1
|
Zeng Z, Ni J, Huang Z, Tan Q. Expression and functional analysis of Fushi Tarazu transcription factor 1 (FTZ-F1) in the regulation of steroid hormones during the gonad development of Fujian Oyster, Crassostrea angulata. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111668. [PMID: 38797241 DOI: 10.1016/j.cbpa.2024.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Crassostrea angulata, a major shellfish cultivated in Southern China, has experienced a notable surge in commercial value in recent years. Understanding the molecular mechanisms governing their reproductive processes holds significant implications for advancing aquaculture practices. In this study, we cloned the orphan nuclear receptor gene, Fushi Tarazu transcription factor 1 (FTZ-F1), of C. angulata and investigated its functional role in the gonadal development. The full-length cDNA of FTZ-F1 spans 2357 bp and encodes a protein sequence of 530 amino acids. Notably, the amino acid sequence of FTZ-F1 in C. angulata shares remarkable similarity with its homologues in other species, particularly in the DNA-binding region (>90%) and ligand-binding region (>44%). In C. angulata, the highest expression level of FTZ-F1 was observed in the ovary, exhibiting more than a 200-fold increase during the maturation stage compared to the initiation stage (P < 0.001). Specifically, FTZ-F1 was mainly expressed in the follicular cells surrounding the oocytes of C. angulata. Upon inhibiting FTZ-F1 gene expression in C. angulata through RNA interference (RNAi), a substantial reduction in the expression of genes involved in the synthesis of sex steroids in the gonads, including 3β-HSD, Cyp17, and follistatin, was observed. In addition, estradiol (E2) and testosterone (T) levels also showed a decrease upon FTZ-F1 silencing, resulting in a delayed gonadal development. These results indicate that FTZ-F1 acts as a steroidogenic factor, participating in the synthesis and regulation of steroid hormones and thus playing an important role in the reproductive and endocrine systems within oysters.
Collapse
Affiliation(s)
- Zhen Zeng
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Jianbin Ni
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Qianglai Tan
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen 361023, China.
| |
Collapse
|
2
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA. Towards a comprehensive understanding of the muscle proteome in Schizothorax labiatus: Insights from seasonal variations, metabolic responses, and reproductive signatures in the River Jhelum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170840. [PMID: 38340828 DOI: 10.1016/j.scitotenv.2024.170840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Proteomics is a very advanced technique used for defining correlations, compositions and activities of hundreds of proteins from organisms as well as effectively used in identifying particular proteins with varying peptide lengths and amino acid counts. In the present study, an endeavour has been put forth to create muscle proteome expression of snow trout, Schizothorax labiatus. Liquid chromatography-mass spectrometry (LC-MS) using label free quantification (LFQ) technique has extensively been carried out to explore changes in protein metabolism and its composition to discriminate across species, clarify functions and pinpoint protein biomarkers from organisms. In LFQ technique, the abundances of proteins are determined based on the signal intensities of their corresponding peptides in mass spectrometry. The main benefit of using this method is that it doesn't require pre-labelling proteins with isotopic tags, which streamlines the experimental procedure and gets rid of any bias that might have been caused by the labelling process. LFQ techniques frequently offer a wider dynamic range, making it possible to detect and quantify proteins over a broad range of abundances obtained from the complex biological materials including fish muscle. The results of proteomic analysis could provide an insight in understanding about how various proteins are expressed in response to environmental challenges. For proteomic study, two different weight groups of S. labiatus were taken from River Jhelum based on biological, physiological and logistical factors. These groups corresponded to different life stages, such as younger size and adults/brooders in order to capture potential variations in the muscle proteome related to growth and development. The proteomic analysis of S. labiatus depicted that an overall of 220 proteins in male and 228 in female fish of group 1 were noted. However, when male and female S. labiatus were examined based on spectral count and peptide abundance using ProteinLynx Global Software, a total of 10 downregulated and 32 upregulated proteins were found. In group 2 of S. labiatus, a total of 249 proteins in male and 301 in female fish were documented. When the two genders of S. labiatus were likened to one another by LFQ technique, a total of 41 downregulated and 06 upregulated proteins were identified. The variability in the protein numbers between two fish weight groups reflected biological differences, influenced by factors such as age, developmental stages, physiological condition and reproductive activities. During the study, it was observed that S. labiatus exhibited downregulated levels of proteins that were involved in feeding and growth. The contributing factors to this manifestation could be explained by lower feeding and metabolic activity of fish and decreased food availability during winter in River Jhelum. Contrarily, the fish immune response proteins were found to be significantly over-expressed in S. labiatus, indicating that the environment was more likely to undergo increased microbial infection, pollution load and anthropogenic activities. In addition, it was also discovered that there was an upregulated expression of the reproductive proteins in S. labiatus, which could be linked to the fish's pre-spawning time as the fish used in this study was collected in the winter season which is the pre-spawning period of the fish. Therefore, the present study would be useful in obtaining new insights regarding the molecular makeup of species, methods of adaptation and reactions to environmental stresses. This information contributes to our understanding of basic science and may have applications in environmental monitoring, conservation and preservation of fish species.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatin Raza Khan
- Departmentof Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, India
| |
Collapse
|
3
|
Dong M, Song H, Xie C, Zhang Y, Huang H, Zhang H, Wei L, Wang X. Polystyrene microplastics photo-aged under simulated sunlight influences gonadal development in the Pacific oyster. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106367. [PMID: 38277815 DOI: 10.1016/j.marenvres.2024.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Microplastics (MPs) aging in natural ecosystems are caused by solar irradiation. Photo-aged MPs in aquatic systems are a major threat to molluscs. In this study, polystyrene (PS) photo-aging was simulated using a sunlight simulator. After exposure of Crassostrea gigas to photo-aged PS, a decreased gonadosomatic index, coupled with histological alterations, suggested an inhibitory effect on the gonadal development of bivalves. As the concentration of aged PS increased, the inhibitory effects on gonadal development became more severe. The sex hormone (testosterone and estradiol) and energy metabolism (glycogen, lipid, and protein content) differences between C. gigas males and females suggested a disruption of sex hormonal homeostasis and a shift in energy allocation strategy, which may have affected reproduction, especially female oysters. In addition, the substantial downregulation of SOX-8, SOX-E, Piwi1, and TGF-β genes may be contributing factors causing the inhibitory effect of aged PS on the gonadal development of C. gigas. This study provides an essential reference for evaluating the reproductive health risks posed by aged MPs and offers novel insights and perspectives for exploring the impact of MPs under natural conditions.
Collapse
Affiliation(s)
- MeiYun Dong
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - HongCe Song
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - ChaoYi Xie
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - YuXuan Zhang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Haifeng Huang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Haikun Zhang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - XiaoTong Wang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| |
Collapse
|
4
|
Zhou Y, Gong Y, Liu Z, Wang L, Ai C, Wen C, Zhu T, Song S. Digestion behavior of a polysaccharide from Cyclina sinensis: An explanation for the discrepancy in its immunostimulatory activities in vitro and in vivo. J Food Sci 2022; 87:3223-3234. [PMID: 35703576 DOI: 10.1111/1750-3841.16227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Although numerous polysaccharides have demonstrated potential immunostimulatory activities in in vitro models, only a few of them successfully stimulate the immune system in vivo. In order to explore the possible reasons for the activity loss of polysaccharides in in vivo models, the immunostimulatory activities in vitro and in vivo and the digestion behavior of a polysaccharide from Cyclina sinensis (CSP) were investigated in the present study. CSP showed obvious immunostimulatory activity in a RAW 264.7 cell model. In in vitro experiment, CSP did not exhibit cytotoxicity at concentrations of ≤10 µg/ml, and significantly increased NO production at concentrations of 0.4-10 µg/ml, suggesting CSP processes immunostimulatory activity in vitro. Further investigation using simulated digestion model indicated that CSP could bind with the protein in the digestive fluids to form precipitate in both the stomach and small intestine, and it could be seriously degraded by amylase during the digestion in the small intestine. Furthermore, the in vivo immunostimulatory activity evaluation demonstrated CSP had no effect on immunosuppressed mice as indicated by the body weight, thymus and spleen indexes, and TNF-α, IL-1β, IL-6, and IL-10 mRNA expression. Thus, the present study indicates that the degradation and precipitation of CSP in the digestive tract are the possible reasons for the activity loss of CSP after digestion. PRACTICAL APPLICATION: Cyclina sinensis is the common aquatic shellfish in China and plays an important role in the marine aquaculture industry. Cyclina sinensis polysaccharide (CSP) is the main active component of C. sinensis. The structure characterization and immunostimulatory activity of a purified fraction of CSP (CSP-1) and the effect of digestion on CSP and its immunostimulatory activity were studied. The result of this study promotes the understanding of the nutritional function effects and provides a scientific reference for the rational development and high-value utilization of C. sinensis.
Collapse
Affiliation(s)
- Youxian Zhou
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Yue Gong
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhengqi Liu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Lilong Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Chunqing Ai
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Chengrong Wen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Taihai Zhu
- Jiangsu Palarich Food Co., Ltd, Xuzhou, P. R. China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China.,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
5
|
Fan C, Liu Y, Wang Y, Zhang A, Xie W, Zhang H, Weng Q, Xu M. Expression of glycogenic genes in the oviduct of Chinese brown frog (Rana dybowskii) during pre-brumation. Theriogenology 2022; 185:78-87. [DOI: 10.1016/j.theriogenology.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
6
|
Seasonal variations in biochemical composition and nutritional quality of Crassostrea hongkongensis, in relation to the gametogenic cycle. Food Chem 2021; 356:129736. [PMID: 33831823 DOI: 10.1016/j.foodchem.2021.129736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/24/2022]
Abstract
Variations in the biochemical composition and nutritional quality with annual changes in gonad development were investigated to identify the optimal harvesting time of C. hongkongensis. The glycogen levels in the mantle, muscle, and gonad-visceral mass were significantly lower in June than in December, associated with changes in the expressions of ChGS and ChGP. Protein content consistently exceeded 52% of dry weight. The only significant change in protein levels was an increase between April and June in the gonad-visceral mass, which was associated with the gonadal transition from proliferation to maturation. Moreover, C. hongkongensis consistently had a well-balanced essential amino acid profile, meeting the essential amino acid requirements of preschool children. The lipid content and fatty acid composition of C. hongkongensis varied with the reproductive cycle, but the omega-3:omega-6 ratio was consistently higher than those of C. gigas and C. virginica. In summary, the optimal harvest time of C. hongkongensis was during the inactive stage of most gonads (from August to February at Beihai).
Collapse
|
7
|
Li B, Li L, Wang W, Meng J, Xu F, Wu F, Zhang G. Characterization of Free Fatty Acid Receptor 4 and Its Involvement in Nutritional Control and Immune Response in Pacific Oysters ( Crassostrea gigas). ACS OMEGA 2020; 5:21355-21363. [PMID: 32905352 PMCID: PMC7469124 DOI: 10.1021/acsomega.0c01325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Free fatty acid receptor 4 (FFAR4) has various physiological functions, including energy regulation and immunological homeostasis. We examined the only FFAR4 homologue in the Pacific oyster Crassostrea gigas (CgFFAR4), which functions as a sensor of long-chain fatty acids. CgFFAR4 is 1098 bp long and contains a seven-transmembrane G protein-coupled receptor domain. CgFFAR4 expression was high in the hepatopancreas, but it was downregulated after fasting, indicating that it plays an essential role in food digestion. Lipopolysaccharide stimulation downregulated CgFFAR4 level, probably as an immune response of the animal. Reduced glycogen level alongside decreased insulin receptor, insulin receptor substrate, and C. gigas glycogen synthase transcription levels after CgFFAR4 knockdown revealed that CgFFAR4 was involved in the regulation of fatty acid and glycogen levels via the insulin pathway. Accordingly, this is the first study on an invertebrate FFAR and provides new insights into the role of this receptor in immune response and nutritional control.
Collapse
Affiliation(s)
- Busu Li
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Li Li
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center
for Ocean Mega-Science, Chinese Academy
of Sciences, Qingdao 266071, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
- Laboratory
for Marine Fisheries and Aquaculture, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wei Wang
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Jie Meng
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Fei Xu
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center
for Ocean Mega-Science, Chinese Academy
of Sciences, Qingdao 266071, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Fucun Wu
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- The
Innovation of Seed Design, Chinese Academy
of Sciences, Wuhan 430072, P. R. China
| | - Guofan Zhang
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center
for Ocean Mega-Science, Chinese Academy
of Sciences, Qingdao 266071, China
- National
and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| |
Collapse
|
8
|
Koyama M, Furukawa F, Koga Y, Funayama S, Furukawa S, Baba O, Lin CC, Hwang PP, Moriyama S, Okumura SI. Gluconeogenesis and glycogen metabolism during development of Pacific abalone, Haliotis discus hannai. Am J Physiol Regul Integr Comp Physiol 2020; 318:R619-R633. [PMID: 31994899 DOI: 10.1152/ajpregu.00211.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In lecithotrophic larvae, egg yolk nutrients are essential for development. Although yolk proteins and lipids are the major nutrient sources for most animal embryos and larvae, the contribution of carbohydrates to development has been less understood. In this study, we assessed glucose and glycogen metabolism in developing Pacific abalone, a marine gastropod mollusc caught and cultured in east Asia. We found that glucose and glycogen content gradually elevated in developing abalone larvae, and coincident expression increases of gluconeogenic genes and glycogen synthase suggested abalone larvae had activated gluconeogenesis and glycogenesis during this stage. At settling, however, glycogen sharply decreased, with concomitant increases in glucose content and expression of Pyg and G6pc, suggesting the settling larvae had enhanced glycogen conversion to glucose. A liquid chromatography-mass spectrometry (LC/MS)-based metabolomic approach that detected intermediates of these pathways further supported active metabolism of glycogen. Immunofluorescence staining and in situ hybridization suggested the digestive gland has an important role as glycogen storage tissue during settlement, while many other tissues also showed a capacity to metabolize glycogen. Finally, inhibition of glycolysis affected survival of the settling veliger larvae, revealing that glucose is, indeed, an important nutrient source in settling larvae. Our results suggest glucose and glycogen are required for proper energy balance in developing abalone and especially impact survival during settling.
Collapse
Affiliation(s)
- Mugen Koyama
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | - Fumiya Furukawa
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | - Yuka Koga
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | - Shohei Funayama
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | | | - Otto Baba
- Oral and Maxillofacial Anatomy, Tokushima University Graduate School, Tokushima, Japan
| | - Ching-Chun Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | - Sei-Ichi Okumura
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| |
Collapse
|
9
|
Liu S, Li L, Meng J, Song K, Huang B, Wang W, Zhang G. Association and Functional Analyses Revealed That PPP1R3B Plays an Important Role in the Regulation of Glycogen Content in the Pacific Oyster Crassostrea gigas. Front Genet 2019; 10:106. [PMID: 30853975 PMCID: PMC6396720 DOI: 10.3389/fgene.2019.00106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
The Pacific oyster (Crassostrea gigas) is one of the most important aquaculture species worldwide. Glycogen contributes greatly to the special taste and creamy white color of oysters. Previous genome-wide association studies (GWAS) identified several single nucleotide polymorphism (SNP) sites that were strongly related to glycogen content. Genes within 100 kb upstream and downstream of the associated SNPs were screened. One gene annotated as protein phosphatase 1 regulatory subunit 3B (PPP1R3B), which can promote glycogen synthesis together with protein phosphatase 1 catalytic subunit (PPP1C) in mammals, was selected as a candidate gene in this study. First, full-length CgPPP1R3B was cloned and its function was characterized. The gene expression profiles of CgPPP1R3B in different tissues and seasons showed a close relationship to glycogen content. RNA interference (RNAi) experiments of this gene in vivo showed that decreased CgPPP1R3B levels resulted in lower glycogen contents in the experimental group than in the control group. Co-immunoprecipitation (Co-IP) and yeast two-hybrid (Y2H) assays indicated that CgPPP1R3B can interact with CgPPP1C, glycogen synthase (CgGS) and glycogen phosphorylase (CgGP), thus participating in glycogen metabolism. Co-sedimentation analysis in vitro demonstrated that the CgPPP1R3B protein can bind to glycogen molecules directly, and these results indicated the conserved function of the CgPPP1R3B protein compared to that of mammals. In addition, thirteen SNPs were precisely mapped in this gene. Ten of the thirteen SNPs were confirmed to be significantly (p < 0.05) related to glycogen content in an independent wild population (n = 288). The CgPPP1R3B levels in oysters with high glycogen content were significantly higher than those of oysters with low glycogen content, and gene expression levels were significantly associated with various genotypes of four associated SNPs (p < 0.05). The data indicated that the associated SNPs may control glycogen content by regulating CgPPP1R3B expression. These results suggest that CgPPP1R3B is an important gene for glycogen metabolic regulation and that the associated SNPs of this gene are potential markers for oyster molecular breeding for increased glycogen content.
Collapse
Affiliation(s)
- Sheng Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
10
|
Tang Y, Cui Y, De Agostini A, Zhang L. Biological mechanisms of glycan- and glycosaminoglycan-based nutraceuticals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:445-469. [DOI: 10.1016/bs.pmbts.2019.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Qin Y, Zhang Y, Ma H, Wu X, Xiao S, Li J, Mo R, Yu Z. Comparison of the Biochemical Composition and Nutritional Quality Between Diploid and Triploid Hong Kong Oysters, Crassostrea hongkongensis. Front Physiol 2018; 9:1674. [PMID: 30534082 PMCID: PMC6275301 DOI: 10.3389/fphys.2018.01674] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
This study is the first systematic comparison of the biochemical composition and nutritional quality between diploid and triploid Hong Kong oysters, Crassostrea hongkongensis. Results showed that in the reproductive season, the glycogen content in five tissues (gill, mantle, adductor muscle, labial palps and gonad) was significantly higher (P < 0.05) in triploids than in diploids, with odds ratios (ORs) of 96.26, 60.17, 72.59, 53.56, and 128.52%, respectively. In the non-reproductive phase, significant differences in glycogen content (P < 0.05) between diploid and triploid oysters existed only in gill and gonad. In both diploid and triploid Hong Kong oysters, quantitative real-time PCR analysis of the glycogen synthesis gene (ChGS) and glycogen phosphorylase gene (ChGP) showed that the gene expression patterns matched the pattern of variation in glycogen content. Moreover, in both the reproductive and the non-reproductive phases, triploid Hong Kong oysters had a well balance of essential amino acids and were thus a well source of high-quality protein. Surprisingly, in both phases, significantly higher (P < 0.05) percentages of four essential fatty acids (α-linolenic acid, linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid) were observed in triploids than in diploids. Additionally, the ratio of n-3/n-6 polyunsaturated fatty acids (PUFAs) was much higher in triploids than that in diploids. Variations in Biochemical composition were consistent with the relative expression of the citrate synthase gene (ChCS) and the α-ketoglutarate dehydrogenase gene (ChKD), which are key enzyme genes of the tricarboxylic acid cycle. Overall, the triploid Hong Kong oyster has a better nutritional value and taste than the diploid in terms of glycogen content, protein quality and fatty acid content.
Collapse
Affiliation(s)
- Yanping Qin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Xiangwei Wu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shu Xiao
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Riguan Mo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| |
Collapse
|
12
|
Chan CY, Wang WX. Seasonal and spatial variations of biomarker responses of rock oysters in a coastal environment influenced by large estuary input. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1253-1265. [PMID: 30118913 DOI: 10.1016/j.envpol.2018.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
The present study assessed the spatial and temporal variations and the potential influences of the Pearl River discharge on trace metal bioaccumulation and biomarker responses in Hong Kong coastal waters. A suite of biomarkers including antioxidant defense, oxidative stress, metal detoxification, cellular response, neurotoxicity, and energy reserve were quantified in the rock oyster Saccostrea cucullata over spatial scale across the east and west of Hong Kong. We documented the elevated Cd, Cu and Zn concentrations in all western stations in the fall season, as a result of time-integrated accumulation during the peak discharge of the Pearl River Estuary (PRE) in summer. Lipid peroxidation and total glutathione corresponded well with the overall metal gradient and showed significant correlation with the tissue Cu bioaccumulation. The eastern station (Clear Water Bay) also exhibited high Cd and Cu concentrations with increased oxidative stress responses. In the spring, metal bioaccumulation in the oysters was reduced due to the weakened influence of PRE, with correspondingly less obvious biomarker responses. Our coupling measurements of biomarkers and tissue metal concentrations for the first time revealed that the large PRE could have latent and seasonal biological effects on the Hong Kong coastal biota. Sensitive biomarkers such as lipid peroxidation and glutathione responses might be good candidates for detecting the early biological responses in such sub-lethal contaminated environments.
Collapse
Affiliation(s)
- Cheuk Yan Chan
- Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China; Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen, 518057, Hong Kong, China
| | - Wen-Xiong Wang
- Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China; Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen, 518057, Hong Kong, China.
| |
Collapse
|
13
|
Li B, Song K, Meng J, Li L, Zhang G. Integrated application of transcriptomics and metabolomics provides insights into glycogen content regulation in the Pacific oyster Crassostrea gigas. BMC Genomics 2017; 18:713. [PMID: 28893177 PMCID: PMC5594505 DOI: 10.1186/s12864-017-4069-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Pacific oyster Crassostrea gigas is an important marine fishery resource, which contains high levels of glycogen that contributes to the flavor and the quality of the oyster. However, little is known about the molecular and chemical mechanisms underlying glycogen content differences in Pacific oysters. Using a homogeneous cultured Pacific oyster family, we explored these regulatory networks at the level of the metabolome and the transcriptome. RESULTS Oysters with the highest and lowest natural glycogen content were selected for differential transcriptome and metabolome analysis. We identified 1888 differentially-expressed genes, seventy-five differentially-abundant metabolites, which are part of twenty-seven signaling pathways that were enriched using an integrated analysis of the interaction between the differentially-expressed genes and the differentially-abundant metabolites. Based on these results, we found that a high expression of carnitine O-palmitoyltransferase 2 (CPT2), indicative of increased fatty acid degradation, is associated with a lower glycogen content. Together, a high level of expression of phosphoenolpyruvate carboxykinase (PEPCK), and high levels of glucogenic amino acids likely underlie the increased glycogen production in high-glycogen oysters. In addition, the higher levels of the glycolytic enzymes hexokinase (HK) and pyruvate kinase (PK), as well as of the TCA cycle enzymes malate dehydrogenase (MDH) and pyruvate carboxylase (PYC), imply that there is a concomitant up-regulation of energy metabolism in high-glycogen oysters. High-glycogen oysters also appeared to have an increased ability to cope with stress, since the levels of the antioxidant glutathione peroxidase enzyme 5 (GPX5) gene were also increased. CONCLUSION Our results suggest that amino acids and free fatty acids are closely related to glycogen content in oysters. In addition, oysters with a high glycogen content have a greater energy production capacity and a greater ability to cope with stress. These findings will not only provide insights into the molecular mechanisms underlying oyster quality, but also promote research into the molecular breeding of oysters.
Collapse
Affiliation(s)
- Busu Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
14
|
Li B, Meng J, Li L, Liu S, Wang T, Zhang G. Identification and Functional Characterization of the Glycogen Synthesis Related Gene Glycogenin in Pacific Oysters (Crassostrea gigas). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7764-7773. [PMID: 28780871 DOI: 10.1021/acs.jafc.7b02720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High glycogen levels in the Pacific oyster (Crassostrea gigas) contribute to its flavor, quality, and hardiness. Glycogenin (CgGN) is the priming glucosyltransferase that initiates glycogen biosynthesis. We characterized the full sequence and function of C. gigas CgGN. Three CgGN isoforms (CgGN-α, β, and γ) containing alternative exon regions were isolated. CgGN expression varied seasonally in the adductor muscle and gonadal area and was the highest in the adductor muscle. Autoglycosylation of CgGN can interact with glycogen synthase (CgGS) to complete glycogen synthesis. Subcellular localization analysis showed that CgGN isoforms and CgGS were located in the cytoplasm. Additionally, a site-directed mutagenesis experiment revealed that the Tyr200Phe and Tyr202Phe mutations could affect CgGN autoglycosylation. This is the first study of glycogenin function in marine bivalves. These findings will improve our understanding of glycogen synthesis and accumulation mechanisms in mollusks. The data are potentially useful for breeding high-glycogen oysters.
Collapse
Affiliation(s)
- Busu Li
- University of Chinese Academy of Sciences , Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266000, China
| | - Jie Meng
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266000, Shandong, China
| | - Li Li
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266000, Shandong, China
| | - Sheng Liu
- University of Chinese Academy of Sciences , Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266000, China
| | - Ting Wang
- University of Chinese Academy of Sciences , Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266000, China
| | - Guofan Zhang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology , Qingdao 266000, China
| |
Collapse
|
15
|
Li X, Jia Z, Wang W, Wang L, Liu Z, Yang B, Jia Y, Song X, Yi Q, Qiu L, Song L. Glycogen synthase kinase-3 (GSK3) regulates TNF production and haemocyte phagocytosis in the immune response of Chinese mitten crab Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:144-155. [PMID: 28363635 DOI: 10.1016/j.dci.2017.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK3) is a serine/threonine protein kinase firstly identified as a regulator of glycogen synthesis. Recently, it has been proved to be a key regulator of the immune reaction. In the present study, a GSK3 homolog gene (designated as EsGSK3) was cloned from Chinese mitten crab, Eriocheir sinensis. The open reading frame (ORF) was 1824 bp, which encoded a predicted polypeptide of 607 amino acids. There was a conserved Serine/Threonine Kinase domain and a DNA binding domain found in EsGSK3. Phylogenetic analysis showed that EsGSK3 was firstly clustered with GSK3-β from oriental river prawn Macrobrachium nipponense in the invertebrate branch, while GSK3s from vertebrates formed the other distinct branch. EsGSK3 mRNA transcripts could be detected in all tested tissues of the crab including haepatopancreas, eyestalk, muscle, gonad, haemocytes and haematopoietic tissue with the highest expression level in haepatopancreas. And EsGSK3 protein was mostly detected in the cytoplasm of haemocyte by immunofluorescence analysis. The expression levels of EsGSK3 mRNA increased significantly at 6 h after Aeromonas hydrophila challenge (p < 0.05) in comparison with control group, and then gradually decreased to the initial level at 48 h (p > 0.05). The mRNA expression of lipopolysaccharide-induced tumor necrosis factor (TNF)-α factor (EsLITAF) was also induced by A. hydrophila challenge. However, the mRNA expression of EsLITAF and TNF-α production was significantly suppressed after EsGSK3 was blocked in vivo with specific inhibitor lithium, while the phagocytosis of crab haemocytes was significantly promoted. These results collectively demonstrated that EsGSK3 could regulate the innate immune responses of E. sinensis by promoting TNF-α production and inhibiting haemocyte phagocytosis.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunke Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
16
|
|
17
|
Xin L, Zhang H, Du X, Li Y, Li M, Wang L, Wang H, Qiu L, Song L. The systematic regulation of oyster CgIL17-1 and CgIL17-5 in response to air exposure. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:144-155. [PMID: 27268575 DOI: 10.1016/j.dci.2016.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
As a proinflammatory cytokine, vertebrate interleukin 17 (IL17) plays a vital role in the balance of inflammation and homeostasis, and is involved in a systemic regulation of glucose homeostasis. In the present study, a remarkable increase of glucose concentration was observed in oyster serum after 2 d air exposure, which was followed by a rapid up-regulation of CgIL17-1 and CgIL17-5. After oysters was received an injection of extra glucose, the mRNA expressions of CgIL17-1 and CgIL17-5 were also significantly up-regulated. The histopathological changes of hepatopancreas were observed after the oysters were treated by the recombinant proteins of CgIL17-1 and CgIL17-5 in vivo or subjected to air exposure. A significant decrease of GSK3β (Glycogen synthase kinase-3β) protein was also observed after the injection of CgIL17-1 and CgIL17-5 recombinant proteins in vivo. When the oysters with CgIL17-1 and CgIL17-5 genes knocked down were subjected to air exposure, the decline of GSK3β concentration was slowed down and it could still be obviously detected after 7 d compared with that in the control. Meanwhile, the expression of CgDefensin and CgDFFA was inhibited, while CgIAP was up-regulated when CgIL17-1 and CgIL17-5 genes were knocked down, and the oysters exhibited higher mortality (p < 0.05) at 3 d, whereas lower at the late stage of air exposure compared with that in the controls. The results collectively suggested that once oysters were exposed to air, the synthesis of proinflammatory cytokines CgIL17-1 and CgIL17-5 was induced by the up-regulated glucose concentration in oyster serum, which would be not only a negative feedback to the high glucose concentration through mediating the regulation of GSK3β, but also an inducer on tissue damage and immunocompetence as well as the adaptability to stresses.
Collapse
Affiliation(s)
- Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xinyu Du
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yiqun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meijia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
18
|
Cao C, Wang WX. Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:156-165. [PMID: 27262129 DOI: 10.1016/j.envpol.2016.05.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Jiulong River Estuary, located in southern China, was heavily contaminated by metal pollution. In this study, the estuarine oysters Crassostrea hongkongensis were transplanted to two sites with similar hydrological conditions but different levels of metal pollution in Jiulong River Estuary over a six-month period. We characterized the time-series change of metal bioaccumulation and final metabolomics responses of oysters. Following transplantation, all metals (Cd, Cu, Cr, Ni, Pb, and Zn) in the oyster digestive glands had elevated concentrations over time. By the end of six-month exposure, Cu, Zn and Cd were the main metals significantly differentiating the two sites. Using (1)H NMR metabolite approach, we further demonstrated the disturbance in osmotic regulation, energy metabolism, and glycerophospholipid metabolism induced by metal contaminations. Six months later, the oysters transplanted in the two sites showed a similar metabolite variation pattern when compared with the initial oysters regardless of different metal levels in the tissues. Interestingly, by comparing the oysters from two sites, the more severely polluted oysters accumulated significantly higher amounts of osmolytes (betaine and homarine) and lower energy storage compounds (glycogen) than the less polluted oysters; these changes could be the potential biomarkers for different levels of metal pollution. Our study demonstrated the complexity of biological effects under field conditions, and NMR metabolomics provides an important approach to detect sensitive variation of oyster inner status.
Collapse
Affiliation(s)
- Chen Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong; HKUST Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong; HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
19
|
Epelboin Y, Quintric L, Guévélou E, Boudry P, Pichereau V, Corporeau C. The Kinome of Pacific Oyster Crassostrea gigas, Its Expression during Development and in Response to Environmental Factors. PLoS One 2016; 11:e0155435. [PMID: 27231950 PMCID: PMC4883820 DOI: 10.1371/journal.pone.0155435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
Oysters play an important role in estuarine and coastal marine habitats, where the majority of humans live. In these ecosystems, environmental degradation is substantial, and oysters must cope with highly dynamic and stressful environmental constraints during their lives in the intertidal zone. The availability of the genome sequence of the Pacific oyster Crassostrea gigas represents a unique opportunity for a comprehensive assessment of the signal transduction pathways that the species has developed to deal with this unique habitat. We performed an in silico analysis to identify, annotate and classify protein kinases in C. gigas, according to their kinase domain taxonomy classification, and compared with kinome already described in other animal species. The C. gigas kinome consists of 371 protein kinases, making it closely related to the sea urchin kinome, which has 353 protein kinases. The absence of gene redundancy in some groups of the C. gigas kinome may simplify functional studies of protein kinases. Through data mining of transcriptomes in C. gigas, we identified part of the kinome which may be central during development and may play a role in response to various environmental factors. Overall, this work contributes to a better understanding of key sensing pathways that may be central for adaptation to a highly dynamic marine environment.
Collapse
Affiliation(s)
- Yanouk Epelboin
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Laure Quintric
- Ifremer, Service Ressources Informatiques et Communications, Plouzané, France
| | - Eric Guévélou
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Pierre Boudry
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Vianney Pichereau
- UBO, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| | - Charlotte Corporeau
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin, Plouzané, France
| |
Collapse
|
20
|
Shi Y, He MX. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata. Sci Rep 2016; 6:22063. [PMID: 26911653 PMCID: PMC4766514 DOI: 10.1038/srep22063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-xian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
21
|
Liu X, Wang WX. Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:281-290. [PMID: 26657374 DOI: 10.1016/j.scitotenv.2015.11.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/02/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The Jiulong Estuary in Southern China suffers from serious metal pollution, leading to the appearance of 'colored' oysters in this estuary. In this study, two species of oysters Crassostrea hongkongensis and Crassostrea angulata were transplanted to three sites in the Jiulong Estuary over a two-month period. The time-series changes of various biomarkers were measured, coupled with simultaneous quantification of metal bioaccumulation (Ag, Cd, Cr, Cu, Ni and Zn). Cu and Zn accumulation increased linearly and reached up to 2% and 1.5% dry tissue weight by the end of exposure. Negative correlations between the tissue Cu or Zn accumulation and catalase or superoxide dismutase activities strongly indicated that Cu and Zn in 'colored' oysters induced the adjustments of oyster antioxidant systems. Metallothionein (MT) detoxification was insufficient for sequestering all the absorbed metals and its concentrations in the oysters were suppressed following an initial increase, primarily due to the high metal accumulation in the tissues. Interestingly, gradual recoveries of lysosomal membrane stability after the initial strong inhibitions were observed in both oysters. We also documented an increasing 'watering' of oyster tissues presumably as a result of rupturing of tissue cells under metal stress. This study demonstrated the complexity of biomarker responses under field condition, therefore the time changes of biomarker responses to metals need to be considered in evaluating the biological impacts of metal pollution on estuarine organisms.
Collapse
Affiliation(s)
- Xuan Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|
22
|
Wang Y, Hou Y, Zhao L, He Z, Jiang J, Li Z, Du Z, Yan T, Wang L. Multiple alternative splicing and differential expression patterns of the glycogen synthase kinase-3β (GSK3β) gene in Schizothorax prenanti. Comp Biochem Physiol B Biochem Mol Biol 2015; 181:1-6. [DOI: 10.1016/j.cbpb.2014.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
|