1
|
Jiao YX, Zhou YM, Zhou ZW, He Y, Liu S, Xu XT, Ji K, Chen JJ. Histone acetylation alteration by KAT6A inhibitor WM-1119 suppresses IgE-mediated mast cell activation and allergic inflammation via reduction in AP-1 signaling. Biochem Pharmacol 2024; 232:116732. [PMID: 39709039 DOI: 10.1016/j.bcp.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Activation of immunoglobulin E (IgE)-associated mast cells (MCs) triggers the onset of pro-inflammatory signals associated with type I allergic diseases. Although histone acetylation changes have been associated with inflammatory diseases, the impact of lysine-acetyltransferase (KAT) inhibitors on IgE-mediated MCs function is unclear. Potential anti-allergic effects of the KAT6A inhibitor WM-1119 on IgE-mediated MCs activation and allergic inflammation were examined in this study. WM-1119 was observed to reduce IgE-mediated degranulation in rat basophilic leukemia-2H3 cells (RBLs) and murine bone marrow-derived mast cells (BMMCs), as demonstrated by reduced the release of β-hexosaminidase (β-hex)or histamine(HA) and decreased inflammatory cytokines. Additionally, WM-1119 attenuated allergic responses in IgE-induced passive cutaneous anaphylaxis (PCA) and active systemic anaphylaxis (ASA) mice. No WM-1119 effects on histamine-induced hypothermia in mice were observed. Mechanically, WM-1119 reduced levels of histone H3 lysine 14 acetylation (H3K14ac) and H3K27ac, while also reducing IgE-induced MAPK or NF-κB activity. Moreover, WM-1119 reduced activator protein-1 (AP-1) activity in a manner involving inhibition of c-Fos transcription and translation together with decreased AP-1 binding of its downstream promoters. KAT6A knockdown in MCs also reduced AP-1 activity by inhibiting c-Fos expression. H3K14ac enrichment in the Fos promoter was observed, indicating that H3K14ac may regulate c-Fos expression. In conclusion, KAT6A inhibition or knockdown was shown to reduce IgE-mediated MCs activation and allergic inflammation through a mechanism involving changes in c-Fos expression and downstream AP-1 activity consequent to down-regulation of histone acetylation. KAT6A inhibition may represent a new treatment strategy for suppressing MCs in treating allergic diseases.
Collapse
Affiliation(s)
- Yu-Xin Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yan-Mei Zhou
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi-Wen Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yong He
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China
| | - Shan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xue-Ting Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Dent SYR. KAT tales: Functions of Gcn5 and PCAF lysine acetyltransferases in SAGA and ATAC. J Biol Chem 2024; 300:107744. [PMID: 39222683 PMCID: PMC11439848 DOI: 10.1016/j.jbc.2024.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The Allis group identified Gcn5 as the first transcription-related lysine acetyltransferase in 1996, providing a molecular "missing link" between chromatin organization and gene regulation. This review will focus on functions subsequently identified for Gcn5 and the closely related PCAF protein, in the context of two major complexes, SAGA and ATAC, and how the study of these enzymes informs long standing questions regarding the importance of lysine acetylation.
Collapse
Affiliation(s)
- Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer, Center for Cancer Epigenetics, University of Texas M.D. Anderson/UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA.
| |
Collapse
|
3
|
Chen X, Crawford MC, Xiong Y, Shaik AB, Suazo KF, Bauer LG, Penikalapati MS, Williams JH, Huber KVM, Andressen T, Swenson RE, Meier JL. Paralogue-Selective Degradation of the Lysine Acetyltransferase EP300. JACS AU 2024; 4:3094-3103. [PMID: 39211607 PMCID: PMC11350577 DOI: 10.1021/jacsau.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
The transcriptional coactivators EP300 and CREBBP are critical regulators of gene expression that share high sequence identity but exhibit nonredundant functions in basal and pathological contexts. Here, we report the development of a bifunctional small molecule, MC-1, capable of selectively degrading EP300 over CREBBP. Using a potent aminopyridine-based inhibitor of the EP300/CREBBP catalytic domain in combination with a VHL ligand, we demonstrate that MC-1 preferentially degrades EP300 in a proteasome-dependent manner. Mechanistic studies reveal that selective degradation cannot be predicted solely by target engagement or ternary complex formation, suggesting additional factors govern paralogue-specific degradation. MC-1 inhibits cell proliferation in a subset of cancer cell lines and provides a new tool to investigate the noncatalytic functions of EP300 and CREBBP. Our findings expand the repertoire of EP300/CREBBP-targeting chemical probes and offer insights into the determinants of selective degradation of highly homologous proteins.
Collapse
Affiliation(s)
- Xuemin Chen
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - McKenna C. Crawford
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ying Xiong
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Anver Basha Shaik
- Chemistry
and Synthesis Center, National Heart Lung
and Blood Institute, Rockville, Maryland 20850, United States
| | - Kiall F. Suazo
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Ludwig G. Bauer
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Manini S. Penikalapati
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joycelyn H. Williams
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kilian V. M. Huber
- Centre
for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Thorkell Andressen
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21701, United States
| | - Rolf E. Swenson
- Chemistry
and Synthesis Center, National Heart Lung
and Blood Institute, Rockville, Maryland 20850, United States
| | - Jordan L. Meier
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
4
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
5
|
Chen X, Crawford MC, Xiong Y, Shaik AB, Suazo KF, Penkalapati MS, Williams JH, Andressen T, Swenson RE, Meier JL. Paralogue-selective degradation of the lysine acetyltransferase EP300. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592353. [PMID: 38746397 PMCID: PMC11092752 DOI: 10.1101/2024.05.03.592353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The transcriptional coactivators EP300 and CREBBP are critical regulators of gene expression that share high sequence identity but exhibit non-redundant functions in basal and pathological contexts. Here, we report the development of a bifunctional small molecule, MC-1, capable of selectively degrading EP300 over CREBBP. Using a potent aminopyridine-based inhibitor of the EP300/CREBBP catalytic domain in combination with a VHL ligand, we demonstrate that MC-1 preferentially degrades EP300 in a proteasome-dependent manner. Mechanistic studies reveal that selective degradation cannot be predicted solely by target engagement or ternary complex formation, suggesting additional factors govern paralogue-specific degradation. MC-1 inhibits cell proliferation in a subset of cancer cell lines and provides a new tool to investigate the non-catalytic functions of EP300 and CREBBP. Our findings expand the repertoire of EP300/CREBBP-targeting chemical probes and offer insights into the determinants of selective degradation of highly homologous proteins.
Collapse
Affiliation(s)
- Xuemin Chen
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | | | - Ying Xiong
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Anver Basha Shaik
- Chemistry and Synthesis Center, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Kiall F. Suazo
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | | | | | - Thorkell Andressen
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Jordan L. Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
6
|
Zohourian N, Brown JA. Current trends in clinical trials and the development of small molecule epigenetic inhibitors as cancer therapeutics. Epigenomics 2024; 16:671-680. [PMID: 38639711 PMCID: PMC11233149 DOI: 10.2217/epi-2023-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Epigenetic mechanisms control and regulate normal chromatin structure and gene expression patterns, with epigenetic dysregulation observed in many different cancer types. Importantly, epigenetic modifications are reversible, offering the potential to silence oncogenes and reactivate tumor suppressors. Small molecule drugs manipulating these epigenetic mechanisms are at the leading edge of new therapeutic options for cancer treatment. The clinical use of histone deacetyltransferases inhibitors (HDACi) demonstrates the effectiveness of targeting epigenetic mechanisms for cancer treatment. Notably, the development of new classes of inhibitors, including lysine acetyltransferase inhibitors (KATi), are the future of epigenetic-based therapeutics. We outline the progress of current classes of small molecule epigenetic drugs for use against cancer (preclinical and clinical) and highlight the potential market growth in epigenetic-based therapeutics.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
| | - James Al Brown
- Department of Biological Science, University of Limerick, Limerick, V94 T9PX, Ireland
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
7
|
Fu JY, Huang SJ, Wang BL, Yin JH, Chen CY, Xu JB, Chen YL, Xu S, Dong T, Zhou HN, Ma XY, Pu YP, Li H, Yang XJ, Xie LS, Wang ZJ, Luo Q, Shao YX, Ye L, Zong ZR, Wei XD, Xiao WW, Niu ST, Liu YM, Xu HP, Yu CQ, Duan SZ, Zheng LY. Lysine acetyltransferase 6A maintains CD4 + T cell response via epigenetic reprogramming of glucose metabolism in autoimmunity. Cell Metab 2024; 36:557-574.e10. [PMID: 38237601 DOI: 10.1016/j.cmet.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Augmented CD4+ T cell response in autoimmunity is characterized by extensive metabolic reprogramming. However, the epigenetic molecule that drives the metabolic adaptation of CD4+ T cells remains largely unknown. Here, we show that lysine acetyltransferase 6A (KAT6A), an epigenetic modulator that is clinically associated with autoimmunity, orchestrates the metabolic reprogramming of glucose in CD4+ T cells. KAT6A is required for the proliferation and differentiation of proinflammatory CD4+ T cell subsets in vitro, and mice with KAT6A-deficient CD4+ T cells are less susceptible to experimental autoimmune encephalomyelitis and colitis. Mechanistically, KAT6A orchestrates the abundance of histone acetylation at the chromatin where several glycolytic genes are located, thus affecting glucose metabolic reprogramming and subsequent CD4+ T cell responses. Treatment with KAT6A small-molecule inhibitors in mouse models shows high therapeutic value for targeting KAT6A in autoimmunity. Our study provides novel insights into the epigenetic programming of immunometabolism and suggests potential therapeutic targets for patients with autoimmunity.
Collapse
Affiliation(s)
- Jia-Yao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Shi-Jia Huang
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Bao-Li Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jun-Hao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Chang-Yu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jia-Bao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yan-Lin Chen
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Ting Dong
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hao-Nan Zhou
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Xin-Yi Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yi-Ping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hui Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Xiu-Juan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Li-Song Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Zhi-Jun Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Qi Luo
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yan-Xiong Shao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Lei Ye
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Zi-Rui Zong
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Xin-Di Wei
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Wan-Wen Xiao
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Shu-Tong Niu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yi-Ming Liu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - He-Ping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Science, Westlake University, Hangzhou 310024, China
| | - Chuang-Qi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| | - Ling-Yan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| |
Collapse
|
8
|
White J, Derheimer FA, Jensen-Pergakes K, O'Connell S, Sharma S, Spiegel N, Paul TA. Histone lysine acetyltransferase inhibitors: an emerging class of drugs for cancer therapy. Trends Pharmacol Sci 2024; 45:243-254. [PMID: 38383216 DOI: 10.1016/j.tips.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Lysine acetyltransferases (KATs) are a family of epigenetic enzymes involved in the regulation of gene expression; they represent a promising class of emerging drug targets. The frequent molecular dysregulation of these enzymes, as well as their mechanistic links to biological functions that are crucial to cancer, have led to exploration around the development of small-molecule inhibitors against KATs. Despite early challenges, recent advances have led to the development of potent and selective enzymatic and bromodomain (BRD) KAT inhibitors. In this review we discuss the discovery and development of new KAT inhibitors and their application as oncology therapeutics. Additionally, new chemically induced proximity approaches are presented, offering opportunities for unique target selectivity profiles and tissue-specific targeting of KATs. Emerging clinical data for CREB binding protein (CREBBP)/EP300 BRD inhibitors and KAT6 catalytic inhibitors indicate the promise of this target class in cancer therapeutics.
Collapse
Affiliation(s)
- Jeffrey White
- Pfizer Inc., Oncology Research Unit, San Diego, CA 92121, USA
| | | | | | - Shawn O'Connell
- Pfizer Inc., Oncology Research Unit, San Diego, CA 92121, USA
| | - Shikhar Sharma
- Pfizer Inc., Oncology Research Unit, San Diego, CA 92121, USA
| | - Noah Spiegel
- Pfizer Inc., Oncology Research Unit, San Diego, CA 92121, USA
| | - Thomas A Paul
- Pfizer Inc., Oncology Research Unit, San Diego, CA 92121, USA.
| |
Collapse
|
9
|
Liu Y, Joy ST, Henley MJ, Croskey A, Yates JA, Merajver SD, Mapp AK. Inhibition of CREB Binding and Function with a Dual-Targeting Ligand. Biochemistry 2024; 63:1-8. [PMID: 38086054 PMCID: PMC10836052 DOI: 10.1021/acs.biochem.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
CBP/p300 is a master transcriptional coactivator that regulates gene activation by interacting with multiple transcriptional activators. Dysregulation of protein-protein interactions (PPIs) between the CBP/p300 KIX domain and its activators is implicated in a number of cancers, including breast, leukemia, and colorectal cancer. However, KIX is typically considered "undruggable" because of its shallow binding surfaces lacking both significant topology and promiscuous binding profiles. We previously reported a dual-targeting peptide (MybLL-tide) that inhibits the KIX-Myb interaction with excellent specificity and potency. Here, we demonstrate a branched, second-generation analogue, CREBLL-tide, that inhibits the KIX-CREB PPI with higher potency and selectivity. Additionally, the best of these CREBLL-tide analogues shows excellent and selective antiproliferation activity in breast cancer cells. These results indicate that CREBLL-tide is an effective tool for assessing the role of KIX-activator interactions in breast cancer and expanding the dual-targeting strategy for inhibiting KIX and other coactivators that contain multiple binding surfaces.
Collapse
Affiliation(s)
- Yejun Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen T Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayza Croskey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joel A Yates
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Sofia D Merajver
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Chen G, Bao B, Cheng Y, Tian M, Song J, Zheng L, Tong Q. Acetyl-CoA metabolism as a therapeutic target for cancer. Biomed Pharmacother 2023; 168:115741. [PMID: 37864899 DOI: 10.1016/j.biopha.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
Acetyl-coenzyme A (acetyl-CoA), an essential metabolite, not only takes part in numerous intracellular metabolic processes, powers the tricarboxylic acid cycle, serves as a key hub for the biosynthesis of fatty acids and isoprenoids, but also serves as a signaling substrate for acetylation reactions in post-translational modification of proteins, which is crucial for the epigenetic inheritance of cells. Acetyl-CoA links lipid metabolism with histone acetylation to create a more intricate regulatory system that affects the growth, aggressiveness, and drug resistance of malignancies such as glioblastoma, breast cancer, and hepatocellular carcinoma. These fascinating advances in the knowledge of acetyl-CoA metabolism during carcinogenesis and normal physiology have raised interest regarding its modulation in malignancies. In this review, we provide an overview of the regulation and cancer relevance of main metabolic pathways in which acetyl-CoA participates. We also summarize the role of acetyl-CoA in the metabolic reprogramming and stress regulation of cancer cells, as well as medical application of inhibitors targeting its dysregulation in therapeutic intervention of cancers.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|
11
|
Crawford MC, Tripu DR, Barritt SA, Jing Y, Gallimore D, Kales SC, Bhanu NV, Xiong Y, Fang Y, Butler KAT, LeClair CA, Coussens NP, Simeonov A, Garcia BA, Dibble CC, Meier JL. Comparative Analysis of Drug-like EP300/CREBBP Acetyltransferase Inhibitors. ACS Chem Biol 2023; 18:2249-2258. [PMID: 37737090 PMCID: PMC11059198 DOI: 10.1021/acschembio.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The human acetyltransferase paralogues EP300 and CREBBP are master regulators of lysine acetylation whose activity has been implicated in various cancers. In the half-decade since the first drug-like inhibitors of these proteins were reported, three unique molecular scaffolds have taken precedent: an indane spiro-oxazolidinedione (A-485), a spiro-hydantoin (iP300w), and an aminopyridine (CPI-1612). Despite increasing use of these molecules to study lysine acetylation, the dearth of data regarding their relative biochemical and biological potencies makes their application as chemical probes a challenge. To address this gap, here we present a comparative study of drug-like EP300/CREBBP acetyltransferase inhibitors. First, we determine the biochemical and biological potencies of A-485, iP300w, and CPI-1612, highlighting the increased potencies of the latter two compounds at physiological acetyl-CoA concentrations. Cellular evaluation shows that inhibition of histone acetylation and cell growth closely aligns with the biochemical potencies of these molecules, consistent with an on-target mechanism. Finally, we demonstrate the utility of comparative pharmacology by using it to investigate the hypothesis that increased CoA synthesis caused by knockout of PANK4 can competitively antagonize the binding of EP300/CREBBP inhibitors and demonstrate proof-of-concept photorelease of a potent inhibitor molecule. Overall, our study demonstrates how knowledge of the relative inhibitor potency can guide the study of EP300/CREBBP-dependent mechanisms and suggests new approaches to target delivery, thus broadening the therapeutic window of these preclinical epigenetic drug candidates.
Collapse
Affiliation(s)
- McKenna C Crawford
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Deepika R Tripu
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yihang Jing
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Diamond Gallimore
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ying Xiong
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kamaria A T Butler
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Nathan P Coussens
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jordan L Meier
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
12
|
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules that induce the ternary complex formation between a protein-of-interest (POI) and an E3 ligase, leading to targeted polyubiquitination and degradation of the POI. Particularly, PROTACs have the distinct advantage of targeting both canonical and noncanonical functions of epigenetic targets over traditional inhibitors, which typically target canonical functions only, resulting in greater therapeutic efficacy. In this review, we methodically analyze published PROTAC degraders of epigenetic writer, reader, and eraser proteins and their in vitro and in vivo effects. We highlight the mechanism of action of these degraders and their advantages in targeting both canonical and noncanonical functions of epigenetic targets in the context of cancer treatment. Furthermore, we present a future outlook for this exciting field. Overall, pharmacological degradation of epigenetic targets has emerged as an effective and attractive strategy to thwart cancer progression and growth.
Collapse
Affiliation(s)
- Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| |
Collapse
|
13
|
Crawford MC, Tripu DR, Barritt SA, Jing Y, Gallimore D, Kales SC, Bhanu NV, Xiong Y, Fang Y, Butler KAT, LeClair CA, Coussens NP, Simeonov A, Garcia BA, Dibble CC, Meier JL. Comparative analysis of drug-like EP300/CREBBP acetyltransferase inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540887. [PMID: 37292747 PMCID: PMC10245587 DOI: 10.1101/2023.05.15.540887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human acetyltransferase paralogs EP300 and CREBBP are master regulators of lysine acetylation whose activity has been implicated in various cancers. In the half-decade since the first drug-like inhibitors of these proteins were reported, three unique molecular scaffolds have taken precedent: an indane spiro-oxazolidinedione (A-485), a spiro-hydantoin (iP300w), and an aminopyridine (CPI-1612). Despite increasing use of these molecules to study lysine acetylation, the dearth of data regarding their relative biochemical and biological potencies makes their application as chemical probes a challenge. To address this gap, here we present a comparative study of drug-like EP300/CREBBP acetyltransferase inhibitors. First, we determine the biochemical and biological potencies of A-485, iP300w, and CPI-1612, highlighting the increased potency of the latter two compounds at physiological acetyl-CoA concentrations. Cellular evaluation shows that inhibition of histone acetylation and cell growth closely aligns with the biochemical potencies of these molecules, consistent with an on-target mechanism. Finally, we demonstrate the utility of comparative pharmacology by using it to investigate the hypothesis that increased CoA synthesis caused by knockout of PANK4 can competitively antagonize binding of EP300/CREBBP inhibitors and demonstrate proof-of-concept photorelease of a potent inhibitor molecule. Overall, our study demonstrates how knowledge of relative inhibitor potency can guide the study of EP300/CREBBP-dependent mechanisms and suggests new approaches to target delivery, thus broadening the therapeutic window of these preclinical epigenetic drug candidates.
Collapse
Affiliation(s)
- McKenna C Crawford
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Deepika R Tripu
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yihang Jing
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Diamond Gallimore
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ying Xiong
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Kamaria A T Butler
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Nathan P Coussens
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jordan L Meier
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|