate
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, New South Wales, Australia
- Corresponding author: National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, New South Wales 2450, Australia.
| | - B R Cullis
- National Institute of Applied Statistics Research Australia, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - S D A Smith
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, New South Wales, Australia
| | - B P Kelaher
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, New South Wales, Australia
| | - C P Brand
- NSW Department of Primary Industries, National Marine Science Centre PO Box 4321, Coffs Harbour, New South Wales, Australia
| | - C R Gallen
- NSW Department of Primary Industries, National Marine Science Centre PO Box 4321, Coffs Harbour, New South Wales, Australia
| | - J W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA, USA
| | - P A Butcher
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre PO Box 4321, Coffs Harbour, New South Wales, Australia
| |
Collapse
|