1
|
Abbas A, Ye F. Computational methods and key considerations for in silico design of proteolysis targeting chimera (PROTACs). Int J Biol Macromol 2024; 277:134293. [PMID: 39084437 DOI: 10.1016/j.ijbiomac.2024.134293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs), as heterobifunctional molecules, have garnered significant attention for their ability to target previously undruggable proteins. Due to the challenges in obtaining crystal structures of PROTAC molecules in the ternary complex, a plethora of computational tools have been developed to aid in PROTAC design. These computational tools can be broadly classified into artificial intelligence (AI)-based or non-AI-based methods. This review aims to provide a comprehensive overview of the latest computational methods for the PROTAC design process, covering both AI and non-AI approaches, from protein selection to ternary complex modeling and prediction. Key considerations for in silico PROTAC design are discussed, along with additional considerations for deploying AI-based models. These considerations are intended to guide subsequent model development in the PROTAC design process. Finally, future directions and recommendations are provided.
Collapse
Affiliation(s)
- Amr Abbas
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Lynch TL, Marin VL, McClure RA, Phipps C, Ronau JA, Rouhimoghadam M, Adams AM, Kandi S, Wolke ML, Shergalis AG, Potts GK, Nacham O, Richardson P, Kakavas SJ, Chhor G, Jenkins GJ, Woller KR, Warder SE, Vasudevan A, Reitsma JM. Quantitative Measurement of Rate of Targeted Protein Degradation. ACS Chem Biol 2024; 19:1604-1615. [PMID: 38980123 DOI: 10.1021/acschembio.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.
Collapse
Affiliation(s)
- Thomas L Lynch
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Violeta L Marin
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ryan A McClure
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Colin Phipps
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Judith A Ronau
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Milad Rouhimoghadam
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ashley M Adams
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Soumya Kandi
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Malerie L Wolke
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Andrea G Shergalis
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gregory K Potts
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Omprakash Nacham
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Paul Richardson
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Stephan J Kakavas
- Target Enabling Technologies, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gekleng Chhor
- Target Enabling Technologies, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gary J Jenkins
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Kevin R Woller
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Scott E Warder
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Justin M Reitsma
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| |
Collapse
|
3
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
4
|
Haridas V, Dutta S, Munjal A, Singh S. Inhibitors to degraders: Changing paradigm in drug discovery. iScience 2024; 27:109574. [PMID: 38646175 PMCID: PMC11031827 DOI: 10.1016/j.isci.2024.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
The chemical understanding of biological processes provides not only a deeper insight but also a solution to abnormal biological functioning. Protein degradation, a natural biological process for debris removal in the cell, has been studied for years. The recent finding that natural degradation pathways can be utilized for therapeutic purposes is a paradigm shift in the drug discovery approach. Methods such as Proteolysis Targeting Chimera (PROTAC), lysosomal targeting chimera, hydrophobic tagging, AUtophagy TArgeting Chimera, AUTOphagy TArgeting Chimera and several other variants of these methods have made a considerable impact on the way of drug design. Few selected examples testify that a huge wave of change is on the way. The drug design based on the targeted protein degradation is a powerful tool in our arsenal. More molecules will be invented that will uncover the hidden secrets of biological functioning and provide enduring solutions to several unmet medical needs.
Collapse
Affiliation(s)
- V. Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Souvik Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, New Delhi 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, New Delhi 110067, India
| |
Collapse
|
5
|
Guo M, Li Z, Gu M, Gu J, You Q, Wang L. Targeting phosphatases: From molecule design to clinical trials. Eur J Med Chem 2024; 264:116031. [PMID: 38101039 DOI: 10.1016/j.ejmech.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.
Collapse
Affiliation(s)
- Mochen Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junrui Gu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Zhang H, Gan W, Fan D, Zheng P, Lv Q, Pan Q, Zhu W. Novel quinazoline-based dual EGFR/c-Met inhibitors overcoming drug resistance for the treatment of NSCLC: Design, synthesis and anti-tumor activity. Bioorg Chem 2024; 142:106938. [PMID: 37913585 DOI: 10.1016/j.bioorg.2023.106938] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have demonstrated the ability to impede tumor cell proliferation by suppressing EGFR expression. Nonetheless, patients undergoing treatment may acquire resistance, which may occur through an EGFR-dependent (such as T790M mutation) or an EGFR-independent (such as c-Met amplification) manner. Therefore, developing dual-target inhibitors might present a potential avenue for addressing treatment-acquired resistance in patients. Herein, we designed, synthesized, and screened several novel 4-phenoxyquinazoline derivatives, aiming to identify a potent dual EGFR/c-Met inhibitor for the treatment of NSCLC, among which H-22 emerged as the most promising candidate exhibiting significant antitumor properties. Moreover, we assessed the in vitro inhibitory effect of H-22 on EGFR kinase and c-Met kinase in five cancer cell lines. In addition, a series of functional experiments (cell cycle, apoptosis assays, in vitro/in vivo animal model, etc.) were conducted to further investigate the anti-tumor mechanisms of H-22. The present study revealed that H-22 exhibited strong antitumor activity both in vitro and in vivo. Interestingly, H-22 exhibited anti-proliferative activity (2.27-3.35 μM) similar to Afatinib against all five cancer cells, with inhibitory functions against EGFRWT, EGFRL858R/T790M, and c-Met kinases at a concentration of 64.8, 305.4 and 137.4 nM, respectively. Cell cycle analysis indicated that the antiproliferative activity of H-22 was associated with its ability to cause G2/M arrest. Furthermore, in vivo data showed that H-22 could inhibit tumor growth in our xenograft models and induce apoptosis. Collectively, our findings uncovered that H-22 is a novel dual EGFR and c-Met inhibitor and a prospective anti-tumor therapeutic drug.
Collapse
Affiliation(s)
- Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Wenhui Gan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi, 330029, PR China.
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China.
| |
Collapse
|
7
|
Tang G, Huang S, Luo J, Wu Y, Zheng S, Tong R, Zhong L, Shi J. Advances in research on potential inhibitors of multiple myeloma. Eur J Med Chem 2023; 262:115875. [PMID: 37879169 DOI: 10.1016/j.ejmech.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Multiple myeloma (MM) is a common hematological malignancy. Although recent clinical applications of immunomodulatory drugs, proteasome inhibitors and CD38-targeting antibodies have significantly improved the outcome of MM patient with increased survival, the incidence of drug resistance and severe treatment-related complications is gradually on the rise. This review article summarizes the characteristics and clinical investigations of several MM drugs in clinical trials, including their structures, mechanisms of action, structure-activity relationships, and clinical study progress. Furthermore, the application potentials of the drugs that have not yet entered clinical trials are also reviewed. The review also outlines the future directions of MM drug development.
Collapse
Affiliation(s)
- Guoyuan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Huang
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Ji Luo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Yingmiao Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Shuai Zheng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Rongsheng Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, 610044, China.
| | - Jianyou Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
8
|
Zhang Y, Xin B, Liu Y, Jiang W, Han W, Deng J, Wang P, Hong X, Yan D. SARS-COV-2 protein NSP9 promotes cytokine production by targeting TBK1. Front Immunol 2023; 14:1211816. [PMID: 37854611 PMCID: PMC10580797 DOI: 10.3389/fimmu.2023.1211816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
SARS-COV-2 infection-induced excessive or uncontrolled cytokine storm may cause injury of host tissue or even death. However, the mechanism by which SARS-COV-2 causes the cytokine storm is unknown. Here, we demonstrated that SARS-COV-2 protein NSP9 promoted cytokine production by interacting with and activating TANK-binding kinase-1 (TBK1). With an rVSV-NSP9 virus infection model, we discovered that an NSP9-induced cytokine storm exacerbated tissue damage and death in mice. Mechanistically, NSP9 promoted the K63-linked ubiquitination and phosphorylation of TBK1, which induced the activation and translocation of IRF3, thereby increasing downstream cytokine production. Moreover, the E3 ubiquitin ligase Midline 1 (MID1) facilitated the K48-linked ubiquitination and degradation of NSP9, whereas virus infection inhibited the interaction between MID1 and NSP9, thereby inhibiting NSP9 degradation. Additionally, we identified Lys59 of NSP9 as a critical ubiquitin site involved in the degradation. These findings elucidate a previously unknown mechanism by which a SARS-COV-2 protein promotes cytokine storm and identifies a novel target for COVID-19 treatment.
Collapse
Affiliation(s)
- Yihua Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bowen Xin
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinan Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenyi Jiang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wendong Han
- Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Jian Deng
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaowu Hong
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zhang YF, Huang J, Zhang WX, Liu YH, Wang X, Song J, Jin CY, Zhang SY. Tubulin degradation: Principles, agents, and applications. Bioorg Chem 2023; 139:106684. [PMID: 37356337 DOI: 10.1016/j.bioorg.2023.106684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
The microtubule system plays an important role in the mitosis and growth of eukaryotic cells, and it is considered as an appealing and highly successful molecular target for cancer treatment. In fact, microtubule targeting agents, such as paclitaxel and vinblastine, have been approved by FDA for tumor therapy, which have achieved significant therapeutic effects and sales performance. At present, microtubule targeting agents mainly include microtubule-destabilizing agents, microtubule-stabilizing agents, and a few tubulin degradation agents. Although there are few reports about tubulin degradation agents at present, tubulin degradation agents show great potential in overcoming multidrug resistance and reducing neurotoxicity. In addition, some natural drugs could specifically degrade tubulin in tumor cells, but have no effect in normal cells, thus showing a good biosafety profile. Therefore, tubulin degradation agents might exhibit a better application. Currently, some small molecules have been designed to promote tubulin degradation with potent antiproliferative activities, showing the potential for cancer treatment. In this work, we reviewed the reports on tubulin degradation, and focused on the degradation mechanism and important functional groups of chemically synthesized compounds, hoping to provide help for the degradation design of tubulin.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Jiao Huang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Wei-Xin Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Gui W, Kodadek T. Facile Synthesis of Homodimeric Protein Ligands. Chembiochem 2023; 24:e202300392. [PMID: 37449865 PMCID: PMC10615197 DOI: 10.1002/cbic.202300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Many proteins exist as oligomers (homodimers, homotrimers, etc.). A proven strategy for the development of high affinity ligands for such targets is to link together two modest affinity ligands that allows the formation of a 2 : 2 (or higher-order) protein-ligand complex. We report here the discovery of a convenient, "click-like" reaction for the homodimerization of protein ligands that is efficient, operationally simple to carry out, and tolerant of many functional groups. This chemistry reduces the synthetic burden inherent in the creation of homodimeric ligands since only a single precursor is required. The utility of this strategy is demonstrated by the synthesis of homodimeric inhibitors, including PROTACs.
Collapse
Affiliation(s)
- Weijun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas Kodadek
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
11
|
Mostofian B, Martin HJ, Razavi A, Patel S, Allen B, Sherman W, Izaguirre JA. Targeted Protein Degradation: Advances, Challenges, and Prospects for Computational Methods. J Chem Inf Model 2023; 63:5408-5432. [PMID: 37602861 PMCID: PMC10498452 DOI: 10.1021/acs.jcim.3c00603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/22/2023]
Abstract
The therapeutic approach of targeted protein degradation (TPD) is gaining momentum due to its potentially superior effects compared with protein inhibition. Recent advancements in the biotech and pharmaceutical sectors have led to the development of compounds that are currently in human trials, with some showing promising clinical results. However, the use of computational tools in TPD is still limited, as it has distinct characteristics compared with traditional computational drug design methods. TPD involves creating a ternary structure (protein-degrader-ligase) responsible for the biological function, such as ubiquitination and subsequent proteasomal degradation, which depends on the spatial orientation of the protein of interest (POI) relative to E2-loaded ubiquitin. Modeling this structure necessitates a unique blend of tools initially developed for small molecules (e.g., docking) and biologics (e.g., protein-protein interaction modeling). Additionally, degrader molecules, particularly heterobifunctional degraders, are generally larger than conventional small molecule drugs, leading to challenges in determining drug-like properties like solubility and permeability. Furthermore, the catalytic nature of TPD makes occupancy-based modeling insufficient. TPD consists of multiple interconnected yet distinct steps, such as POI binding, E3 ligase binding, ternary structure interactions, ubiquitination, and degradation, along with traditional small molecule properties. A comprehensive set of tools is needed to address the dynamic nature of the induced proximity ternary complex and its implications for ubiquitination. In this Perspective, we discuss the current state of computational tools for TPD. We start by describing the series of steps involved in the degradation process and the experimental methods used to characterize them. Then, we delve into a detailed analysis of the computational tools employed in TPD. We also present an integrative approach that has proven successful for degrader design and its impact on project decisions. Finally, we examine the future prospects of computational methods in TPD and the areas with the greatest potential for impact.
Collapse
Affiliation(s)
- Barmak Mostofian
- OpenEye, Cadence Molecular Sciences, Boston, Massachusetts 02114 United States
| | - Holli-Joi Martin
- Laboratory
for Molecular Modeling, Division of Chemical Biology and Medicinal
Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599 United States
| | - Asghar Razavi
- ENKO
Chem, Inc, Mystic, Connecticut 06355 United States
| | - Shivam Patel
- Psivant
Therapeutics, Boston, Massachusetts 02210 United States
| | - Bryce Allen
- Differentiated
Therapeutics, San Diego, California 92056 United States
| | - Woody Sherman
- Psivant
Therapeutics, Boston, Massachusetts 02210 United States
| | - Jesus A Izaguirre
- Differentiated
Therapeutics, San Diego, California 92056 United States
- Atommap
Corporation, New York, New York 10013 United States
| |
Collapse
|
12
|
Wurz RP, Rui H, Dellamaggiore K, Ghimire-Rijal S, Choi K, Smither K, Amegadzie A, Chen N, Li X, Banerjee A, Chen Q, Mohl D, Vaish A. Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation. Nat Commun 2023; 14:4177. [PMID: 37443112 PMCID: PMC10344917 DOI: 10.1038/s41467-023-39904-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Targeted protein degradation via "hijacking" of the ubiquitin-proteasome system using proteolysis targeting chimeras (PROTACs) has evolved into a novel therapeutic modality. The design of PROTACs is challenging; multiple steps involved in PROTAC-induced degradation make it difficult to establish coherent structure-activity relationships. Herein, we characterize PROTAC-mediated ternary complex formation and degradation by employing von Hippel-Lindau protein (VHL) recruiting PROTACs for two different target proteins, SMARCA2 and BRD4. Ternary-complex attributes and degradation activity parameters are evaluated by varying components of the PROTAC's architecture. Ternary complex binding affinity and cooperativity correlates well with degradation potency and initial rates of degradation. Additionally, we develop a ternary-complex structure modeling workflow to calculate the total buried surface area at the interface, which is in agreement with the measured ternary complex binding affinity. Our findings establish a predictive framework to guide the design of potent degraders.
Collapse
Affiliation(s)
- Ryan P Wurz
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Huan Rui
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | - Kaylee Choi
- Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Kate Smither
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | | | - Ning Chen
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Xiaofen Li
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | | | - Qing Chen
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Dane Mohl
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA.
| | - Amit Vaish
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA.
| |
Collapse
|
13
|
Wang S, Yu H, Li L, Zhang M, Fu Y, Lin Z, Li J, Zhong F, Liu H, Wu Y. Fluorescent Turn-On Probes for Visualizing GPx4 Levels in Live Cells and Predicting Drug Sensitivity. Anal Chem 2023. [PMID: 37256969 DOI: 10.1021/acs.analchem.3c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Glutathione peroxidase 4 (GPx4) is the membrane peroxidase in mammals that is essential for protecting cells against oxidative damage and critical for ferroptosis. However, no live cell probe is currently available to specifically label GPx4. Herein, we report both inhibitory and noninhibitory fluorescent turn-on probes for specific labeling of GPx4 in live cells. With these probes, the GPx4 expression levels and degradation kinetics in live cells could be visualized, and their real-time responses to the cellular selenium availability were revealed. These probes could also potentially serve as staining reagents to predict the sensitivity of GPx4-related ferroptosis drugs. In view of these features, these GPx4-selective probes will offer opportunities for a deeper understanding of GPx4 function in natural habitats and hold great promise for biomedical applications.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huaibin Yu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Meizhou Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Fu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zi'an Lin
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinsheng Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Sincere NI, Anand K, Ashique S, Yang J, You C. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules 2023; 28:molecules28104014. [PMID: 37241755 DOI: 10.3390/molecules28104014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A potential therapeutic strategy to treat conditions brought on by the aberrant production of a disease-causing protein is emerging for targeted protein breakdown using the PROTACs technology. Few medications now in use are tiny, component-based and utilize occupancy-driven pharmacology (MOA), which inhibits protein function for a short period of time to temporarily alter it. By utilizing an event-driven MOA, the proteolysis-targeting chimeras (PROTACs) technology introduces a revolutionary tactic. Small-molecule-based heterobifunctional PROTACs hijack the ubiquitin-proteasome system to trigger the degradation of the target protein. The main challenge PROTAC's development facing now is to find potent, tissue- and cell-specific PROTAC compounds with favorable drug-likeness and standard safety measures. The ways to increase the efficacy and selectivity of PROTACs are the main focus of this review. In this review, we have highlighted the most important discoveries related to the degradation of proteins by PROTACs, new targeted approaches to boost proteolysis' effectiveness and development, and promising future directions in medicine.
Collapse
Affiliation(s)
- Nuwayo Ishimwe Sincere
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, India
| | - Jing Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Ignatov M, Jindal A, Kotelnikov S, Beglov D, Posternak G, Tang X, Maisonneuve P, Poda G, Batey RA, Sicheri F, Whitty A, Tonge PJ, Vajda S, Kozakov D. High Accuracy Prediction of PROTAC Complex Structures. J Am Chem Soc 2023; 145:7123-7135. [PMID: 36961978 PMCID: PMC10240388 DOI: 10.1021/jacs.2c09387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The design of PROteolysis-TArgeting Chimeras (PROTACs) requires bringing an E3 ligase into proximity with a target protein to modulate the concentration of the latter through its ubiquitination and degradation. Here, we present a method for generating high-accuracy structural models of E3 ligase-PROTAC-target protein ternary complexes. The method is dependent on two computational innovations: adding a "silent" convolution term to an efficient protein-protein docking program to eliminate protein poses that do not have acceptable linker conformations and clustering models of multiple PROTACs that use the same E3 ligase and target the same protein. Results show that the largest consensus clusters always have high predictive accuracy and that the ensemble of models can be used to predict the dissociation rate and cooperativity of the ternary complex that relate to the degrading activity of the PROTAC. The method is demonstrated by applications to known PROTAC structures and a blind test involving PROTACs against BRAF mutant V600E. The results confirm that PROTACs function by stabilizing a favorable interaction between the E3 ligase and the target protein but do not necessarily exploit the most energetically favorable geometry for interaction between the proteins.
Collapse
Affiliation(s)
- Mikhail Ignatov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Akhil Jindal
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215 USA
- Acpharis Inc., Holliston, Massachusetts 01746, USA
| | - Ganna Posternak
- Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario L4K-M9W, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario L4K-M9W, Canada
| | - Xiaojing Tang
- Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario L4K-M9W, Canada
| | - Pierre Maisonneuve
- Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario L4K-M9W, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario L4K-M9W, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario L4K-M9W, Canada
| | - Robert A. Batey
- Department of Chemistry, University of Toronto, Toronto, Ontario L4K-M9W, Canada
| | - Frank Sicheri
- Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario L4K-M9W, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario L4K-M9W, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario L4K-M9W, Canada
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Peter J. Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215 USA
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
16
|
Rui H, Ashton KS, Min J, Wang C, Potts PR. Protein-protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction. RSC Chem Biol 2023; 4:192-215. [PMID: 36908699 PMCID: PMC9994104 DOI: 10.1039/d2cb00207h] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
Molecular glues are a class of small molecules that stabilize the interactions between proteins. Naturally occurring molecular glues are present in many areas of biology where they serve as central regulators of signaling pathways. Importantly, several clinical compounds act as molecular glue degraders that stabilize interactions between E3 ubiquitin ligases and target proteins, leading to their degradation. Molecular glues hold promise as a new generation of therapeutic agents, including those molecular glue degraders that can redirect the protein degradation machinery in a precise way. However, rational discovery of molecular glues is difficult in part due to the lack of understanding of the protein-protein interactions they stabilize. In this review, we summarize the structures of known molecular glue-induced ternary complexes and the interface properties. Detailed analysis shows different mechanisms of ternary structure formation. Additionally, we also review computational approaches for predicting protein-protein interfaces and highlight the promises and challenges. This information will ultimately help inform future approaches for rational molecular glue discovery.
Collapse
Affiliation(s)
- Huan Rui
- Center for Research Acceleration by Digital Innovation, Amgen Research Thousand Oaks CA 91320 USA
| | - Kate S Ashton
- Medicinal Chemistry, Amgen Research Thousand Oaks CA 91320 USA
| | - Jaeki Min
- Induced Proximity Platform, Amgen Research Thousand Oaks CA 91320 USA
| | - Connie Wang
- Digital, Technology & Innovation, Amgen Thousand Oaks CA 91320 USA
| | | |
Collapse
|
17
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
18
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
19
|
George N, Akhtar MJ, Balushi KA, Safi SZ, Azmi SNH, Khan SA. The emerging role of proteolysis targeting chimeras (PROTACs) in the treatment of Alzheimer’s disease. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
|
20
|
Haid RTU, Reichel A. A Mechanistic Pharmacodynamic Modeling Framework for the Assessment and Optimization of Proteolysis Targeting Chimeras (PROTACs). Pharmaceutics 2023; 15:pharmaceutics15010195. [PMID: 36678824 PMCID: PMC9865105 DOI: 10.3390/pharmaceutics15010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
The field of targeted protein degradation is growing exponentially. Yet, there is an unmet need for pharmacokinetic/pharmacodynamic models that provide mechanistic insights, while also being practically useful in a drug discovery setting. Therefore, we have developed a comprehensive modeling framework which can be applied to experimental data from routine projects to: (1) assess PROTACs based on accurate degradation metrics, (2) guide compound optimization of the most critical parameters, and (3) link degradation to downstream pharmacodynamic effects. The presented framework contains a number of first-time features: (1) a mechanistic model to fit the hook effect in the PROTAC concentration-degradation profile, (2) quantification of the role of target occupancy in the PROTAC mechanism of action and (3) deconvolution of the effects of target degradation and target inhibition by PROTACs on the overall pharmacodynamic response. To illustrate applicability and to build confidence, we have employed these three models to analyze exemplary data on various compounds from different projects and targets. The presented framework allows researchers to tailor their experimental work and to arrive at a better understanding of their results, ultimately leading to more successful PROTAC discovery. While the focus here lies on in vitro pharmacology experiments, key implications for in vivo studies are also discussed.
Collapse
Affiliation(s)
- Robin Thomas Ulrich Haid
- DMPK Modeling and Simulation, Drug Metabolism and Pharmacokinetics, Preclinical Development, Bayer AG, Müllerstraße 178, 13353 Berlin, Germany
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Andreas Reichel
- DMPK Modeling and Simulation, Drug Metabolism and Pharmacokinetics, Preclinical Development, Bayer AG, Müllerstraße 178, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
21
|
Bou Malhab LJ, Alsafar H, Ibrahim S, Rahmani M. PROTACs: Walking through hematological malignancies. Front Pharmacol 2023; 14:1086946. [PMID: 36909156 PMCID: PMC9994433 DOI: 10.3389/fphar.2023.1086946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that uses the proteasome ubiquitin system to target proteins of interest and promote their degradation with remarkable selectivity. Importantly, unlike conventional small molecule inhibitors, PROTACs have proven highly effective in targeting undruggable proteins and those bearing mutations. Because of these considerations, PROTACs have increasingly become an emerging technology for the development of novel targeted anticancer therapeutics. Interestingly, many PROTACs have demonstrated a great potency and specificity in degrading several oncogenic drivers. Many of these, following extensive preclinical evaluation, have reached advanced stages of clinical testing in various cancers including hematologic malignancies. In this review, we provide a comprehensive summary of the recent advances in the development of PROTACs as therapeutic strategies in diverse hematological malignancies. A particular attention has been given to clinically relevant PROTACs and those targeting oncogenic mutants that drive resistance to therapies. We also discus limitations, and various considerations to optimize the design for effective PROTACs.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Saleh Ibrahim
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mohamed Rahmani
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates.,Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Yang J, Ruan Y, Wang D, Fan J, Luo N, Chen H, Li X, Chen W, Wang X. VHL-recruiting PROTAC attenuates renal fibrosis and preserves renal function via simultaneous degradation of Smad3 and stabilization of HIF-2α. Cell Biosci 2022; 12:203. [PMID: 36536448 PMCID: PMC9761961 DOI: 10.1186/s13578-022-00936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal fibrosis is the pathological foundation of various chronic kidney diseases progressing to end stage renal failure. However, there are currently no nephroprotective drugs targeted to the fibrotic process in clinical practice. Proteolytic targeting chimeras (PROTACs), which reversibly degrade target proteins through the ubiquitin-proteasome pathway, is a novel therapeutic modality. Smad3 is a key pathogenic factor in fibrogenesis while HIF-2α exhibits prominent renal protective effects, which is the natural substrate of von Hippel-Lindau (VHL) E3 Ligase. We hypothesied the construction of VHL-recruiting, Smad3-targeting PROTAC might combine the effects of Smad3 degradation and HIF-2α stabilization, which not only improving the clinical efficacy of PROTAC but also avoiding its potential off-target effects, could greatly improve the possibility of its translation into clinical drugs. METHODS By joining the Smad3-binding small molecule compound (SMC) to VHL-binding SMC with a linker, we designed and synthesized a Smad3-targeting, VHL-based PROTAC. The effects of this PROTAC on targeted proteins were verified both in vitro and in vivo. The toxicity and pharmacokinetic (PK) evaluations were conducted with both male and female mice. The renal protection effects and mechanism of PROTAC were evaluated in unilateral ureteral obstruction (UUO) and 5/6 subtotal nephrectomy (5/6Nx) mouse model. RESULTS By optimizing the linker and the Smad3-binding SMC, we got a stable and high efficient PROTAC which simultaneously degraded Smad3 and stabilized HIF-2α both in vivo and in vitro. The acute toxicity evaluation showed a pretty large therapeutic window of the PROTAC. The prominent renal protection effects and its underlying mechanism including anti-fibrosis and anti-inflammatory, improving renal anemia and promoting kidney repair, had all been verified in UUO and 5/6Nx mouse model. CONCLUSION By accurate combination of PROTAC targeted protein and E3 ligase, we got a Smad3-targeting, VHL-recruting PROTAC which caused Smad3 degradation and HIF-2α stabilization effects simultaneously, and led to the strong renal function protection effects.
Collapse
Affiliation(s)
- Jiayi Yang
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Yuyi Ruan
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Dan Wang
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Jinjin Fan
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Ning Luo
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Huiting Chen
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Xiaoyan Li
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Wei Chen
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| | - Xin Wang
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XNHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080 China
| |
Collapse
|
23
|
Yang T, Han L, Huo S. Dynamics and Allosteric Information Pathways of Unphosphorylated c-Cbl. J Chem Inf Model 2022; 62:6148-6159. [PMID: 36442893 DOI: 10.1021/acs.jcim.2c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human c-Cbl is a RING-type ligase and plays a central role in the protein degradation cascade. To elucidate its conformational changes related to substrate binding, we performed molecular dynamics simulations of different variants/states of c-Cbl for a cumulative time of 68 μs. Our simulations demonstrate that before the substrate binds, the RING domain samples a broad set of conformational states at a biologically relevant salt concentration, including the closed, partially open, and fully open states, whereas substrate binding leads to a restricted conformational sampling. Phe378 and the C-terminal region play an essential role in stabilizing the partially open state. To visualize the allosteric signal transmission pathways from the substrate-binding site to the 40 Å apart RING domain and identify the critical residues for allostery, we have created a subgraph from the optimal and suboptimal paths. Redundant paths are seen in the SH2 domain where the substrate binds, while the major bottlenecks are found at the junction between the SH2 domain and the linker helix region as well as that between the SH2 domain and the 4H bundle. These bottlenecks separate the paths into two overall routes. The nodes/residues at the bottlenecks on the subgraph are considered allosteric hot spots. This subgraph approach provides a general tool for network visualization and determination of critical residues for allostery. The structurally and allosterically critical residues identified in our work are testable and would provide valuable insights into the emerging strategies for drug discovery, such as targeted protein degradation.
Collapse
Affiliation(s)
- Tianyi Yang
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Li Han
- Department of Computer Science, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Shuanghong Huo
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
24
|
Lu D, Yu X, Lin H, Cheng R, Monroy EY, Qi X, Wang MC, Wang J. Applications of covalent chemistry in targeted protein degradation. Chem Soc Rev 2022; 51:9243-9261. [PMID: 36285735 PMCID: PMC9669245 DOI: 10.1039/d2cs00362g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) and targeted covalent inhibitors (TCIs) are currently two exciting strategies in the fields of chemical biology and drug discovery. Extensive research in these two fields has been conducted, and significant progress in these fields has resulted in many clinical candidates, some of which have been approved by FDA. Recently, a novel concept termed covalent PROTACs that combine these two strategies has emerged and gained an increasing interest in the past several years. Herein, we briefly review and highlight the mechanism and advantages of TCIs and PROTACs, respectively, and the recent development of covalent PROTACs using irreversible and reversible covalent chemistry.
Collapse
Affiliation(s)
- Dong Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Xin Yu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Hanfeng Lin
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Ran Cheng
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Erika Y Monroy
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Xiaoli Qi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston TX 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA
| |
Collapse
|
25
|
Gui W, Kodadek T. Applications and Limitations of Oxime-Linked "Split PROTACs". Chembiochem 2022; 23:e202200275. [PMID: 35802347 PMCID: PMC9594079 DOI: 10.1002/cbic.202200275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Indexed: 11/10/2022]
Abstract
Proteolysis targeting chimeras are of keen interest as probe molecules and drug leads. Their activity is highly sensitive to the length and nature of the linker connecting the E3 Ubiquitin Ligase (E3 Ubl) and target protein (TP) ligands, which therefore requires tedious optimization. The creation of "split PROTACs" from E3 Ubl and TP ligands modified with residues suitable for them to couple when simply mixed together would allow various combinations to be assessed in a combinatorial fashion, thus greatly easing the workload relative to a one-by-one synthesis of many different PROTACs (proteolysis targeting chimeras). We explore oxime chemistry here for this purpose. We show that PROTAC assembly occurs efficiently when the components are mixed at a high concentration, then added to cells. However, in situ coupling of the TP and E3 Ubl ligands is inefficient when these units are added to cells at lower concentrations.
Collapse
Affiliation(s)
- Weijun Gui
- Department of Chemistry, UF Scripps Biomedical Research, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas Kodadek
- Department of Chemistry, UF Scripps Biomedical Research, 120 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
26
|
Salerno A, Seghetti F, Caciolla J, Uliassi E, Testi E, Guardigni M, Roberti M, Milelli A, Bolognesi ML. Enriching Proteolysis Targeting Chimeras with a Second Modality: When Two Are Better Than One. J Med Chem 2022; 65:9507-9530. [PMID: 35816671 PMCID: PMC9340767 DOI: 10.1021/acs.jmedchem.2c00302] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 02/08/2023]
Abstract
Proteolysis targeting chimera (PROTAC)-mediated protein degradation has prompted a radical rethink and is at a crucial stage in driving a drug discovery transition. To fully harness the potential of this technology, a growing paradigm toward enriching PROTACs with other therapeutic modalities has been proposed. Could researchers successfully combine two modalities to yield multifunctional PROTACs with an expanded profile? In this Perspective, we try to answer this question. We discuss how this possibility encompasses different approaches, leading to multitarget PROTACs, light-controllable PROTACs, PROTAC conjugates, and macrocycle- and oligonucleotide-based PROTACs. This possibility promises to further enhance PROTAC efficacy and selectivity, minimize side effects, and hit undruggable targets. While PROTACs have reached the clinical investigation stage, additional steps must be taken toward the translational development of multifunctional PROTACs. A deeper and detailed understanding of the most critical challenges is required to fully exploit these opportunities and decisively enrich the PROTAC toolbox.
Collapse
Affiliation(s)
- Alessandra Salerno
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Francesca Seghetti
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jessica Caciolla
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Elisa Uliassi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Eleonora Testi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Melissa Guardigni
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Marinella Roberti
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
27
|
Targeted protein degraders march towards the clinic for neurodegenerative diseases. Ageing Res Rev 2022; 78:101616. [PMID: 35378298 DOI: 10.1016/j.arr.2022.101616] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/30/2022] [Indexed: 12/28/2022]
Abstract
Protein degraders are emerging as potent therapeutic tools to address neurological disorders and many complex diseases. It offered several key advantages, including the doses, drug resistance, and side effects over traditional occupancy-based inhibitors. Translation of chemical degraders into a clinical therapy for neurodegenerative disorders has a well-documented knowledge and resource gap. Researchers strive to develop clinical candidates employing chemical degraders' technologies, including hydrophobic tagging, molecular glues, proteolysis targeting chimeras (PROTACs), specific and nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent protein erasers (SNIPERs), autophagy targeted chimeras, and autophagosome-tethered compounds for targeted degradation of pathological markers in neurodegenerative disease. Herein, we examined the present state of chemical-mediated targeted protein degradation in the quest for medications to treat neurodegenerative diseases. We further identified targeted degraders under clinical development for neurodegenerative diseases summarizing pertinent discoveries guiding the future of degradation therapeutics. We also addressed the necessary pharmacological interventions needed to achieve unprecedented therapeutic efficacy and its associated challenges.
Collapse
|
28
|
Guenette RG, Yang SW, Min J, Pei B, Potts PR. Target and tissue selectivity of PROTAC degraders. Chem Soc Rev 2022; 51:5740-5756. [PMID: 35587208 DOI: 10.1039/d2cs00200k] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeted protein degradation (TPD) strategies have revolutionized how scientists tackle challenging protein targets deemed undruggable with traditional small molecule inhibitors. Many promising campaigns to inhibit proteins have failed due to factors surrounding inhibition selectivity and targeting of compounds to specific tissues and cell types. One of the major improvements that PROTAC (proteolysis targeting chimera) and molecular glue technology can exert is highly selective control of target inhibition. Multiple studies have shown that PROTACs can gain selectivity for their protein targets beyond that of their parent ligands via optimization of linker length and stabilization of ternary complexes. Due to the bifunctional nature of PROTACs, the tissue selective nature of E3 ligases can be exploited to uncover novel targeting mechanisms. In this review, we provide critical analysis of the recent progress towards making selective PROTAC molecules and new PROTAC technologies that will continue to push the boundaries of achieving selectivity. These efforts have wide implications in the future of treating disease as they will broaden the possible targets that can be addressed by small molecules, like undruggable proteins or broadly active targets that would benefit from degradation in specific tissue types.
Collapse
Affiliation(s)
| | - Seung Wook Yang
- Induced Proximity Platform, Amgen, Thousand Oaks, CA 91320, USA.
| | - Jaeki Min
- Induced Proximity Platform, Amgen, Thousand Oaks, CA 91320, USA.
| | - Baikang Pei
- Genome Analysis Unit, Amgen, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
29
|
Abstract
Degrader-antibody conjugates (DACs) are novel entities that combine a proteolysis targeting chimera (PROTAC) payload with a monoclonal antibody via some type of chemical linker. This review provides a current summary of the DAC field. Many general aspects associated with the creation and biological performance of traditional cytotoxic antibody-drug conjugates (ADCs) are initially presented. These characteristics are subsequently compared and contrasted with related parameters that impact DAC generation and biological activity. Several examples of DACs assembled from both the scientific and the patent literature are utilized to highlight differing strategies for DAC creation, and specific challenges associated with DAC construction are documented. Collectively, the assembled examples demonstrate that biologically-active DACs can be successfully prepared using a variety of PROTAC payloads which employ diverse E3 ligases to degrade multiple protein targets.
Collapse
|
30
|
Bartlett DW, Gilbert AM. Translational PK-PD for targeted protein degradation. Chem Soc Rev 2022; 51:3477-3486. [PMID: 35438107 DOI: 10.1039/d2cs00114d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Targeted protein degradation has emerged from the chemical biology toolbox as one of the most exciting areas for novel therapeutic development across the pharmaceutical industry. The ability to induce the degradation, and not just inhibition, of target proteins of interest (POIs) with high potency and selectivity is a particularly attractive property for a protein degrader therapeutic. However, the physicochemical properties and mechanism of action for protein degraders can lead to unique pharmacokinetic (PK) and pharmacodynamic (PD) properties relative to traditional small molecule drugs, requiring a shift in perspective for translational pharmacology. In this review, we provide practical insights for building the PK-PD understanding of protein degraders in the context of translational drug development through the use of quantitative mathematical frameworks and standard experimental assays. Published datasets describing protein degrader pharmacology are used to illustrate the applicability of these insights. The learnings are consolidated into a translational PK-PD roadmap for targeted protein degradation that can enable a systematic, rational design workflow for protein degrader therapeutics.
Collapse
Affiliation(s)
- Derek W Bartlett
- Pharmacokinetics, Dynamics, & Metabolism, Pfizer Worldwide Research, Development and Medical, Pfizer Inc, San Diego, CA, USA.
| | - Adam M Gilbert
- Discovery Sciences, Pfizer Worldwide Research, Development and Medical, Pfizer Inc, Groton, CT, USA
| |
Collapse
|
31
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
32
|
Ji CH, Kim HY, Lee MJ, Heo AJ, Park DY, Lim S, Shin S, Ganipisetti S, Yang WS, Jung CA, Kim KY, Jeong EH, Park SH, Bin Kim S, Lee SJ, Na JE, Kang JI, Chi HM, Kim HT, Kim YK, Kim BY, Kwon YT. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nat Commun 2022; 13:904. [PMID: 35173167 PMCID: PMC8850458 DOI: 10.1038/s41467-022-28520-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted protein degradation allows targeting undruggable proteins for therapeutic applications as well as eliminating proteins of interest for research purposes. While several degraders that harness the proteasome or the lysosome have been developed, a technology that simultaneously degrades targets and accelerates cellular autophagic flux is still missing. In this study, we develop a general chemical tool and platform technology termed AUTOphagy-TArgeting Chimera (AUTOTAC), which employs bifunctional molecules composed of target-binding ligands linked to autophagy-targeting ligands. AUTOTACs bind the ZZ domain of the otherwise dormant autophagy receptor p62/Sequestosome-1/SQSTM1, which is activated into oligomeric bodies in complex with targets for their sequestration and degradation. We use AUTOTACs to degrade various oncoproteins and degradation-resistant aggregates in neurodegeneration at nanomolar DC50 values in vitro and in vivo. AUTOTAC provides a platform for selective proteolysis in basic research and drug development. Targeted protein degradation is a promising approach for basic research and therapeutic applications. Here, the authors develop a targeted protein degradation platform called AUTOTAC to degrade oncoproteins and neurodegeneration-associated proteins via the p62-dependent autophagy-lysosome system.
Collapse
Affiliation(s)
- Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Hee Yeon Kim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Min Ju Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Daniel Youngjae Park
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Sungsu Lim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Seulgi Shin
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.,Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Srinivasrao Ganipisetti
- Brown Cancer Center, University of Louisville, 529 S Jackson Street, Louisville, KY, 40202, USA
| | - Woo Seung Yang
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Chang An Jung
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Kun Young Kim
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Eun Hye Jeong
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Sun Ho Park
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Su Bin Kim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Su Jin Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Jeong Eun Na
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Ji In Kang
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju, 28116, Korea
| | - Hyung Min Chi
- Department of Chemisty, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hyun Tae Kim
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Yun Kyung Kim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea. .,Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea.
| | - Bo Yeon Kim
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju, 28116, Korea. .,Department of Biomolecular Science, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Korea.
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea. .,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea. .,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
33
|
Hu Z, Crews CM. Recent Developments in PROTAC-Mediated Protein Degradation: From Bench to Clinic. Chembiochem 2022; 23:e202100270. [PMID: 34494353 PMCID: PMC9395155 DOI: 10.1002/cbic.202100270] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/02/2021] [Indexed: 01/21/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs), an emerging paradigm-shifting technology, hijacks the ubiquitin-proteasome system for targeted protein degradation. PROTACs induce ternary complexes between an E3 ligase and POI, and this induced proximity leads to polyUb chain formation on substrates and eventual proteasomal-mediated POI degradation. PROTACs have shown great therapeutic potential by degrading many disease-causing proteins, such as the androgen receptor and BRD4. The PROTAC technology has advanced significantly in the last two decades, with the repertoire of PROTAC targets increased tremendously. Herein, we describe recent developments of PROTAC technology, focusing on mechanistic and kinetic studies, pharmacokinetic study, spatiotemporal control of PROTACs, covalent PROTACs, resistance to PROTACs, and new E3 ligands.
Collapse
Affiliation(s)
- Zhenyi Hu
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06511, USA
| |
Collapse
|
34
|
Eron SJ, Huang H, Agafonov RV, Fitzgerald ME, Patel J, Michael RE, Lee TD, Hart AA, Shaulsky J, Nasveschuk CG, Phillips AJ, Fisher SL, Good A. Structural Characterization of Degrader-Induced Ternary Complexes Using Hydrogen-Deuterium Exchange Mass Spectrometry and Computational Modeling: Implications for Structure-Based Design. ACS Chem Biol 2021; 16:2228-2243. [PMID: 34582690 DOI: 10.1021/acschembio.1c00376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of targeted protein degradation (TPD) has grown exponentially over the past decade with the goal of developing therapies that mark proteins for destruction leveraging the ubiquitin-proteasome system. One common approach to achieve TPD is to employ a heterobifunctional molecule, termed as a degrader, to recruit the protein target of interest to the E3 ligase machinery. The resultant generation of an intermediary ternary complex (target-degrader-ligase) is pivotal in the degradation process. Understanding the ternary complex geometry offers valuable insight into selectivity, catalytic efficiency, linker chemistry, and rational degrader design. In this study, we utilize hydrogen-deuterium exchange mass spectrometry (HDX-MS) to identify degrader-induced protein-protein interfaces. We then use these data in conjunction with constrained protein docking to build three-dimensional models of the ternary complex. The approach was used to characterize complex formation between the E3 ligase CRBN and the first bromodomain of BRD4, a prominent oncology target. We show marked differences in the ternary complexes formed in solution based on distinct patterns of deuterium uptake for two degraders, CFT-1297 and dBET6. CFT-1297, which exhibited positive cooperativity, altered the deuterium uptake profile revealing the degrader-induced protein-protein interface of the ternary complex. For CFT-1297, the ternary complexes generated by the highest scoring HDX-constrained docking models differ markedly from those observed in the published crystal structures. These results highlight the potential utility of HDX-MS to provide rapidly accessible structural insights into degrader-induced protein-protein interfaces in solution. They further suggest that degrader ternary complexes exhibit significant conformation flexibility and that biologically relevant complexes may well not exhibit the largest interaction surfaces between proteins. Taken together, the results indicate that methods capable of incorporating linker conformation uncertainty may prove an important component in degrader design moving forward. In addition, the development of scoring functions modified to handle interfaces with no evolved complementarity, for example, through consideration of high levels of water infiltration, may prove valuable. Furthermore, the use of crystal structures as validation tools for novel degrader methods needs to be considered with caution.
Collapse
Affiliation(s)
- Scott J. Eron
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Hongwei Huang
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Roman V. Agafonov
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Mark E. Fitzgerald
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Joe Patel
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Ryan E. Michael
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Tobie D. Lee
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Ashley A. Hart
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Jodi Shaulsky
- Dassault Systèmes BIOVIA, 5005 Wateridge Vista Dr, San Diego, California 92121, United States
| | | | - Andrew J. Phillips
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Stewart L. Fisher
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Andrew Good
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| |
Collapse
|
35
|
Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat Chem Biol 2021; 17:1157-1167. [PMID: 34675414 PMCID: PMC7611906 DOI: 10.1038/s41589-021-00878-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
Bivalent proteolysis-targeting chimeras (PROTACs) drive protein degradation by simultaneously binding a target protein and an E3 ligase and forming a productive ternary complex. We hypothesized that increasing binding valency within a PROTAC could enhance degradation. Here, we designed trivalent PROTACs consisting of a bivalent bromo and extra terminal (BET) inhibitor and an E3 ligand tethered via a branched linker. We identified von Hippel-Lindau (VHL)-based SIM1 as a low picomolar BET degrader with preference for bromodomain containing 2 (BRD2). Compared to bivalent PROTACs, SIM1 showed more sustained and higher degradation efficacy, which led to more potent anticancer activity. Mechanistically, SIM1 simultaneously engages with high avidity both BET bromodomains in a cis intramolecular fashion and forms a 1:1:1 ternary complex with VHL, exhibiting positive cooperativity and high cellular stability with prolonged residence time. Collectively, our data along with favorable in vivo pharmacokinetics demonstrate that augmenting the binding valency of proximity-induced modalities can be an enabling strategy for advancing functional outcomes.
Collapse
|
36
|
Gregory AD, Tran KC, Tamaskar AS, Wei J, Zhao J, Zhao Y. USP13 Deficiency Aggravates Cigarette-smoke-induced Alveolar Space Enlargement. Cell Biochem Biophys 2021; 79:485-491. [PMID: 34032995 PMCID: PMC8887808 DOI: 10.1007/s12013-021-01000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
Alveolar enlargement is a pathological feature of emphysema. Long-term exposure to cigarette smoke (CS) is a high-risk factor for the development of emphysema. Abnormal protein ubiquitination has been implicated to regulate the development of human disorders, however, the role of protein ubiquitination in emphysema has not been well-studied. In this study, we attempted to investigate if a deubiquitinase, USP13, regulates the development of emphysema. Under a mild CS exposure condition, USP13-deficient mice show significant increases in alveolar chord length, indicating that USP13-deficient mice are susceptible to CS-induced alveolar enlargement. It has been shown that USP13 knockout reduced fibronectin expression in lungs. Here, we found that collagen levels were reduced in USP13 siRNA-transfected lung fibroblast cells. This suggests that a loss of extracellular matrix in connective tissues contributes to alveolar enlargement in USP13-deficient mice in response to CS exposure. Further, we investigated the role of USP13 in the expression of oxidative stress markers TXNIP and HMOX1. An increase in HMOX1 abundance was observed in USP13 knockdown lung fibroblast and epithelial cells. Overexpression of USP13 reduced HMOX1 protein levels in lung fibroblast cells, suggesting that modulation of USP13 levels may affect oxidative stress. Knockdown of USP13 significantly reduced TXNIP levels in lungs or lung fibroblast cells. A protein stability pulse-chase assay showed that TXNIP is instable within USP13 knockdown lung fibroblast cells. Further, the reduction of TXNIP was observed in USP13 inhibitor-treated lung epithelial cells. USP13-deficient mice also show higher levels of IgG in bronchoalveolar lavage fluid. This study provides evidence showing that USP13 deficiency plays a role in alveolar space enlargement.
Collapse
Affiliation(s)
- Alyssa D Gregory
- Department of Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin C Tran
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Arya S Tamaskar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianxin Wei
- Department of Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
37
|
Reboud-Ravaux M. [Induced degradation of proteins by PROTACs and other strategies: towards promising drugs]. Biol Aujourdhui 2021; 215:25-43. [PMID: 34397373 DOI: 10.1051/jbio/2021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 11/14/2022]
Abstract
Targeted protein degradation (TPD), discovered twenty years ago through the PROTAC technology, is rapidly developing thanks to the implication of many scientists from industry and academia. PROTAC chimeras are heterobifunctional molecules able to link simultaneously a protein to be degraded and an E3 ubiquitin ligase. This allows the protein ubiquitination and its degradation by 26S proteasome. PROTACs have evolved from small peptide molecules to small non-peptide and orally available molecules. It was shown that PROTACs are capable to degrade proteins considered as "undruggable" i.e. devoid of well-defined pockets and deep grooves possibly occupied by small molecules. Among these "hard to drug" proteins, several can be degraded by PROTACs: scaffold proteins, BAF complex, transcription factors, Ras family proteins. Two PROTACs are clinically tested for breast (ARV471) and prostate (ARV110) cancers. The protein degradation by proteasome is also induced by other types of molecules: molecular glues, hydrophobic tagging (HyT), HaloPROTACs and homo-PROTACs. Other cellular constituents are eligible to induced degradation: RNA-PROTACs for RNA binding proteins and RIBOTACs for degradation of RNA itself (SARS-CoV-2 RNA). TPD has recently moved beyond the proteasome with LYTACs (lysosome targeting chimeras) and MADTACs (macroautophagy degradation targeting chimeras). Several techniques such as screening platforms together with mathematical modeling and computational design are now used to improve the discovery of new efficient PROTACs.
Collapse
Affiliation(s)
- Michèle Reboud-Ravaux
- Sorbonne Université, Institut de Biologie Paris Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, 7 quai Saint-Bernard, 75252 Paris Cedex 05, France
| |
Collapse
|
38
|
Fang Y, He Q, Cao J. Targeted protein degradation and regulation with molecular glue: past and recent discoveries. Curr Med Chem 2021; 29:2490-2503. [PMID: 34365941 DOI: 10.2174/0929867328666210806113949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
The evolution in research and clinical settings of targeted therapies has been inspired by the progress of cancer chemotherapy to use small molecules and monoclonal antibodies for targeting specific disease-associated genes and proteins for noninfectious chronic diseases. In addition to conventional protein inhibition and activation strategies as drug discovery modalities, new methods of targeted protein degradation and regulation using molecular glues have become an attractive approach for drug discovery. Mechanistically, molecular glues trigger interactions between the proteins that originally did not interact by forming ternary complexes as protein-protein interaction (PPI) modulators. New molecular glues and their mechanisms of action have been actively investigated in the past decades. An immunomodulatory imide drug, thalidomide, and its derivatives have been used in the clinic and are a class of molecular glue that induces degradation of several neo-substrates. In this review, we summarize the development of molecular glues and share our opinions on the identification of novel molecular glues in an attempt to promote the concept and inspire further investigations.
Collapse
Affiliation(s)
- Yizheng Fang
- College of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing. China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou. China
| | - Ji Cao
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou. China
| |
Collapse
|
39
|
Rodriguez-Rivera FP, Levi SM. Unifying Catalysis Framework to Dissect Proteasomal Degradation Paradigms. ACS CENTRAL SCIENCE 2021; 7:1117-1125. [PMID: 34345664 PMCID: PMC8323112 DOI: 10.1021/acscentsci.1c00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 06/13/2023]
Abstract
Diverging from traditional target inhibition, proteasomal protein degradation approaches have emerged as novel therapeutic modalities that embody distinct pharmacological profiles and can access previously undrugged targets. Small molecule degraders have the potential to catalytically destroy target proteins at substoichiometric concentrations, thus lowering administered doses and extending pharmacological effects. With this mechanistic premise, research efforts have advanced the development of small molecule degraders that benefit from stable and increased affinity ternary complexes. However, a holistic framework that evaluates different degradation modes from a catalytic perspective, including focusing on kinetically favored degradation mechanisms, is lacking. In this Outlook, we introduce the concept of an induced cooperativity spectrum as a unifying framework to mechanistically understand catalytic degradation profiles. This framework is bolstered by key examples of published molecular degraders extending from molecular glues to bivalent degraders. Critically, we discuss remaining challenges and future opportunities in drug discovery to rationally design and phenotypically screen for efficient degraders.
Collapse
Affiliation(s)
- Frances P. Rodriguez-Rivera
- Discovery
Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Samuel M. Levi
- Pfizer
Worldwide Research and Development, Pfizer,
Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Bricelj A, Steinebach C, Kuchta R, Gütschow M, Sosič I. E3 Ligase Ligands in Successful PROTACs: An Overview of Syntheses and Linker Attachment Points. Front Chem 2021; 9:707317. [PMID: 34291038 PMCID: PMC8287636 DOI: 10.3389/fchem.2021.707317] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) have received tremendous attention as a new and exciting class of therapeutic agents that promise to significantly impact drug discovery. These bifunctional molecules consist of a target binding unit, a linker, and an E3 ligase binding moiety. The chemically-induced formation of ternary complexes leads to ubiquitination and proteasomal degradation of target proteins. Among the plethora of E3 ligases, only a few have been utilized for the novel PROTAC technology. However, extensive knowledge on the preparation of E3 ligands and their utilization for PROTACs has already been acquired. This review provides an in-depth analysis of synthetic entries to functionalized ligands for the most relevant E3 ligase ligands, i.e. CRBN, VHL, IAP, and MDM2. Less commonly used E3 ligase and their ligands are also presented. We compare different preparative routes to E3 ligands with respect to feasibility and productivity. A particular focus was set on the chemistry of the linker attachment by discussing the synthetic opportunities to connect the E3 ligand at an appropriate exit vector with a linker to assemble the final PROTAC. This comprehensive review includes many facets involved in the synthesis of such complex molecules and is expected to serve as a compendium to support future synthetic attempts towards PROTACs.
Collapse
Affiliation(s)
- Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Robert Kuchta
- Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | | | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
41
|
Jan M, Sperling AS, Ebert BL. Cancer therapies based on targeted protein degradation - lessons learned with lenalidomide. Nat Rev Clin Oncol 2021; 18:401-417. [PMID: 33654306 PMCID: PMC8903027 DOI: 10.1038/s41571-021-00479-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
For decades, anticancer targeted therapies have been designed to inhibit kinases or other enzyme classes and have profoundly benefited many patients. However, novel approaches are required to target transcription factors, scaffolding proteins and other proteins central to cancer biology that typically lack catalytic activity and have remained mostly recalcitrant to drug development. The selective degradation of target proteins is an attractive approach to expand the druggable proteome, and the selective oestrogen receptor degrader fulvestrant served as an early example of this concept. Following a long and tragic history in the clinic, the immunomodulatory imide drug (IMiD) thalidomide was discovered to exert its therapeutic activity via a novel and unexpected mechanism of action: targeting proteins to an E3 ubiquitin ligase for subsequent proteasomal degradation. This discovery has paralleled and directly catalysed myriad breakthroughs in drug development, leading to the rapid maturation of generalizable chemical platforms for the targeted degradation of previously undruggable proteins. Decades of clinical experience have established front-line roles for thalidomide analogues, including lenalidomide and pomalidomide, in the treatment of haematological malignancies. With a new generation of 'degrader' drugs currently in development, this experience provides crucial insights into class-wide features of degraders, including a unique pharmacology, mechanisms of resistance and emerging therapeutic opportunities. Herein, we review these past experiences and discuss their application in the clinical development of novel degrader therapies.
Collapse
Affiliation(s)
- Max Jan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
42
|
Ciulli A, Hamann L, Jahnke W, Kalgutkar AS, Magauer T, Ritter T, Steadman V, Williams SD, Winter G, Hoegenauer K, Krawinkler KH, Stepan AF. The 2 nd Alpine Winter Conference on Medicinal and Synthetic Chemistry. ChemMedChem 2021; 16:2417-2423. [PMID: 34114371 DOI: 10.1002/cmdc.202100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/07/2022]
Abstract
The second biannual Alpine Winter Conference on Medicinal and Synthetic Chemistry (short: Alpine Winter Conference) took place January 19-23, 2020, in St. Anton in western Austria. There were roughly 180 attendees from around the globe, making this mid-sized conference particularly conducive to networking and exchanging ideas over the course of four and a half days. This report summarizes the key events and presentations given by researchers working in both industry and academia.
Collapse
Affiliation(s)
- Alessio Ciulli
- Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Lawrence Hamann
- Drug Discovery Sciences, Takeda Pharmaceuticals, 30 Landsdowne Street, Cambridge, MA 02139, USA
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Amit S Kalgutkar
- Medicine Design, Pfizer, Inc., 1 Portland Street, Cambridge, MA 02139, USA
| | - Thomas Magauer
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, Leopold-Franzens-University Innsbruck, Innrain 80-82, L02.012, 6020, Innsbruck, Austria
| | - Tobias Ritter
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Muelheim an der Ruhr, Germany
| | | | | | - Georg Winter
- Research Center for Molecular Medicine (CeMM), Austrian Academy of Sciences, 1090, Vienna, Austria
| | | | | | - Antonia F Stepan
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
43
|
Abstract
Targeted protein degradation is a broad and expanding field aimed at the modulation of protein homeostasis. A focus of this field has been directed toward molecules that hijack the ubiquitin proteasome system with heterobifunctional ligands that recruit a target protein to an E3 ligase to facilitate polyubiquitination and subsequent degradation by the 26S proteasome. Despite the success of these chimeras toward a number of clinically relevant targets, the ultimate breadth and scope of this approach remains uncertain. Here we highlight recent advances in assays and tools available to evaluate targeted protein degradation, including and beyond the study of E3-targeted chimeric ligands. We note several challenges associated with degrader development and discuss various approaches to expanding the protein homeostasis toolbox.
Collapse
|
44
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
45
|
Izert MA, Klimecka MM, Górna MW. Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria. Front Mol Biosci 2021; 8:669762. [PMID: 34026843 PMCID: PMC8138137 DOI: 10.3389/fmolb.2021.669762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
A repertoire of proteolysis-targeting signals known as degrons is a necessary component of protein homeostasis in every living cell. In bacteria, degrons can be used in place of chemical genetics approaches to interrogate and control protein function. Here, we provide a comprehensive review of synthetic applications of degrons in targeted proteolysis in bacteria. We describe recent advances ranging from large screens employing tunable degradation systems and orthogonal degrons, to sophisticated tools and sensors for imaging. Based on the success of proteolysis-targeting chimeras as an emerging paradigm in cancer drug discovery, we discuss perspectives on using bacterial degraders for studying protein function and as novel antimicrobials.
Collapse
Affiliation(s)
| | | | - Maria Wiktoria Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
46
|
Kannt A, Đikić I. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chem Biol 2021; 28:1014-1031. [PMID: 33945791 DOI: 10.1016/j.chembiol.2021.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Efficacy and selectivity of molecules inducing protein degradation depend on their affinity to the target protein but also on the type of E3 ubiquitin ligase that is recruited to trigger proteasomal degradation. While tremendous progress has been made on the former, the latter-the arsenal of E3 ligases that can be hijacked for targeted protein degradation-is still largely unexplored. Only about 2% of the more than 600 E3 ligases have been utilized to date. Exploiting additional E3 ligases that are, for example, selectively expressed in specific tissues or cells, or regulated under certain conditions, can considerably broaden the applicability of molecular degraders as a therapeutic modality. Here, we provide an overview of major classes of E3 ligases, review the enzymes that have been exploited for induced protein degradation and approaches used to identify or design E3 ligands, and highlight challenges and opportunities for targeting new E3 ligases.
Collapse
Affiliation(s)
- Aimo Kannt
- Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Ivan Đikić
- Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
47
|
Vieux EF, Agafonov RV, Emerson L, Isasa M, Deibler RW, Simard JR, Cocozziello D, Ladd B, Lee L, Li H, Archer S, Fitzgerald M, Michael R, Nasveschuk CG, Park ES, Kern G, Proia DA, Phillips AJ, Fisher SL. A Method for Determining the Kinetics of Small-Molecule-Induced Ubiquitination. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:547-559. [PMID: 33780296 DOI: 10.1177/24725552211000673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent advances in targeted protein degradation have enabled chemical hijacking of the ubiquitin-proteasome system to treat disease. The catalytic rate of cereblon (CRBN)-dependent bifunctional degradation activating compounds (BiDAC), which recruit CRBN to a chosen target protein, resulting in its ubiquitination and proteasomal degradation, is an important parameter to consider during the drug discovery process. In this work, an in vitro system was developed to measure the kinetics of BRD4 bromodomain 1 (BD1) ubiquitination by fitting an essential activator kinetic model to these data. The affinities between BiDACs, BD1, and CRBN in the binary complex, ternary complex, and full ubiquitination complex were characterized. Together, this work provides a new tool for understanding and optimizing the catalytic and thermodynamic properties of BiDACs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Linda Lee
- C4 Therapeutics Inc., Watertown, MA, USA
| | - Heng Li
- C4 Therapeutics Inc., Watertown, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Maneiro M, De Vita E, Conole D, Kounde CS, Zhang Q, Tate EW. PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:67-190. [PMID: 34147206 DOI: 10.1016/bs.pmch.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vast majority of currently marketed drugs rely on small molecules with an 'occupancy-driven' mechanism of action (MOA). Therefore, the efficacy of these therapeutics depends on a high degree of target engagement, which often requires high dosages and enhanced drug exposure at the target site, thus increasing the risk of off-target toxicities (Churcher, 2018 [1]). Although small molecule drugs have been successfully used as treatments for decades, tackling a variety of disease-relevant targets with a defined binding site, many relevant therapeutic targets remain challenging to drug due, for example, to lack of well-defined binding pockets or large protein-protein interaction (PPI) interfaces which resist interference (Dang et al., 2017 [2]). In the quest for alternative therapeutic approaches to address different pathologies and achieve enhanced efficacy with reduced side effects, ligand-induced targeted protein degradation (TPD) has gained the attention of many research groups both in academia and in industry in the last two decades. This therapeutic modality represents a novel paradigm compared to conventional small-molecule inhibitors. To pursue this strategy, heterobifunctional small molecule degraders, termed PROteolysis TArgeting Chimeras (PROTACs) have been devised to artificially redirect a protein of interest (POI) to the cellular protein homeostasis machinery for proteasomal degradation (Chamberlain et al., 2019 [3]). In this chapter, the development of PROTACs will first be discussed providing a historical perspective in parallel to the experimental progress made to understand this novel therapeutic modality. Furthermore, common strategies for PROTAC design, including assays and troubleshooting tips will be provided for the reader, before presenting a compendium of all PROTAC targets reported in the literature to date. Due to the recent advancement of these molecules into clinical trials, consideration of pharmacokinetics and pharmacodynamic properties will be introduced, together with the biotech landscape that has developed from the success of PROTACs. Finally, an overview of subsequent strategies for targeted protein degradation will be presented, concluding with further scientific quests triggered by the invention of PROTACs.
Collapse
Affiliation(s)
- M Maneiro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - E De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - D Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - C S Kounde
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Q Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - E W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom.
| |
Collapse
|
49
|
Correa Marrero M, Barrio-Hernandez I. Toward Understanding the Biochemical Determinants of Protein Degradation Rates. ACS OMEGA 2021; 6:5091-5100. [PMID: 33681549 PMCID: PMC7931188 DOI: 10.1021/acsomega.0c05318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Protein degradation is a key component of the regulation of gene expression and is at the center of several pathogenic processes. Proteins are regularly degraded, but there is large variation in their lifetimes, and the kinetics of protein degradation are not well understood. Many different factors can influence protein degradation rates, painting a highly complex picture. This has been partially unravelled in recent years thanks to invaluable advances in proteomics techniques. In this Mini-Review, we give a global vision of the determinants of protein degradation rates with the backdrop of the current understanding of proteolytic systems to give a contemporary view of the field.
Collapse
Affiliation(s)
- Miguel Correa Marrero
- European
Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10
1SD, United Kingdom
| | - Inigo Barrio-Hernandez
- European
Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10
1SD, United Kingdom
| |
Collapse
|
50
|
Rufer AC. Drug discovery for enzymes. Drug Discov Today 2021; 26:875-886. [PMID: 33454380 DOI: 10.1016/j.drudis.2021.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Enzymes are essential, physiological catalysts involved in all processes of life, including metabolism, cellular signaling and motility, as well as cell growth and division. They are attractive drug targets because of the presence of defined substrate-binding pockets, which can be exploited as binding sites for pharmaceutical enzyme inhibitors. Understanding the reaction mechanisms of enzymes and the molecular mode of action of enzyme inhibitors is indispensable for the discovery and development of potent, efficacious, and safe novel drugs. The combination of classical concepts of enzymology with new experimental and data analysis methods opens new routes for drug discovery.
Collapse
Affiliation(s)
- Arne Christian Rufer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 065/208A, 4070 Basel, Switzerland.
| |
Collapse
|