1
|
Sun Y, Li J, Li Y, Wu Z. Molecular characterization and transcriptional regulation between PPAR and CPT1 in freshwater bivalve Hyriopsis cumingii. Int J Biol Macromol 2024:135647. [PMID: 39278449 DOI: 10.1016/j.ijbiomac.2024.135647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Peroxisome proliferator activated receptors (PPARs) exert their roles in lipid metabolism and adaptive immunity by transactivating carnitine palmitoyltransferase 1 (CPT1). However, it remains unclear whether the PPAR-CPT1 signaling pathway exists in mollusks that only carry out innate immunity. This study cloned and characterized PPAR and CPT1 genes from Hyriopsis cumingii for the first time, designated as HcPPARs and HcCPT1s, respectively. The bioinformatics analysis revealed conservative molecular characteristics of these genes across species. Real-time quantitative PCR results indicated that higher expression levels of HcPPARs and HcCPT1s in the blood, mantle, and intestine suggested their potential involvement in lipid metabolism and innate immunity of mollusks. Treatments with agonists and inhibitors demonstrated a correlation in the expression of HcPPARs and HcCPT1s. Dual luciferase reporter assay identified regions with high transcriptional activities on promoters of HcCPT1s and potential binding sites for HcPPARs through prediction and mutation sites. These results suggested that the PPAR-CPT1 signaling might exist in H. cumingii. This research provides a necessary foundation for exploring the role of the PPAR-CPT1 signaling in innate immunity, and offers new theoretical evidence for the molecular regulatory mechanism of mollusks and the treatment of metabolic disorders and inflammatory diseases.
Collapse
Affiliation(s)
- Yu Sun
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jie Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Guo R, Huang K, Yu K, Li J, Huang J, Wang D, Li Y. Effects of Fat and Carnitine on the Expression of Carnitine Acetyltransferase and Enoyl-CoA Hydratase Short-Chain 1 in the Liver of Juvenile GIFT ( Oreochromis niloticus). Genes (Basel) 2024; 15:480. [PMID: 38674414 PMCID: PMC11050330 DOI: 10.3390/genes15040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Carnitine acetyltransferase (CAT) and Enoyl-CoA hydratase short-chain 1 (ECHS1) are considered key enzymes that regulate the β-oxidation of fatty acids. However, very few studies have investigated their full length and expression in genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture species in China. Here, we cloned CAT and ECHS1 full-length cDNA via the rapid amplification of cDNA ends, and the expressions of CAT and ECHS1 in the liver of juvenile GIFT were detected in different fat and carnitine diets, as were the changes in the lipometabolic enzymes and serum biochemical indexes of juvenile GIFT in diets with different fat and carnitine levels. CAT cDNA possesses an open reading frame (ORF) of 2167 bp and encodes 461 amino acids, and the ECHS1 cDNA sequence is 1354 bp in full length, the ORF of which encodes a peptide of 391 amino acids. We found that juvenile GIFT had higher lipometabolic enzyme activity and lower blood CHOL, TG, HDL-C, and LDL-C contents when the dietary fat level was 2% or 6% and when the carnitine level was 500 mg/kg. We also found that the expression of ECHS1 and CAT genes in the liver of juvenile GIFT can be promoted by a 500 mg/kg carnitine level and 6% fat level feeding. These results suggested that CAT and ECHS1 may participate in regulating lipid metabolism, and when 2% or 6% fat and 500 mg/kg carnitine are added to the feed, it is the most beneficial to the liver and lipid metabolism of juvenile GIFT. Our results may provide a theoretical basis for GIFT feeding and treating fatty liver disease.
Collapse
Affiliation(s)
- Ruijie Guo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| | - Kai Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| | - Jinghua Li
- Fisheries Research and Technology Extension Center of Shaanxi, Xi’an 710086, China;
| | - Jiao Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| | - Dandan Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| | - Yuda Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (R.G.); (K.Y.); (J.H.); (D.W.); (Y.L.)
| |
Collapse
|
3
|
Yao CB, Feng L, Wu P, Liu Y, Jiang J, Zhang L, Mi HF, Zhou XQ, Jiang WD. Promotion of fatty acid metabolism and glucose metabolism in the muscle of sub-adult grass carp ( Ctenopharyngodon idella): The role of alpha-linoleic acid/linoleic acid (ALA/LNA) ratios. Food Chem X 2023; 19:100752. [PMID: 37384144 PMCID: PMC10293787 DOI: 10.1016/j.fochx.2023.100752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
The n6/n3 ratios improved meat quality of terrestrial animals, but alpha-linolenic acid/linoleic acid (ALA/LNA) ratios were rarely studied in aquatic animals. In this study, sub-adult grass carp (Ctenopharyngodon idella) were fed diets fed diets containing six varying ALA/LNA ratios (0.03, 0.47, 0.92, 1.33, 1.69, and 2.15) for 9 weeks and the total value of n3 + n6 (1.98) was kept constant for all six treatments. The results indicated optimal ALA/LNA ratio improved growth performance, changed fatty acid composition in grass carp muscle, and promoted glucose metabolism. Additionally, optimal ALA/LNA ratio improved chemical attributes by increasing crude protein and lipid contents, and technological attributes by increasing pH24h value and shear force in grass carp muscle. The signaling pathways related to fatty acid metabolism and glucose metabolism (LXRα/SREBP-1, PPARα, PPARγ, AMPK) might be responsible for these changes. Dietary optimal ALA/LNA ratio based on PWG, UFA and glucose contents was 1.03, 0.88 and 0.92, respectively.
Collapse
Affiliation(s)
- Chi-Bei Yao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Zhang
- Tongwei Co., Ltd., Chengdu, China
- Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | | | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| |
Collapse
|
4
|
Xu H, Shi C, Ye Y, Song C, Mu C, Wang C. Time-Restricted Feeding Could Not Reduce Rainbow Trout Lipid Deposition Induced by Artificial Night Light. Metabolites 2022; 12:metabo12100904. [PMID: 36295806 PMCID: PMC9606968 DOI: 10.3390/metabo12100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Artificial night light (ALAN) could lead to circadian rhythm disorders and disrupt normal lipid metabolism, while time-restricted feeding (TRF) could maintain metabolic homeostasis. In mammals, TRF has been demonstrated to have extraordinary effects on the metabolic regulation caused by circadian rhythm disorders, but studies in lower vertebrates such as fish are still scarce. In this study, the impacts of ALAN on the body composition and lipid metabolism of juvenile rainbow trout were investigated by continuous light (LL) exposure as well as whether TRF could alleviate the negative effects of LL. The results showed that LL upregulated the expression of lipid synthesis (fas and srebp-1c) genes and suppressed the expression of lipid lipolysis (pparβ, cpt-1a, and lpl) genes in the liver, finally promoting lipid accumulation in juvenile rainbow trout. However, LL downregulated the expression of genes (Δ6-fad, Δ9-fad, elovl2, and elovl5) related to long-chain polyunsaturated fatty acid (LC-PUFA) synthesis, resulting in a significant decrease in the proportion of LC-PUFA in the dorsal muscle. In serum, LL led to a decrease in glucose (Glu) levels and an increase in triglyceride (TG) and high-density lipoprotein cholesterol (H-DLC) levels. On the other hand, TRF (mid-dark stage feeding (D)) and mid-light stage feeding (L)) upregulated the expression of both the lipid synthesis (srebp-1c and pparγ), lipolysis (pparα, pparβ, and cpt-1a), and lipid transport (cd36/fat and fatp-1) genes, finally increasing the whole-body lipid, liver protein, and lipid content. Meanwhile, TRF (D and L groups) increased the proportion of polyunsaturated fatty acid (PUFA) and LC-PUFA in serum. In contrast, random feeding (R group) increased the serum Glu levels and decreased TG, total cholesterol (T-CHO), and H-DLC levels, suggesting stress and poor nutritional status. In conclusion, ALAN led to lipid accumulation and a significant decrease in muscle LC-PUFA proportion, and TRF failed to rescue these negative effects.
Collapse
Affiliation(s)
- Hanying Xu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Marine Economic Research Center, Dong Hai Strategic Research Institute, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Ce Shi
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Marine Economic Research Center, Dong Hai Strategic Research Institute, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
- Correspondence: (C.S.); (C.W.)
| | - Yangfang Ye
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Changkao Mu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
| | - Chunlin Wang
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
- Correspondence: (C.S.); (C.W.)
| |
Collapse
|
5
|
Zhao L, Yan H, Cheng L, He K, Liu Q, Luo J, Luo W, Zhang X, Yan T, Du Z, Li Z, Yang S. Metabolic response provides insights into the mechanism of adaption to hypoxia in largemouth bass (Micropterus salmoides) under intermittent hypoxic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113957. [PMID: 35999769 DOI: 10.1016/j.ecoenv.2022.113957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In metabolism, molecular oxygen is a necessary substrate. Oxygen imbalances are linked to a variety of circumstances in the organism's homeostasis. Recently, the positive effects of hypoxia treatment in improving exercise ability and hypoxia tolerance have become a research focus. We explored the effects of intermittent hypoxia exposure (IHE, for one hour or three hours per day) on the hypoxia tolerance of largemouth bass in this study. The results showed that (1) IHE significantly reduced the LOEcrit (the critical O2 tension for loss of equilibrium) value of largemouth bass, indicating that its hypoxia tolerance was enhanced. (2) The level of oxidative stress in the liver decreased in the HH3 group (exposed to a hypoxic condition for 3 h per day) compared to HH1 group (exposed to a hypoxic condition for 1 h per day). (3) IHE reduced the content of lactic acid and enhanced the process of gluconeogenesis in the liver. (4) Importantly, lipid mobilization and fatty acid oxidation in the liver of largemouth bass were significantly enhanced during IHE. In short, the results of this study indicate that IHE can improve hypoxia tolerance by regulating the energy metabolism of largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liangshun Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
6
|
Chen X, Wang D, Peng LB, Song HZ, Xiang LP, Yu HX, Zheng JL, Zhu QL. Genome-wide identification of seven superoxide dismutase genes in the marine rotifer Brachionus rotundiformis and modulated expression and enzymatic activity in response to microplastics and nutritional status. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106055. [PMID: 34954476 DOI: 10.1016/j.aquatox.2021.106055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) pollution has attracted worldwide attention. Superoxide dismutase (SOD) is a sensitive indicator for assessing the toxic effects of MPs in aquatic organisms. However, few studies have been performed to identify all genes encoding SOD in aquatic invertebrates. Especially, effects of MPs on SOD activity and expression in aquatic organisms under starvation or a subsequent refeeding status are unclear. In the present study, all full-length genes encoding SOD were cloned and characterized from the marine rotifer Brachionus rotundiformis, including CuZnSOD1, CuZnSOD2, CuZnSOD3, CuZnSOD4, CuZnSOD5, MnSOD1, and MnSOD2. The CuZnSOD1, CuZnSOD2 and MnSOD2 are homologous to SODs from vertebrates and the other SOD proteins are rotifer-specific according to the results from the phylogenetic tree. The conserved signature sequences and binding sites of Cu2+, Zn2+and Mn2+ were also identified in the seven SOD proteins. Compared with feeding, starvation down-regulated SOD activity and mRNA expression of CuZnSOD2, CuZnSOD4, CuZnSOD5, MnSOD1 and MnSOD2 while refeeding maintained SOD activity comparable to the feeding level and up-regulated CuZnSOD5 and MnSOD2. Intake of MPs by B. rotundiformis was observed by examining fluorescence signals from the fluorescently-labeled microplastics under different nutritional status. Exposure to MPs reduced rotifer density and increased malondialdehyde (MDA) content and SOD activity in the rotifers under the refeeding condition, but did not affect these indicators under the feeding and starvation conditions. However, mRNA expression of some tested genes was responsive to MPs in the fed, starved and refed rotifers. The present study for the first time demonstrated a nutritional status-dependent effect of MPs on oxidative stress response, and provided more sensitive molecular biomarkers for assessing the toxicity of MPs using B. rotundiformis as a model animal.
Collapse
Affiliation(s)
- Xiao Chen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Dan Wang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Bin Peng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hong-Zi Song
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Ping Xiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Han-Xiu Yu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
7
|
Zheng JL, Wang D, Chen X, Song HZ, Xiang LP, Yu HX, Peng LB, Zhu QL. Nutritional-status dependent effects of microplastics on activity and expression of alkaline phosphatase and alpha-amylase in Brachionus rotundiformis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150213. [PMID: 34571232 DOI: 10.1016/j.scitotenv.2021.150213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Tissue-nonspecific alkaline phosphatase (ALPL) and alpha-amylase (AMY) are essential in the immune and digestive systems, respectively. Microplastics (MPs) pose a risk to zooplankton which may be in a state of feeding, starvation, or subsequent refeeding. However, molecular characterization of both enzymes and the regulated mechanisms affected by nutritional statuses and MPs remain unclear in zooplankton. In the present study, four full-length genes encoding ALPL and two genes encoding AMY were cloned and characterized from an isolated marine rotifer, Brachionus rotundiformis, including alplA, alplB, alplC, alplD, amy2a, and amy2al. AMY activity and expression of amy2a and amy2al were reduced by starvation and recovered after refeeding compared with feeding. ALPL activity remained unchanged among different statuses, while alplA, alplB and alplD were down-regulated by starvation and refeeding compared with feeding. ALPL activity was not affected by exposure to 10, 100 and 1000 μg/L MPs in rotifers subjected to feeding, starvation and refeeding, whereas AMY activity was significantly enhanced by 1000 μg/L MPs in rotifers subjected to refeeding. Gene expression of the tested genes, except amy2a, was significantly responsive to MPs, especially in the feeding rotifers, depending on MPs concentrations and nutritional statuses. Two-way ANOVA confirmed that these changes were strongly associated with the interaction between MPs concentrations and nutritional statuses. The present study is the first to demonstrate a nutritional status-dependent impact of MPs on immune and digestive responses, and provides more sensitive molecular biomarkers for assessing MPs toxicity using the species as model animals.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Dan Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hong-Zi Song
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Ping Xiang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Han-Xiu Yu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Bin Peng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
8
|
Rast JP, D'Alessio S, Kraev I, Lange S. Post-translational protein deimination signatures in sea lamprey (Petromyzon marinus) plasma and plasma-extracellular vesicles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104225. [PMID: 34358577 DOI: 10.1016/j.dci.2021.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Lampreys are a jawless vertebrate species belonging to an ancient vertebrate lineage that diverged from a common ancestor with humans ~500 million years ago. The sea lamprey (Petromyzon marinus) has a filter feeding ammocoete larval stage that metamorphoses into a parasitic adult, feeding both on teleost and elasmobranch fish. Lampreys are a valuable comparative model species for vertebrate immunity and physiology due to their unique phylogenetic position, unusual adaptive immune system, and physiological adaptions such as tolerance to salinity changes and urea. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which catalyses post-translational deimination/citrullination in target proteins, enabling proteins to gain new functions (moonlighting). The identification of deiminated protein targets in species across phylogeny may provide novel insights into post-translational regulation of physiological and pathophysiological processes. Extracellular vesicles (EVs) are membrane vesicles released from cells that carry cargos of small molecules and proteins for cellular communication, involved in both normal and pathological processes. The current study identified deimination signatures in proteins of both total plasma and plasma-EVs in sea lamprey and furthermore reports the first characterisation of plasma-EVs in lamprey. EVs were poly-dispersed in the size range of 40-500 nm, similar to what is observed in other taxa, positive for CD63 and Flotillin-1. Plasma-EV morphology was confirmed by transmission electron microscopy. Assessment of deimination/citrullination signatures in lamprey plasma and plasma-EVs, revealed 72 deimination target proteins involved in immunity, metabolism and gene regulation in whole plasma, and 37 target proteins in EVs, whereof 24 were shared targets. Furthermore, the presence of deiminated histone H3, indicative of gene-regulatory mechanisms and also a marker of neutrophil extracellular trap formation (NETosis), was confirmed in lamprey plasma. Functional protein network analysis revealed some differences in KEGG and GO pathways of deiminated proteins in whole plasma compared with plasma-EVs. For example, while common STRING network clusters in plasma and plasma-EVs included Peptide chain elongation, Viral mRNA translation, Glycolysis and gluconeogenesis, STRING network clusters specific for EVs only included: Cellular response to heat stress, Muscle protein and striated muscle thin filament, Nucleosome, Protein processing in endoplasmic reticulum, Nucleosome and histone deacetylase complex. STRING network clusters specific for plasma were: Adipokinetic hormone receptor activity, Fibrinogen alpha/beta chain family, peptidase S1A, Glutathione synthesis and recycling-arginine, Fructose 1,6-bisphosphate metabolic process, Carbon metabolism and lactate dehydrogenase activity, Post-translational protein phosphorylation, Regulation of insulin-like growth factor transport and clotting cascade. Overall, for the EV citrullinome, five STRING network clusters, 10 KEGG pathways, 15 molecular GO pathways and 29 Reactome pathways were identified, compared with nine STRING network clusters, six KEGG pathways, two Molecular GO pathways and one Reactome pathway specific for whole plasma; while further pathways were shared. The reported findings indicate that major pathways relevant for immunity and metabolism are targets of deimination in lamprey plasma and plasma-EVs, with some differences, and may help elucidating roles for the conserved PAD enzyme family in regulation of immune and metabolic function throughout phylogeny.
Collapse
Affiliation(s)
- Jonathan P Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, 30322, USA.
| | - Stefania D'Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|