1
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
3
|
Yang J, Li Z, Xu Q, Liu W, Gao S, Qin P, Chen Z, Wang A. Towards carbon neutrality: Sustainable recycling and upcycling strategies and mechanisms for polyethylene terephthalate via biotic/abiotic pathways. ECO-ENVIRONMENT & HEALTH 2024; 3:117-130. [PMID: 38638172 PMCID: PMC11021832 DOI: 10.1016/j.eehl.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024]
Abstract
Polyethylene terephthalate (PET), one of the most ubiquitous engineering plastics, presents both environmental challenges and opportunities for carbon neutrality and a circular economy. This review comprehensively addressed the latest developments in biotic and abiotic approaches for PET recycling/upcycling. Biotically, microbial depolymerization of PET, along with the biosynthesis of reclaimed monomers [terephthalic acid (TPA), ethylene glycol (EG)] to value-added products, presents an alternative for managing PET waste and enables CO2 reduction. Abiotically, thermal treatments (i.e., hydrolysis, glycolysis, methanolysis, etc.) and photo/electrocatalysis, enabled by catalysis advances, can depolymerize or convert PET/PET monomers in a more flexible, simple, fast, and controllable manner. Tandem abiotic/biotic catalysis offers great potential for PET upcycling to generate commodity chemicals and alternative materials, ideally at lower energy inputs, greenhouse gas emissions, and costs, compared to virgin polymer fabrication. Remarkably, over 25 types of upgraded PET products (e.g., adipic acid, muconic acid, catechol, vanillin, and glycolic acid, etc.) have been identified, underscoring the potential of PET upcycling in diverse applications. Efforts can be made to develop chemo-catalytic depolymerization of PET, improve microbial depolymerization of PET (e.g., hydrolysis efficiency, enzymatic activity, thermal and pH level stability, etc.), as well as identify new microorganisms or hydrolases capable of degrading PET through computational and machine learning algorithms. Consequently, this review provides a roadmap for advancing PET recycling and upcycling technologies, which hold the potential to shape the future of PET waste management and contribute to the preservation of our ecosystems.
Collapse
Affiliation(s)
- Jiaqi Yang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiongying Xu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenzong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shuhong Gao
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Lineberry E, Kim J, Kim J, Roh I, Lin JA, Yang P. High-Photovoltage Silicon Nanowire for Biological Cofactor Production. J Am Chem Soc 2023; 145:19508-19512. [PMID: 37651703 DOI: 10.1021/jacs.3c06243] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Photocathodic conversion of NAD+ to NADH cofactor is a promising platform for activating redox biological catalysts and enzymatic synthesis using renewable solar energy. However, many photocathodes suffer from low photovoltage, consequently requiring a high cathodic bias for NADH production. Here, we report an n+p-type silicon nanowire (n+p-SiNW) photocathode having a photovoltage of 435 mV to drive energy-efficient NADH production. The enhanced band bending at the n+/p interface accounts for the high photovoltage, which conduces to a benchmark onset potential [0.393 V vs the reversible hydrogen electrode (VRHE)] for SiNW-based photocathodic NADH generation. In addition, the n+p-SiNW nanomaterial exhibits a Faradaic efficiency of 84.7% and a conversion rate of 1.63 μmol h-1 cm-1 at 0.2 VRHE, which is the lowest cathodic potential to achieve the maximum productivity among SiNW-sensitized cofactor production.
Collapse
Affiliation(s)
- Elizabeth Lineberry
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jinhyun Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jimin Kim
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jia-An Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Collaborative catalysis for solar biosynthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
7
|
Kim J, Um Y, Han S, Hilberath T, Kim YH, Hollmann F, Park CB. Unbiased Photoelectrode Interfaces for Solar Coupling of Lignin Oxidation with Biocatalytic C═C Bond Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11465-11473. [PMID: 35196006 DOI: 10.1021/acsami.1c24342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pulp and paper manufacturers generate approximately 50 million metric tons of lignin per annum, most of which has been abandoned or incinerated because of lignin's recalcitrant nature. Here, we report bias-free photoelectrochemical (PEC) oxidation of lignin coupled with asymmetric hydrogenation of C═C bonds. The PEC platform consists of a hematite (α-Fe2O3) photoanode and a silicon photovoltaic-wired mesoporous indium tin oxide (Si/mesoITO) photocathode. We substantiate a new function of photoelectroactivated α-Fe2O3 to extract electrons from lignin. The extracted electrons are transferred to the Si/mesoITO photocathode for regenerating synthetic nicotinamide cofactor analogues (mNADHs). We demonstrate that the reduction kinetics of mNAD+s depend on their reduction peak potentials. The regenerated mNADHs activate ene-reductases from the old yellow enzyme (OYE) family, which catalyze enantioselective reduction of α,β-unsaturated hydrocarbons. This lignin-fueled biocatalytic PEC system exhibits an excellent OYE's turnover frequency and total turnover number for photobiocatalytic trans-hydrogenation through cofactor regeneration. This work presents the first example of PEC regeneration of mNADHs and opens up a sustainable route for bias-free chemical synthesis using renewable lignin waste as an electron feedstock.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Yunna Um
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Seunghyun Han
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Thomas Hilberath
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
8
|
Wang D, Kim J, Park CB. Lignin-Induced CaCO 3 Vaterite Structure for Biocatalytic Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58522-58531. [PMID: 34851105 DOI: 10.1021/acsami.1c16661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The vaterite phase of CaCO3 exhibits unique characteristics, such as high porosity, surface area, dispersivity, and low specific gravity, but it is the most unstable polymorph. Here, we report lignin-induced stable vaterite as a support matrix for integrated artificial photosynthesis through the encapsulation of key active components such as the photosensitizer (eosin y, EY) and redox enzyme (l-glutamate dehydrogenase, GDH). The lignin-vaterite/EY/GDH photobiocatalytic platform enabled the regeneration of the reduced nicotinamide cofactor under visible light and facilitated the rapid conversion of α-ketoglutarate into l-glutamate (initial conversion rate, 0.41 mM h-1; turnover frequency, 1060 h-1; and turnover number, 39,750). The lignin-induced vaterite structure allowed for long-term protection and recycling of the active components while facilitating the photosynthesis reaction due to the redox-active lignin. Succession of stability tests demonstrated a significant improvement of GDH's robustness in the lignin-vaterite structure against harsh environments. This work provides a simple approach for solar-to-chemical conversion using a sustainable, integrated light-harvesting system.
Collapse
Affiliation(s)
- Ding Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
9
|
Hoang VC, Bui TS, Nguyen HTD, Hoang TT, Rahman G, Le QV, Nguyen DLT. Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: Fundamental mechanisms and recent progress. ENVIRONMENTAL RESEARCH 2021; 202:111781. [PMID: 34333011 DOI: 10.1016/j.envres.2021.111781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/27/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Solar-driven carbon dioxide (CO2) conversion has gained tremendous attention as a prominent strategy to simultaneously reduce the atmospheric CO2 concentration and convert solar energy into solar fuels in the form of chemical bonds. Numerous efforts have been devoted to diverse photo-driven processes for CO2 conversion, which utilized a multidisciplinary strategy. Among them, the architecture of nanostructured metal-based catalysts is emerging as an eminent solution for the design of catalysts of this field. In this work, we first provide fundamental mechanisms of photochemical, photoelectrochemical, photothermal, and photobio(electro)chemical CO2 reduction processes to achieve an in-deep understanding of vital aspects. Importantly, the recent progress in the catalyst design for each reaction system is discussed and highlighted. Based on these analyses, an overview of photo-driven CO2 reduction on metal-based catalysts for solar fuel production is also spotlighted. Finally, we analyze challenges and prospects for the strategic direction of developments in the field.
Collapse
Affiliation(s)
- Van Chinh Hoang
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Thanh-Son Bui
- Department of Environmental Engineering, International University, Vietnam National University-Ho Chi Minh (VNU-HCM), Ho Chi Minh City, Viet Nam
| | - Huong T D Nguyen
- University of Science, Vietnam National University-Ho Chi Minh (VNU-HCM), Ho Chi Minh City, 721337, Viet Nam
| | - Thanh T Hoang
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City (IUH), Viet Nam
| | - Gul Rahman
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dang Le Tri Nguyen
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
10
|
Lim HJ, Kim DM. Cell-free synthesis of industrial chemicals and biofuels from carbon feedstocks. Curr Opin Biotechnol 2021; 73:158-163. [PMID: 34450473 DOI: 10.1016/j.copbio.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022]
Abstract
The power of biological systems can be harnessed with higher efficiency when biosynthetic reactions are decoupled from cellular physiology. This can be achieved by cell-free synthesis, which relies on the in vitro use of cellular machinery under optimized reaction conditions. As exemplified by the recent development of mRNA vaccines and therapeutics, the cell-free synthesis of biomolecules is fast, efficient and flexible. Cell-free synthesis of industrial chemicals and biofuels is drawing considerable attention as a promising alternative to microbial fermentation processes, which currently show low conversion yields and toxicity to host cells. Here, we provide a brief overview of the history of cell-free synthesis systems and the state-of-the-art cell-free technologies used to produce diverse chemicals and biofuels. We also discuss the future directions of cell-free synthesis that can fully harness the synthetic power of biological systems.
Collapse
Affiliation(s)
- Hye Jin Lim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
11
|
Le TK, Kim J, Anh Nguyen N, Huong Ha Nguyen T, Sun EG, Yee SM, Kang HS, Yeom SJ, Beum Park C, Yun CH. Solar-Powered Whole-Cell P450 Catalytic Platform for C-Hydroxylation Reactions. CHEMSUSCHEM 2021; 14:3054-3058. [PMID: 34085413 DOI: 10.1002/cssc.202100944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Photobiocatalysis is a green platform for driving redox enzymatic reactions using solar energy, not needing high-cost cofactors and redox partners. Here, a visible light-driven whole-cell platform for human cytochrome P450 (CYP) photobiocatalysis was developed using natural flavins as a photosensitizer. Photoexcited flavins mediate NADPH/reductase-free, light-driven biocatalysis by human CYP2E1 both in vitro and in the whole-cell systems. In vitro tests demonstrated that the photobiocatalytic activity of CYP2E1 is dependent on the substrate type, the presence of catalase, and the acid type used as a sacificial electron donor. A protective effect of catalase was found against the inactivation of CYP2E1 heme by H2 O2 and the direct transfer of photo-induced electrons to the heme iron not by peroxide shunt. Furthermore, the P450 photobiocatalysis in whole cells containing human CYPs 1A1, 1A2, 1B1, and 3A4 demonstrated the general applicability of the solar-powered, flavin-mediated P450 photobiocatalytic system.
Collapse
Affiliation(s)
- Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea
| | - Ngoc Anh Nguyen
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Thi Huong Ha Nguyen
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eun-Gene Sun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Su-Min Yee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
12
|
Yang N, Tian Y, Zhang M, Peng X, Li F, Li J, Li Y, Fan B, Wang F, Song H. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnol Adv 2021; 54:107808. [PMID: 34324993 DOI: 10.1016/j.biotechadv.2021.107808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022]
Abstract
Enzymes catalyse target reactions under mild conditions with high efficiency, as well as excellent regional-, stereo-, and enantiomeric selectivity. Photocatalysis utilises sustainable and environment-friendly light power to realise efficient chemical conversion. By combining the interdisciplinary advantages of photo- and enzymatic catalysis, the photocatalyst-enzyme hybrid systems have proceeded various light-driven biotransformation with high efficiency under environmentally benign conditions, thus, attracting unparalleled focus during the last decades. It has also been regarded as a promising pathway towards green chemistry utilising ubiquitous solar energy. This systematic review gives insight into this research field by classifying the existing photocatalyst-enzyme hybrid systems into three sections based on different hybridizing modes between photo- and enzymatic catalysis. Furthermore, existing challenges and proposed strategies are discussed within this context. The first system summarised is the cofactor-mediated hybrid system, in which natural/artificial cofactors act as reducing equivalents that connect photocatalysts with enzymes for light-driven enzymatic biotransformation. Second, the direct contact-based photocatalyst-enzyme hybrid systems are described, including two different kinds of electron exchange sites on the enzyme molecules. Third, some cases where photocatalysts and enzymes are integrated into a reaction cascade with specific intermediates will be discussed in the following chapter. Finally, we provide perspective concerning the future of this field.
Collapse
Affiliation(s)
- Nan Yang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yao Tian
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Mai Zhang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiting Peng
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Feng Li
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| | - Hao Song
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
13
|
de Barros HR, López-Gallego F, Liz-Marzán LM. Light-Driven Catalytic Regulation of Enzymes at the Interface with Plasmonic Nanomaterials. Biochemistry 2021; 60:991-998. [PMID: 32643921 DOI: 10.1021/acs.biochem.0c00447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of enzymes is highly relevant toward orchestrating cell-free and stepwise biotransformations, thereby maximizing their overall performance. Plasmonic nanomaterials offer a great opportunity to tune the functionality of enzymes through their remarkable optical properties. Localized surface plasmon resonances (LSPR) can be used to modify chemical transformations at the nanomaterial's surface, upon light irradiation. Incident light can promote energetic processes, which may be related to an increase of local temperature (photothermal effects) but also to effects triggered by generated hotspots or hot electrons (photoelectronic effects). As a consequence, light irradiation of the protein-nanomaterial interface affects enzyme functionality. To harness these effects to finely and remotely regulate enzyme activity, the physicochemical features of the nanomaterial, properties of the incident light, and parameters governing molecular interactions must be optimized. In this Perspective, we discuss relevant examples that illustrate the use of plasmonic nanoparticles to control enzyme function through LSPR excitation. Finally, we also highlight the importance of expanding the use of plasmonic nanomaterials to the immobilization of multienzyme systems for light-driven regulation of cell-free biosynthetic pathways. Although this concept is living its infancy, we encourage the scientific community to advance in the development of novel light-controlled biocatalytic plasmonic nanoconjugates and explore their application in biosensing, applied biocatalysis, and biomedicine.
Collapse
Affiliation(s)
- Heloise Ribeiro de Barros
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Vila Universitária, 05508-000 São Paulo, São Paulo Brazil
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingenierı́a, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
| |
Collapse
|
14
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
15
|
Özgen FF, Runda ME, Schmidt S. Photo-biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light. Chembiochem 2021; 22:790-806. [PMID: 32961020 PMCID: PMC7983893 DOI: 10.1002/cbic.202000587] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
In the field of green chemistry, light - an attractive natural agent - has received particular attention for driving biocatalytic reactions. Moreover, the implementation of light to drive (chemo)enzymatic cascade reactions opens up a golden window of opportunities. However, there are limitations to many current examples, mostly associated with incompatibility between the enzyme and the photocatalyst. Additionally, the formation of reactive radicals upon illumination and the loss of catalytic activities in the presence of required additives are common observations. As outlined in this review, the main question is how to overcome current challenges to the exploitation of light to drive (chemo)enzymatic transformations. First, we highlight general concepts in photo-biocatalysis, then give various examples of photo-chemoenzymatic (PCE) cascades, further summarize current synthetic examples of PCE cascades and discuss strategies to address the limitations.
Collapse
Affiliation(s)
- Fatma Feyza Özgen
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Michael E. Runda
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Sandy Schmidt
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| |
Collapse
|
16
|
Jia C, Yang L, Zhang Y, Zhang X, Xiao K, Xu J, Liu J. Graphitic Carbon Nitride Films: Emerging Paradigm for Versatile Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53571-53591. [PMID: 33210913 DOI: 10.1021/acsami.0c15159] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphitic carbon nitride (g-C3N4) is a well-known two-dimensional conjugated polymer semiconductor that has been broadly applied in photocatalysis-related fields. However, further developments of g-C3N4, especially in device applications, have been constrained by the inherent limitations of its insoluble nature and particulate properties. Recent breakthroughs in fabrication methods of g-C3N4 films have led to innovative and inspiring applications in many fields. In this review, we first summarize the fabrication of continuous and thin films, either supported on substrates or as free-standing membranes. Then, the novel properties and application of g-C3N4 films are the focus of the current review. Finally, some underlying challenges and the future developments of g-C3N4 films are tentatively discussed. This review is expected to provide a comprehensive and timely summary of g-C3N4 film research to the wide audience in the field of conjugated polymer semiconductor-based materials.
Collapse
Affiliation(s)
- Changchao Jia
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Lijun Yang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Yizhu Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xia Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Kai Xiao
- Department of Colloids Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Jingsan Xu
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
17
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
18
|
Wang Y, Liu H, Pan Q, Ding N, Yang C, Zhang Z, Jia C, Li Z, Liu J, Zhao Y. Construction of Thiazolo[5,4- d]thiazole-based Two-Dimensional Network for Efficient Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46483-46489. [PMID: 32962337 DOI: 10.1021/acsami.0c12173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The efficient conversion of CO2 to chemical fuels driven by solar energy is still a challenging research area in photosynthesis, in which the conversion efficiency greatly relies on photocatalytic coenzyme NADH regeneration. Herein, a photocatalyst/biocatalyst synergetic system based on a conjugated microporous polymer (CMP) was prepared for sustainable and highly selective photocatalytic reduction of CO2 to methanol. Two thiazolo[5,4-d]thiazole-linked CMPs (TZTZ-TA and TZTZ-TP) were designed and synthesized as photocatalysts. Slight skeleton modification led to a great difference in their photocatalytic performance. Triazine-based TZTZ-TA exhibited an unprecedentedly high NADH regeneration efficiency of 82.0% yield within 5 min. Furthermore, the in situ photocatalytic NADH regeneration system could integrate with three consecutive enzymes for efficient conversion of CO2 into methanol. This CMP-enzyme hybrid system provides a new avenue for accomplishing the liquid sunshine from CO2.
Collapse
Affiliation(s)
- Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qingyan Pan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Naixiu Ding
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhang Heng Road, Pudong New District, Shanghai 201204, China
| | - Zhaohui Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changchao Jia
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
19
|
Yuan B, Mahor D, Fei Q, Wever R, Alcalde M, Zhang W, Hollmann F. Water-Soluble Anthraquinone Photocatalysts Enable Methanol-Driven Enzymatic Halogenation and Hydroxylation Reactions. ACS Catal 2020; 10:8277-8284. [PMID: 32802571 PMCID: PMC7418218 DOI: 10.1021/acscatal.0c01958] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Indexed: 02/06/2023]
Abstract
![]()
Peroxyzymes
simply use H2O2 as a cosubstrate
to oxidize a broad range of inert C–H bonds. The lability of
many peroxyzymes against H2O2 can be addressed
by a controlled supply of H2O2, ideally in situ.
Here, we report a simple, robust, and water-soluble anthraquinone
sulfonate (SAS) as a promising organophotocatalyst to drive both haloperoxidase-catalyzed
halogenation and peroxygenase-catalyzed oxyfunctionalization reactions.
Simple alcohols, methanol in particular, can be used both as a cosolvent
and an electron donor for H2O2 generation. Very
promising turnover numbers for the biocatalysts of up to 318 000
have been achieved.
Collapse
Affiliation(s)
- Bo Yuan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Durga Mahor
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ron Wever
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Wuyuan Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
20
|
Choi DS, Kim J, Hollmann F, Park CB. Solar‐Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Angew Chem Int Ed Engl 2020; 59:15886-15890. [DOI: 10.1002/anie.202006893] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Da Som Choi
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| |
Collapse
|
21
|
Choi DS, Kim J, Hollmann F, Park CB. Solar‐Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Da Som Choi
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 335 Science Road Daejeon 34141 Republic of Korea
| |
Collapse
|
22
|
Kuk SK, Jang J, Kim J, Lee Y, Kim YS, Koo B, Lee YW, Ko JW, Shin B, Lee JK, Park CB. CO 2 -Reductive, Copper Oxide-Based Photobiocathode for Z-Scheme Semi-Artificial Leaf Structure. CHEMSUSCHEM 2020; 13:2940-2944. [PMID: 32180371 DOI: 10.1002/cssc.202000459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Green plants convert sunlight into high-energy chemicals by coupling solar-driven water oxidation in the Z-scheme and CO2 fixation in the Calvin cycle. In this study, formate dehydrogenase from Clostridium ljungdahlii (ClFDH) is interfaced with a TiO2 -coated CuFeO2 and CuO mixed (ClFDH-TiO2 |CFO) electrode. In this biohybrid photocathode, the TiO2 layer enhances the photoelectrochemical (PEC) stability of the labile CFO photocathode and facilitates the transfer of photoexcited electrons from the CFO to ClFDH. Furthermore, inspired by the natural photosynthetic scheme, the photobiocathode is combined with a water-oxidizing, FeOOH-coated BiVO4 (FeOOH|BiVO4 ) photoanode to assemble a wireless Z-scheme biocatalytic PEC device as a semi-artificial leaf. The leaf-like structure effects a bias-free biocatalytic CO2 -to-formate conversion under visible light. Its rate of formate production is 2.45 times faster than that without ClFDH. This work is the first example of a wireless solar-driven semi-biological PEC system for CO2 reduction that uses water as an electron feedstock.
Collapse
Affiliation(s)
- Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Jinha Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Youngjun Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 143-701, Republic of Korea
| | - Young Sin Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 143-701, Republic of Korea
| | - Bonhyeong Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Yang Woo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Jong Wan Ko
- Korea Institute of Industrial Technology (KITECH), 55 Jongga-ro, Ulsan, 44413, Republic of Korea
| | - Byungha Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 143-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
23
|
Wang D, Lee SH, Kim J, Park CB. "Waste to Wealth": Lignin as a Renewable Building Block for Energy Harvesting/Storage and Environmental Remediation. CHEMSUSCHEM 2020; 13:2807-2827. [PMID: 32180357 DOI: 10.1002/cssc.202000394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 05/13/2023]
Abstract
Lignin is the second most earth-abundant biopolymer having aromatic unit structures, but it has received less attention than other natural biomaterials. Recent advances in the development of lignin-based materials, such as mesoporous carbon, flexible thin films, and fiber matrix, have found their way into applications to photovoltaic devices, energy-storage systems, mechanical energy harvesters, and catalytic components. In this Review, we summarize and suggest another dimension of lignin valorization as a building block for the synthesis of functional materials in the fields of energy and environmental applications. We cover lignin-based materials in the photovoltaic and artificial photosynthesis for solar energy conversion applications. The most recent technological evolution in lignin-based triboelectric nanogenerators is summarized from its fundamental properties to practical implementations. Lignin-derived catalysts for solar-to-heat conversion and oxygen reduction are discussed. For energy-storage applications, we describe the utilization of lignin-based materials in lithium-ion rechargeable batteries and supercapacitors (e.g., electrodes, binders, and separators). We also summarize the use of lignin-based materials as heavy-metal adsorbents for environmental remediation. This Review paves the way to future potentials and opportunities of lignin as a renewable material for energy and environmental applications.
Collapse
Affiliation(s)
- Ding Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Korea
| |
Collapse
|
24
|
Ibrahim I, Lim HN, Huang NM, Jiang ZT, Altarawneh M. Selective and sensitive visible-light-prompt photoelectrochemical sensor of Cu 2+ based on CdS nanorods modified with Au and graphene quantum dots. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122248. [PMID: 32062348 DOI: 10.1016/j.jhazmat.2020.122248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Nowadays, increasing the risk for copper leaching into the drinking water in homes, hotels and schools has become unresolved issues all around the countries such as Canada, the United States, and Malaysia. The leaching of copper in tap water is due to a combination of acidic water, damaged pipes, and corroded plumbing fixtures. To remedy this global problem, a triple interconnected structure of CdS/Au/GQDs was designed as a photo-to-electron conversion medium for a real time and selective visible-light-prompt photoelectrochemical (PEC) sensor for Cu2+ ions in real water samples. The synergistic interaction of the CdS/Au/GQDs enabled the smooth transportation of charge carriers to the charge collector and provided a channel to inhibit the charge recombination reaction. Thus, a detection limit of 2.27 nM was obtained, which is 10,000 fold lower than that of WHO's Guidelines for Drinking-water Quality (∼30 μM). The photocurrent reduction was negligible after 30 days of storage under ambient conditions, suggesting the high stability of photoelectrode. Moreover, the real-time monitoring of Cu2+ ions in real samples was performed with satisfactory results, confirming the capability of the investigated photoelectrode as the most practical detector for trace amounts of Cu2+ ions.
Collapse
Affiliation(s)
- Izwaharyanie Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hong Ngee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nay Ming Huang
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Tao Jiang
- School of Engineering & Information Technology, Murdoch University, Murdoch, WA 6150, Australia
| | - Mohammednoor Altarawneh
- School of Engineering & Information Technology, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
25
|
Feyza Özgen F, Runda ME, Burek BO, Wied P, Bloh JZ, Kourist R, Schmidt S. Artifizielle Lichtsammelkomplexe ermöglichen Rieske‐Oxygenase‐ katalysierte Hydroxylierungen in nicht‐photosynthetischen Zellen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- F. Feyza Özgen
- Institute für Molekulare Biotechnologie Technische Universität Graz Petersgasse 14/1 8010 Graz Österreich
| | - Michael E. Runda
- Institute für Molekulare Biotechnologie Technische Universität Graz Petersgasse 14/1 8010 Graz Österreich
| | - Bastien O. Burek
- DECHEMA-Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Deutschland
| | - Peter Wied
- Institute für Molekulare Biotechnologie Technische Universität Graz Petersgasse 14/1 8010 Graz Österreich
| | - Jonathan Z. Bloh
- DECHEMA-Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Deutschland
| | - Robert Kourist
- Institute für Molekulare Biotechnologie Technische Universität Graz Petersgasse 14/1 8010 Graz Österreich
| | - Sandy Schmidt
- Institute für Molekulare Biotechnologie Technische Universität Graz Petersgasse 14/1 8010 Graz Österreich
| |
Collapse
|
26
|
Feyza Özgen F, Runda ME, Burek BO, Wied P, Bloh JZ, Kourist R, Schmidt S. Artificial Light-Harvesting Complexes Enable Rieske Oxygenase Catalyzed Hydroxylations in Non-Photosynthetic cells. Angew Chem Int Ed Engl 2020; 59:3982-3987. [PMID: 31850622 PMCID: PMC7065155 DOI: 10.1002/anie.201914519] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 01/27/2023]
Abstract
In this study, we coupled a well-established whole-cell system based on E. coli via light-harvesting complexes to Rieske oxygenase (RO)-catalyzed hydroxylations in vivo. Although these enzymes represent very promising biocatalysts, their practical applicability is hampered by their dependency on NAD(P)H as well as their multicomponent nature and intrinsic instability in cell-free systems. In order to explore the boundaries of E. coli as chassis for artificial photosynthesis, and due to the reported instability of ROs, we used these challenging enzymes as a model system. The light-driven approach relies on light-harvesting complexes such as eosin Y, 5(6)-carboxyeosin, and rose bengal and sacrificial electron donors (EDTA, MOPS, and MES) that were easily taken up by the cells. The obtained product formations of up to 1.3 g L-1 and rates of up to 1.6 mm h-1 demonstrate that this is a comparable approach to typical whole-cell transformations in E. coli. The applicability of this photocatalytic synthesis has been demonstrated and represents the first example of a photoinduced RO system.
Collapse
Affiliation(s)
- F. Feyza Özgen
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 14/18010GrazAustria
| | - Michael E. Runda
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 14/18010GrazAustria
| | - Bastien O. Burek
- DECHEMA-ForschungsinstitutTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Peter Wied
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 14/18010GrazAustria
| | - Jonathan Z. Bloh
- DECHEMA-ForschungsinstitutTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 14/18010GrazAustria
| | - Sandy Schmidt
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 14/18010GrazAustria
| |
Collapse
|
27
|
Jia C, Hu W, Zhang Y, Teng C, Chen Z, Liu J. Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00182a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A graphitic carbon nitride film electrode could be assembled at an air/water interface from nanosheets which exhibits improved photoelectrochemical coenzyme regeneration by further coupling with graphene during the interfacial self-assembly.
Collapse
Affiliation(s)
- Changchao Jia
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Wenjuan Hu
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Chao Teng
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Zupeng Chen
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Zürich
- Switzerland
| | - Jian Liu
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| |
Collapse
|
28
|
Feldner T, Wolfrum M, Richert C. Turning DNA Binding Motifs into a Material for Flow Cells. Chemistry 2019; 25:15288-15294. [PMID: 31483908 PMCID: PMC6916365 DOI: 10.1002/chem.201903631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/03/2019] [Indexed: 01/18/2023]
Abstract
Nanoscale assemblies of DNA strands are readily designed and can be generated in a wide range of shapes and sizes. Turning them into solids that bind biomolecules reversibly, so that they can act as active material in flow cells, is a challenge. Among the biomolecular ligands, cofactors are of particular interest because they are often the most expensive reagents of biochemical transformations, for which controlled release and recycling are desirable. We have recently described DNA triplex motifs that bind adenine-containing cofactors, such as NAD, FAD and ATP, reversibly with low micromolar affinity. We sought ways to convert the soluble DNA motifs into a macroporous solid for cofactor binding. While assemblies of linear and branched DNA motifs produced hydrogels with undesirable properties, long DNA triplexes treated with protamine gave materials suitable for flow cells. Using exchangeable cells in a flow system, thermally controlled loading and discharge were demonstrated. Employing a flow cell loaded with ATP, bioluminescence was induced through thermal release of the cofactor. The results show that materials generated from functional DNA structures can be successfully employed in macroscopic devices.
Collapse
Affiliation(s)
- Tobias Feldner
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Manpreet Wolfrum
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Clemens Richert
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
29
|
Choi DS, Lee H, Tieves F, Lee YW, Son EJ, Zhang W, Shin B, Hollmann F, Park CB. Bias-Free In Situ H2O2 Generation in a Photovoltaic-Photoelectrochemical Tandem Cell for Biocatalytic Oxyfunctionalization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04454] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Hojin Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Yang Woo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Eun Jin Son
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Byungha Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|
30
|
Kim J, Lee SH, Tieves F, Paul CE, Hollmann F, Park CB. Nicotinamide adenine dinucleotide as a photocatalyst. SCIENCE ADVANCES 2019; 5:eaax0501. [PMID: 31334353 PMCID: PMC6641943 DOI: 10.1126/sciadv.aax0501] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/14/2019] [Indexed: 05/15/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a key redox compound in all living cells responsible for energy transduction, genomic integrity, life-span extension, and neuromodulation. Here, we report a new function of NAD+ as a molecular photocatalyst in addition to the biological roles. Our spectroscopic and electrochemical analyses reveal light absorption and electronic properties of two π-conjugated systems of NAD+. Furthermore, NAD+ exhibits a robust photostability under UV-Vis-NIR irradiation. We demonstrate photocatalytic redox reactions driven by NAD+, such as O2 reduction, H2O oxidation, and the formation of metallic nanoparticles. Beyond the traditional role of NAD+ as a cofactor in redox biocatalysis, NAD+ executes direct photoactivation of oxidoreductases through the reduction of enzyme prosthetic groups. Consequently, the synergetic integration of biocatalysis and photocatalysis using NAD+ enables solar-to-chemical conversion with the highest-ever-recorded turnover frequency and total turnover number of 1263.4 hour-1 and 1692.3, respectively, for light-driven biocatalytic trans-hydrogenation.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Caroline E. Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
- Corresponding author.
| |
Collapse
|
31
|
Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00656] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Valentina Jurkaš
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - F. Feyza Özgen
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Hanna C. Büchsenschütz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|