1
|
Shi J, Xiong H, Su J, Wang Q, Wang H, Yang C, Hu C, Cui Z, Liu L. Multiomics analyses reveal high yield-related genes in the hypothalamic-pituitary-ovarian/liver axis of chicken. Poult Sci 2024; 103:104276. [PMID: 39299017 PMCID: PMC11426133 DOI: 10.1016/j.psj.2024.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Egg production, regulated by multiple tissues, is among the most important economic traits in poultry. However, current research only focuses on the hypothalamic-pituitary-ovarian axis, ignoring the most important organ for substance metabolism in the body, the liver. Eggs are rich in lipids, proteins, and other nutrients, which are biosynthesized in the liver. Therefore, here the liver was included in the study of the hypothalamic-pituitary axis. This study used hypothalamus (HH_vs_LH), pituitary (HP_vs_LP), liver (HL_vs_LL), and ovary (HO_vs_LO) tissue samples from high- and low-laying Chengkou mountain chickens (CMC) for epihistological, transcriptome and metabolomic analyses aimed at improving the reproductive performance of CMC. The results showed that the liver of the high-laying group was yellowish, the cell boundary was clear, and the lipid droplets were evenly distributed. The ovaries of the high-laying group had a complete sequence of hierarchical follicles, which were rich in yolk. In contrast, the ovaries of the low-laying group were atrophic, except for a few small yellow follicles, and numerous primordial follicles that remained. The transcriptome sequences yielded 167.11 Gb of clean data, containing 28,715 genes. Furthermore, 285, 822, 787, and 1,183 differentially expressed genes (DEG) were identified in HH_vs_LH, HP_vs_LP, HL_vs_LL and HO_vs_LO and the DEGs significantly enriched 77, 163, 170, 171 pathways, respectively. Metabolome sequencing yielded 21,808 peaks containing 4,006 metabolites. The differential metabolite analysis yielded 343 and 682 significantly different metabolites (SDM) that significantly enriched 136 and 87 pathways in the liver and ovaries, respectively. A combined analysis of the transcriptome and metabolome of the liver and ovaries identified "CYP51A1-4α-carboxy-stigmasta7, 24(24(1))-dien-3β-ol" and "ACSS1B-estrone 3-sulfate" and other multiple gene-metabolite pairs. The DEGs in the hypothalamus and pituitary mainly enriched signaling transduction. In contrast, the DEGs and SDMs in the liver and ovaries mainly enriched the substance metabolism pathways: "gap junction", "extracellular matrix (ECM)-receptor interaction", "Steroid biosynthesis", and "Steroid hormone biosynthesis". These results suggest that the hypothalamic-pituitary axis may affect egg production mainly by regulating lipid metabolism in the liver and ovaries.
Collapse
Affiliation(s)
- Jun'an Shi
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Hanlin Xiong
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Junchao Su
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Qigui Wang
- ChongQing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Haiwei Wang
- ChongQing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chenming Hu
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zhifu Cui
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China
| | - Lingbin Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, 400700, Chongqing, China.
| |
Collapse
|
2
|
Feng Y, Zhao C, Li T, Wang M, Serrano BR, Barcenas AR, Qu L, Zhao W, Shen M. Quercetin ameliorates lipid deposition in primary hepatocytes of the chicken embryo. Br Poult Sci 2024; 65:429-436. [PMID: 38727603 DOI: 10.1080/00071668.2024.2332717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 07/27/2024]
Abstract
1. The accumulation of excessive fat plays a role in the development of non-alcoholic fatty liver disease (NAFLD) and phytogenic feed additives have the potential to ameliorate this. This study involved the isolation and culture of primary hepatocytes from chicken embryos to establish a model of hepatic steatosis induced by oleic acid/dexamethasone (OA/DEX). Lipid accumulation and cell viability were assessed using Nile Red staining, Oil Red O staining and cell count Kit -8 (CCK8) following treatment with varying concentrations of quercetin (Que). The potential mechanism by which Que exerts its effects was preliminarily investigated.2. The results indicated that OA effectively treated lipid accumulation in hepatocytes. There was no notable variance in cell proliferation between the normal and OA/DEX groups when subjected to Que treatment at concentrations of 1000 ng/ml and 10 000 ng/ml. Triglycerides and cholesterol (low and high density) decreased with Que treatment, with the most substantial reduction observed at 10 000 ng/ml.3. Gene expression levels decreased to levels similar to those in the control groups. Western blot data demonstrated that sterol regulatory element-binding protein 1 (SREBP-1) protein expression correlated with its mRNA expression level. Que mitigated lipid accumulation through the alpha serine/threonine protein kinase (AKT) and extracellular signal-regulated kinase (ERK) pathways. Expression levels of lipid-related genes (APOB, PPARα, CYP3A5 and SREBP-1) decreased to levels similar to the control groups. Western blot data demonstrated that the SREBP-1 protein expression correlated with its mRNA expression level.4. Supplementation with Que ameliorated lipid accumulation through AKT and ERK signalling pathway in OA/DEX-induced high-fat hepatocytes.
Collapse
Affiliation(s)
- Y Feng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - C Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - T Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - M Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - B R Serrano
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - A R Barcenas
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - L Qu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - W Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - M Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Plant Protein and Bionatural Products Research Center, Ministry of Agriculture, Havana, Cuba
| |
Collapse
|
3
|
Abraham ME, Robison CI, Serpa PBS, Strandberg NJ, Erasmus MA, Fraley GS, Erf GF, Karcher DM. Cage-Free Pullets Minimally Affected by Stocking Density Stressors. Animals (Basel) 2024; 14:1513. [PMID: 38791730 PMCID: PMC11117258 DOI: 10.3390/ani14101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Management choices during the pullet phase can affect behavior, welfare, and health later in life, but few studies have evaluated the pullet phase, particularly in extensive housing systems. This study was a 2 × 2 factorial randomized complete block design (RCBD) with two strains and two stocking densities. The Lohmann LB-Lite and Lohmann LSL-Lite were housed on the floor at high-stocking density (619-670 cm2/bird) and low-stocking density (1249-1352 cm2/bird), which changed with age from 2 to 16 weeks of age (WOA). Bird-based measures of appearance, blood parameters, organ measurements, and production values were evaluated. Stocking density alone affected (p < 0.05) only relative bursal weight (% of body weight)-3.32% in the low-density versus 3.08% in the high-density group. High-stocking density was correlated with decreased uniformity (high-89.33 ± 0.24%; low-90.41 ± 0.24; p < 0.02) and worse feather coverage in the brown strain. High-stocking density was correlated with greater uniformity (High-90.39 ± 0.24%; Low-88.47 ± 0.24%; p < 0.001) and better feather coverage in the white strain. This study's feed conversion ratio (FCR) was improved by 0.07 in the low-stocking density for both strains. The remaining parameters were affected by strain and age only. Thus, while stocking density effects vary slightly depending on the strain used, cage-free pullets had limited negative effects at both the high and low-stocking densities tested in this study; there were few to no changes in the numerous bird-based welfare parameters tested.
Collapse
Affiliation(s)
- Meagan E. Abraham
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2050, USA; (M.E.A.); (M.A.E.); (G.S.F.)
| | - Cara I. Robison
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824-2604, USA;
| | - Priscila B. S. Serpa
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, VA 24061, USA; (P.B.S.S.); (N.J.S.)
| | - Natalia J. Strandberg
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, VA 24061, USA; (P.B.S.S.); (N.J.S.)
| | - Marisa A. Erasmus
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2050, USA; (M.E.A.); (M.A.E.); (G.S.F.)
| | - Gregory S. Fraley
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2050, USA; (M.E.A.); (M.A.E.); (G.S.F.)
| | - Gisela F. Erf
- Department of Poultry Science, System Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Darrin M. Karcher
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2050, USA; (M.E.A.); (M.A.E.); (G.S.F.)
| |
Collapse
|
4
|
Li F, Chen X, Xu X, Wang L, Yan J, Yu Y, Shan X, Zhang R, Xing H, Zhang T, Pan S. Alterations of intestinal mucosal barrier, cecal microbiota diversity, composition, and metabolites of yellow-feathered broilers under chronic corticosterone-induced stress: a possible mechanism underlying the anti-growth performance and glycolipid metabolism disorder. Microbiol Spectr 2024; 12:e0347323. [PMID: 38497712 PMCID: PMC11064513 DOI: 10.1128/spectrum.03473-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
This study aimed to explore alterations in growth performance, glycolipid metabolism disorders, intestinal mucosal barrier, cecal microbiota community, and metabolites in a chronic corticosterone (CORT)-induced stress (CCIS) broiler model. Results showed that compared with control (CON) broilers, in CCIS broilers: (i) the final body weight (BW), BW gain, and average daily gain were significantly reduced. (ii) The glycolipid metabolism disorder and impairement of intestinal immune barrier and physical barrier function were observed. (iii) Diversity and richness of cecal microbiota were obviously increased. From phylum to genus level, the abundances of Firmicutes and Faecalibacterium were significantly decreased, while the abundances of Proteobacteria, RuminococcaceaeUCG-005, and Escherichia coli (Shigella) were significantly increased. Microbial network analysis and function pathways prediction showed that cecal microbiota was mainly concentrated in translation, metabolism, nucleotide metabolism, and endocrine system. (iv) The main differential metabolites identified include steroids and their derivatives, amino acids, fatty acids, and carbohydrates; among which 37 metabolites were significantly upregulated, while 27 metabolites were significantly downregulated. These differential metabolites were mainly enriched in pathways related to steroid hormone biosynthesis and tyrosine metabolism. (v) Correlation between cecal microbiota and glycolipid metabolism indexes showed that BW and total cholesterol (TC) were positively correlated with Christensenellaceae_R.7_group and Escherichia_Shigella, respectively. Furthermore, the downregulated Faecalibacterium and Christensenellaceae were negatively correlated with the upregulated differentially expressed metabolites. These findings suggested that CCIS altered cecal microbiota composition and metabolites, which led to glycolipid metabolism disorder and impaired the nutritional metabolism and immune homeostasis, providing a theoretical basis for efforts to eliminate the harm of chronic stress to human health and animal production. IMPORTANCE The study aimed to determine the influence of altered intestinal mucosal barrier, cecum flora community, and metabolites on anti-growth performance, glycolipid metabolism disorders of chronic corticosterone (CORT)-induced stress (CCIS) broilers. Compared with control (CON) broilers, in CCIS broilers: (i) anti-growth performance, glycolipid metabolism disorder, and impaired intestinal immune barrier and physical barrier function were observed. (ii) From phylum to genus level, the abundances of Firmicutes and Faecalibacterium were decreased; whereas, the abundances of Proteobacteria, RuminococcaceaeUCG-005, and Escherichia coli (Shigella) were increased. (iii) Differential metabolites in cecum were mainly enriched in steroid hormone biosynthesis and tyrosine metabolism. (iv) Body weight (BW) and total cholesterol (TC) were positively correlated with Christensenellaceae_R.7_group and Escherichia_Shigella, respectively, while downregulated Faecalibacterium and Christensenellaceae were negatively correlated with upregulated metabolites. Our findings suggest that CCIS induces anti-growth performance and glycolipid metabolism disorder by altering cecum flora and metabolites, providing a theoretical basis for efforts to eliminate the effect of chronic stress on human health and animal production.
Collapse
Affiliation(s)
- Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yichen Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuemei Shan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tangjie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Animal Science, Washington State University, Pullman, Washington, USA
- Guangling College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Zhang S, Liu Y, Chai Y, Xing L, Li J. Effects of intermittent cold stimulation on growth performance, meat quality, antioxidant capacity and liver lipid metabolism in broiler chickens. Poult Sci 2024; 103:103442. [PMID: 38262335 PMCID: PMC10835453 DOI: 10.1016/j.psj.2024.103442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Intermittent cold stimulation (ICS) enhances broilers' resistance to cold stress. Nonetheless, further research is needed to investigate the underlying mechanisms that enhance cold stress resistance. A total of 160 one-day-old male Ross 308 broilers were randomly divided into 2 groups (CC and CS5), with the CC group managing temperature according to the standard for broiler growth stages, while the CS5 group were subjected to cold stimulation at a temperature 3℃ lower than the CC group for 5 h, every 2 d from 15 to 35 d. Sampling was conducted at 36 d (36D), 50 d (50D) and after acute cold stress for 24 h (Y24). First, we examined the effects of ICS on broiler growth performance, meat quality, antioxidant capacity, and lipid metabolism. The results demonstrated that ICS enhanced the performance of broilers to a certain degree. Specifically, the average weight gain in the CS5 group was significantly higher than that of the CC group, and the feed conversion ratio significantly decreased compared to CC at 4 W and 6 W (P ≤ 0.05). Compared with the CC group, cold stimulation significantly reduced drip loss, shearing force, and yellowness (a* value) of chicken meat, while significantly increased redness (b* value) (P ≤ 0.05). At Y24, the levels of T-AOC and GSH-PX in the serum of the CS5 group were significantly higher than those of the CC group, while the level of MDA was significantly lower (P ≤ 0.05). The content of TG, FFA, and VLDL in the serum of the CS5 group was significantly elevated, whereas the level of TC and HDL was significantly lower (P ≤ 0.05). In addition, we further explored whether AMPK-mTOR pathway is involved in the regulation of changes in lipid metabolism and the possible regulatory mechanisms downstream of the signaling pathway. The results showed that ICS significantly upregulated the expression levels of AMPK mRNA and protein in the liver of the CS5 group at 36D and Y24, while significantly down-regulating mTOR (P ≤ 0.05). Compared with the CC group, ICS significantly down-regulated the mRNA expression levels of lipid synthesis and endoplasmic reticulum stress-related genes (SREBP1c, FAS, SCD, ACC, GRP78 and PERK) at 36D and Y24, while significantly up-regulating the mRNA expression levels of lipid decomposition and autophagy-related genes (PPAR and LC3) (P ≤ 0.05). In addition, at Y24, the protein expression levels of endoplasmic reticulum stress-related genes (GRP78) in the CS5 group were significantly lower, while autophagy-related genes (LC3 and ATG7) were significantly higher (P ≤ 0.05). ICS can affect meat quality and lipid metabolism in broilers, and when broilers are subjected to acute cold stress, broilers trained with cold stimulation have stronger lipid metabolism capacity.
Collapse
Affiliation(s)
- Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwen Chai
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
6
|
Wu Y, Zhang M, Meng F, Ren K, Li D, Luo X, Hu Y. Betaine supplementation alleviates corticosterone-induced hepatic cholesterol accumulation through epigenetic modulation of HMGCR and CYP7A1 genes in laying hens. Poult Sci 2024; 103:103435. [PMID: 38232620 PMCID: PMC10827596 DOI: 10.1016/j.psj.2024.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Excessive corticosterone (CORT) exposure could cause hepatic cholesterol accumulation in chickens and maternal betaine supplementation could decrease hepatic cholesterol deposition through epigenetic modifications in offspring chickens. Nevertheless, it remains uncertain whether providing betaine to laying hens could protect CORT-induced hepatic cholesterol accumulation via epigenetic mechanisms. This study aimed to examine the effects of dietary betaine on plasma and hepatic cholesterol contents, expression of cholesterol metabolic genes, as well as DNA methylation on their promoters in the liver of laying hens exposed to CORT. A total of 72 laying hens at 130 d of age were randomly divided into 3 groups: control (CON), CORT, and CORT+betaine (CORT+BET) groups. The experiment lasted for 35 d. Chickens in CON and CORT groups were fed a basal diet, whereas the CORT+BET group chickens were fed the basal diet supplemented with 0.1% betaine for 35 d. On d 28 of the experiment, chickens in CORT and CORT+BET groups received daily subcutaneous injections of CORT (4.0 mg/kg body weight), whereas the CON group chickens were injected with an equal volume of solvent for 7 d. The results showed that CORT administration led to a significant increase (P < 0.05) in the contents of cholesterol in plasma and liver, associated with activation (P < 0.05) of sterol regulatory element binding transcription factor 2 (SREBP2), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), lecithin-cholesterol acyltransferase (LCAT) and low-density lipoprotein receptor (LDLR) genes expression, and inhibition of cholesterol-7-alpha hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) genes expression in the liver compared to the CON. In contrast, CORT-induced up-regulation of HMGCR mRNA and protein abundances and downregulation of CYP7A1 mRNA and protein abundances were completely normalized (P < 0.05) by betaine supplementation. Besides, CORT injection led to significant hypomethylation (P < 0.05) on HMGCR promoter and hypermethylation (P < 0.05) on CYP7A1 promoter. Moreover, dietary betaine rescued (P < 0.05) CORT-induced changes in methylation status of HMGCR and CYP7A1 genes promoters. These results indicate that dietary betaine addition protects laying hens from CORT-induced hepatic cholesterol accumulation via epigenetic modulation of HMGCR and CYP7A1 genes.
Collapse
Affiliation(s)
- Yulin Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Mengwei Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Fanchi Meng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Kunpeng Ren
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Ding Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China.
| |
Collapse
|
7
|
Herrera-Sánchez MP, Rodríguez-Hernández R, Rondón-Barragán IS. Stress-Related Gene Expression in Liver Tissues from Laying Hens Housed in Conventional Cage and Cage-Free Systems in the Tropics. Vet Med Int 2024; 2024:4107326. [PMID: 38250291 PMCID: PMC10799707 DOI: 10.1155/2024/4107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Global egg production is mainly based on cage systems, which have been associated with negative effects on the welfare of birds. Stress factors in restrictive production systems can lead to changes in gene transcription and protein synthesis, ultimately impacting the quality of poultry products. The liver serves various metabolic functions, such as glycogen storage, and plays a crucial role in animals' adaptation to environmental changes. Consequently, both internal and external conditions can influence liver functions. The aim of this study was to evaluate the gene expression of AGP, CRP, NOX4, SOD1, CAT, GPX1, SREBF1, and FXR in the liver of laying hens under two different production systems. Liver tissues from Hy-Line Brown hens housed in conventional cage and cage-free egg production systems at 60 and 80 weeks of production were used. mRNA transcript levels were determined by qPCR using the relative quantification method and ACTB as the reference gene. AGP, SOD1, and SREBF1 gene expressions were significantly higher in the conventional cage group at the 60 weeks of production. Furthermore, the mRNA levels of transcripts related to oxidative stress and lipid metabolism were higher in the group of laying hens housed in conventional cages compared to those in cage-free systems. These results suggest differential gene expression of genes related to oxidative stress in liver tissues from hens housed in conventional cages compared to cage-free systems. The conditions of the egg production system can impact the gene expression of oxidative stress and lipid synthesis genes, potentially leading to changes in the metabolism and performance of hens, including egg quality.
Collapse
Affiliation(s)
- María Paula Herrera-Sánchez
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
- Immunobiology and Pathogenesis Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
- Immunobiology and Pathogenesis Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
| |
Collapse
|
8
|
Li W, Wang X, Zhang X, Li F, Zhang D, Li X, Zhang Y, Zhao Y, Zhao L, Xu D, Cheng J, Wang J, Zhou B, Lin C, Wang W. Polymorphism of sheep PRKAA2 gene and its association with growth traits. Anim Biotechnol 2023; 34:1324-1330. [PMID: 34971343 DOI: 10.1080/10495398.2021.2021215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Small ruminants farming plays an important role in the livelihood of a large part of the population. Herein we aimed to analyze the effects of single nucleotide polymorphisms in PRKAA2 gene on the growth-related traits of Hu sheep and Dorper sheep. The body weight and body type of 1254 sheep were measured at 80, 100, 120, 140, 160 and 180d, and 37620 phenotypic data were collected. RT-qPCR analysis was performed to test PRKAA2 gene expressed in different tissues of sheep, with the highest expression level in spleen, followed by kidney. In the present study, the PRKAA2 gene sequencing revealed one polymorphism located on Chr1 (Oar_rambouillet_v1.0), termed as chr1:32832382 G > A, and were significantly associated with growth traits of sheep (p < 0.05). The body weight, body length, chest circumference, and cannon circumference of individuals with AA genotype were significantly higher than those with the GG and GA genotypes (p < 0.05). Our findings reveal that PRKAA2 gene could be used as a marker-assisted selection to improve the growth-related traits of sheep.
Collapse
Affiliation(s)
- Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Hu Y, Wang R, Liu J, Wang Y, Dong J. Lipid droplet deposition in the regenerating liver: A promoter, inhibitor, or bystander? Hepatol Commun 2023; 7:e0267. [PMID: 37708445 PMCID: PMC10503682 DOI: 10.1097/hc9.0000000000000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023] Open
Abstract
Liver regeneration (LR) is a complex process involving intricate networks of cellular connections, cytokines, and growth factors. During the early stages of LR, hepatocytes accumulate lipids, primarily triacylglycerol, and cholesterol esters, in the lipid droplets. Although it is widely accepted that this phenomenon contributes to LR, the impact of lipid droplet deposition on LR remains a matter of debate. Some studies have suggested that lipid droplet deposition has no effect or may even be detrimental to LR. This review article focuses on transient regeneration-associated steatosis and its relationship with the liver regenerative response.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics. Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Tang Y, Yin L, Liu L, Chen Q, Lin Z, Zhang D, Wang Y, Liu Y. Comparative Analysis of Different Proteins and Metabolites in the Liver and Ovary of Local Breeds of Chicken and Commercial Chickens in the Later Laying Period. Int J Mol Sci 2023; 24:14394. [PMID: 37762699 PMCID: PMC10531955 DOI: 10.3390/ijms241814394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The liver and ovary perform a vital role in egg production in hens. In the later laying period, the egg-laying capacity of female hens, particularly that of local breeds, declines significantly. Hence, it is essential to study the features and conditions of the ovary and liver during this period. In this research, we characterized the proteins and metabolites in the liver and ovary of 55-week-old Guangyuan gray chickens (Group G) and Hy-Line gray chickens (Group H) by using liquid chromatography chip/electrospray ionization quadruple time-of-flight/mass spectroscopy (LC-MS/MS). In total, 139 differentially expressed proteins (DEPs) and 186 differential metabolites (DMs) were identified in the liver, and 139 DEPs and 36 DMs were identified in the ovary. The upregulated DEPs and DMs in both the liver and ovary of Group G were primarily enriched in pathways involved in amino acid and carbohydrate metabolism. This suggests that energy metabolism was highly active in the Guangyuan gray chickens. In contrast, the upregulated DEPs and DMs in Group H were mainly enriched in pathways associated with lipid metabolism, which may explain the higher egg production and the higher fatty liver rate in Hy-Line gray hens in the later laying period. Additionally, it was found that the unique protein s-(hydroxymethyl) glutathione dehydrogenase (ADH4) in Group G was implicated in functions such as fatty acid degradation, glycolysis, and pyruvate metabolism, whereas the unique proteins, steroid sulfatase (STS), glucosylceramidase (LOC107050229), and phospholipase A2 Group XV (PLA2G15), in Group H were involved in the metabolism of steroid hormones and glycerol phosphate. In conclusion, variations in how carbohydrates, lipids, and amino acids are processed in the liver and ovary of local breeds of chicken and commercial hens towards the end of their laying period could explain the disparities in their egg production abilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.Y.); (L.L.); (Q.C.); (Z.L.); (D.Z.); (Y.W.)
| |
Collapse
|
11
|
Shibata M, Takahashi T, Kozakai T, Shindo J, Kurose Y. Development of active jejunal glucose absorption in broiler chickens. Poult Sci 2023; 102:102804. [PMID: 37321034 PMCID: PMC10404788 DOI: 10.1016/j.psj.2023.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Growth in chickens, especially meat-type chickens (broilers), is extremely rapid, but studies on the regulatory mechanism of intestinal glucose absorption with growth are few, contradictory, and unclear. Here, we investigated the regulation of intestinal glucose absorption with growth in broiler chickens using oral glucose gavage, intestinal Evans blue transit, intestinal glucose absorption, scanning electron microscopy, and glucose absorption- and cell junction-related gene expression analyses. Peak blood glucose levels after oral glucose gavage occurred at 10 and 50 min in chickens at 1 wk (C1W) and 5 wk (C5W) of age, respectively. The area under the curve for glucose levels was greater for the C5W than the C1W (P = 0.035). The stain ratio in the small intestine in the C5W was lower than that in the C1W (P = 0.01), but there were no differences in the tissue regions stained with Evans blue and the migration distance of Evans blue from Meckel's diverticulum. In everted sac and Ussing chamber experiments, we observed reduced intestinal glucose uptake and electrogenic glucose absorption in the jejunum of the C5W. Phloridzin, an inhibitor of sodium/glucose cotransporter 1 (SGLT1), suppressed the glucose-induced short-circuit current in the C1W (P = 0.016) but not the C5W. Although the addition of NaCl solution stimulated the glucose-induced short-circuit current in the C1W, no differences between the treatments were observed (P = 0.056), which was also the case in the C5W. Additionally, tissue conductance was diminished in the C5W compared with that in the C1W. Moreover, in the C5W, the intestinal tract was more developed and the jejunal villi were enlarged. In conclusion, glucose absorption throughout the intestine could be greater in C5W than in C1W; however, reduced SGLT1 sensitivity, decreased ion permeability, and intestinal overdevelopment lead to decreased local glucose absorption in the jejunum with growth in broiler chickens. These data provide a detailed analysis of intestinal glucose absorption in growing broiler chickens, and can contribute to the development of novel feeds.
Collapse
Affiliation(s)
- Mikako Shibata
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Tatsuyuki Takahashi
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| | - Takaharu Kozakai
- Faculty of Education, Art and Science, Yamagata University, Yamagata, Japan
| | - Junji Shindo
- Laboratory of Wildlife Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Yohei Kurose
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
12
|
Berenjian A, Bakhtiarizadeh MR, Mohammadi-Sangcheshmeh A, Sharifi SD. A nutrigenomics approach to study the effects of ω-3 fatty acids in laying hens under physiological stress. Front Physiol 2023; 14:1198247. [PMID: 37560158 PMCID: PMC10407228 DOI: 10.3389/fphys.2023.1198247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Supplement of ω-3 fatty acids can decrease the harmful effects of stress. However, the potential molecular mechanisms that are modulated by dietary ω-3 fatty acids in laying hens under stress remain unknown. Hence, RNA-sequencing (RNA-Seq) technology was used to gain new insights into different gene expression profiles and potential pathways involved in response to stress in the liver of 35-week-old Lohmann LSL-Lite laying hens supplemented with ω-3. Three groups including control (non-stress), stress, and stress_ω-3 fatty acids (three layers per each group) were applied. A total of 1,321 genes were detected as differentially expressed genes of which 701, 1,049, and 86 DEGs belonged to stress vs. control, stress_ω-3 vs. control, and stress vs. stress_ω-3 pairwise comparisons, respectively. Gene ontology and KEGG pathway analysis indicated that the DEGs were enriched in particular regulation of steroid and cholesterol biosynthetic process, fatty acid degradation, AMPK signaling pathway, fatty acid biosynthesis, and immune response. Our data represented a promising approach regarding the importance of ω-3 as anxiolytic and anti-stress. In this context, UNC13B and ADRA1B genes were downregulated in the stress_ω-3 group compared to the stress group, which are associated with decreased activity of glutamatergic stimulatory neurons and probably play important role in facilitating the response to stress. This study extends the current understanding of the liver transcriptome response to physiological stress, and provides new insights into the molecular responses to stress in laying hens fed a diet supplemented with ω-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | - Seyed Davood Sharifi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Majdeddin M, Braun U, Lemme A, Golian A, Kermanshahi H, De Smet S, Michiels J. Effects of feeding guanidinoacetic acid on oxidative status and creatine metabolism in broilers subjected to chronic cyclic heat stress in the finisher phase. Poult Sci 2023; 102:102653. [PMID: 37030259 PMCID: PMC10113889 DOI: 10.1016/j.psj.2023.102653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Dietary guanidinoacetic acid (GAA) has been shown to affect creatine (Cr) metabolic pathways resulting in increased cellular Cr and hitherto broiler performances. Yet, the impact of dietary GAA on improving markers of oxidative status remains equivocal. A model of chronic cyclic heat stress, known to inflict oxidative stress, was employed to test the hypothesis that GAA could modify bird's oxidative status. A total of 720-day-old male Ross 308 broilers were allocated to 3 treatments: 0, 0.6 or 1.2 g/kg GAA was added to corn-SBM diets and fed for 39 d, with 12 replicates (20 birds each) per treatment. The chronic cyclic heat stress model (34°C with 50-60% RH for 7 h daily) was applied in the finisher phase (d 25-39). Samples from 1 bird per pen were taken on d 26 (acute heat stress) and d 39 (chronic heat stress). GAA and Cr in plasma were linearly increased by feeding GAA on either sampling day, illustrating efficient absorption and methylation, respectively. Energy metabolism in breast and heart muscle was greatly supported as visible by increased Cr and phosphocreatine: ATP, thus providing higher capacity for rapid ATP generation in cells. Glycogen stores in breast muscle were linearly elevated by incremental GAA, on d 26 only. More Cr seems to be directed to heart muscle as opposed to skeletal muscle during chronic heat stress as tissue Cr was higher in heart but lower in breast muscle on d 39 as opposed to d 26. The lipid peroxidation marker malondialdehyde, and the antioxidant enzymes superoxide dismutase and glutathione peroxidase showed no alterations by dietary GAA in plasma. Opposite to that, superoxide dismutase activity in breast muscle was linearly lowered when feeding GAA (trend on d 26, effect on d 39). Significant correlations between the assessed parameters and GAA inclusion were identified on d 26 and d 39 using principal component analysis. To conclude, beneficial performance in heat-stressed broilers by GAA is associated with enhanced muscle energy metabolism which indirectly may also support tolerance against oxidative stress.
Collapse
|
14
|
Ma S, Zhang K, Shi S, Li X, Che C, Chen P, Liu H. Low-protein diets supplemented with isoleucine alleviate lipid deposition in broilers through activating 5' adenosine monophosphate-activated protein kinase and janus kinase 2/signal transducer and activator of transcription 3 signaling pathways. Poult Sci 2022; 102:102441. [PMID: 36599221 PMCID: PMC9823210 DOI: 10.1016/j.psj.2022.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to evaluate the effect of isoleucine (Ile) on growth performance, meat quality and lipid metabolism of broilers fed a low-protein diet (LPD). The 396 one-day-old male Cobb broilers were allocated to 4 treatment groups as follows: control diet (CON), LPD, LPD + 0.13% Ile (LPD-LI) and LPD + 0.26% Ile (LPD-HI), with nine replicates of 11 broilers each for 42 d. The Ile increased average daily gain, average daily feed intake, fiber density and the mRNA level of myosin heavy chain (MyHC)-I in breast muscle, and decreased feed to gain ratio, shear force, fiber diameter and the mRNA level of MyHC-IIb in breast muscle, which were impaired by the LPD. Compared to the LPD group, broilers in LPD-LI and LPD-HI groups had lower serum lipid levels, liver fat content, abdominal adipose percentage and mRNA levels of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer binding protein-α, ki-67, topoisomerase II alpha (TOP2A) and thioredoxin-dependent peroxidase 2 in abdominal adipose and liver X receptors-α, sterol regulatory element binding protein 1 (SREBP1), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) in liver, and higher mRNA levels of peroxisome proliferator activated receptor-α, carnitine palmitoyl-transferase 1 (CPT-1), and acyl-CoA oxidase 1 (ACOX1) in liver, which were equal to the CON levels. A LPD supplemented with Ile decreased enzyme activities of ACC and FAS in liver and glycerol-3-phosphate dehydrogenase and TOP2A in abdominal adipose, and increased enzyme activities of CPT-1 and ACOX1 in liver. Furthermore, Ile supplementation enhanced the mRNA level of leptin receptor and protein levels of phospho-5' adenosine monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin, ribosomal protein 70 S6 kinase, janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3), and decreased the protein level of SREBP1 in the liver of broilers in LPD group. In conclusion, dietary supplementation with Ile to 0.83% could improve growth performance and meat quality and alleviate lipid deposition of broilers fed a LPD through activating AMPK and JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Shengnan Ma
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuyan Shi
- Qingdao Yebio Bioengineering Co., Ltd., Qingdao 266114, China
| | - Xuemin Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Chuanyan Che
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
15
|
Chen Y, Li J, Zhang M, Yang W, Qin W, Zheng Q, Chu Y, Wu Y, Wu D, Yuan X. 11β-HSD1 Inhibitor Alleviates Non-Alcoholic Fatty Liver Disease by Activating the AMPK/SIRT1 Signaling Pathway. Nutrients 2022; 14:nu14112358. [PMID: 35684158 PMCID: PMC9182913 DOI: 10.3390/nu14112358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
We investigated the effect of an 11β-HSD1 inhibitor (H8) on hepatic steatosis and its mechanism of action. Although H8, a curcumin derivative, has been shown to alleviate insulin resistance, its effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. Rats were fed a high-fat diet (HFD) for 8 weeks, intraperitoneally injected with streptozotocin (STZ) to induce NAFLD, and, then, treated with H8 (3 or 6 mg/kg/day) or curcumin (6 mg/kg/day) for 4 weeks, to evaluate the effects of H8 on NAFLD. H8 significantly alleviated HFD+STZ-induced lipid accumulation, fibrosis, and inflammation as well as improved liver function. Moreover, 11β-HSD1 overexpression was established by transfecting animals and HepG2 cells with lentivirus, carrying the 11β-HSD1 gene, to confirm that H8 improved NAFLD, by reducing 11β-HSD1. An AMP-activated protein kinase (AMPK) inhibitor (Compound C, 10 μM for 2 h) was used to confirm that H8 increased AMPK, by inhibiting 11β-HSD1, thereby restoring lipid metabolic homeostasis. A silencing-related enzyme 1 (SIRT1) inhibitor (EX572, 10 μM for 4 h) and a SIRT1 activator (SRT1720, 1 μM for 4 h) were used to confirm that H8 exerted anti-inflammatory effects, by elevating SIRT1 expression. Our findings demonstrate that H8 alleviates hepatic steatosis, by inhibiting 11β-HSD1, which activates the AMPK/SIRT1 signaling pathway.
Collapse
|
16
|
Yan Y, Wang J, Huang D, Lv J, Li H, An J, Cui X, Zhao H. Plasma lipidomics analysis reveals altered lipids signature in patients with osteonecrosis of the femoral head. Metabolomics 2022; 18:14. [PMID: 35147763 DOI: 10.1007/s11306-022-01872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Although studies have established a link between lipid metabolism disorder and osteonecrosis of the femoral head (ONFH), the characteristics of the circulating lipidome signature of ONFH have not yet been investigated and need to be explored. OBJECTIVES We aimed to explore the plasma lipidome signatures in patients with ONFH, and to identify specific lipid biomarkers of ONFH. METHODS In this study, a comprehensive detection and analysis of plasma lipidomics was conducted in clinical human cohort, including 32 healthy normal control (NC) subjects and 91 ONFH patients in different subgroups [alcohol-induced ONFH (AONFH), steroid-induced ONFH (SONFH), and traumatic-induced ONFH (TONFH)] or at different disease stages (stage I, II, III and IV of ONFH) using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). RESULTS Overall, the plasma lipidome profile differs between ONFH and NC samples. Lipidome signature including 22 common differentially expressed lipids (DELs) in all three subgroups (variable importance in projection > 1, P < 0.05, fold change > 1.5 or < 0.67, compared to the NC group) was identified. Besides, the subtype-specific lipidome profiles for each ONFH subgroup were also analyzed. Generally, the AONFH subgroup has the largest number of DELs, and the plasma levels of triacylglycerol lipid compounds increased obviously in the AONFH samples. In the subgroup of SONFH, the relative abundance of lipid 4-Aminobenzoic acid increased significantly with changes in the expression of several of its interactive genes. We have identified that 9 stage-positive and 2 stage-negative lipids may function as novel biomarkers predicting the progression of ONFH. CONCLUSION Our study presents an overview of the phenotype-related plasma lipidome signature of patients with ONFH. The results will provide insight into the mechanisms underlying the metabolism of lipids in the pathogenesis and progression of ONFH and help identify novel lipids biomarkers or disease diagnosis and treatment targets.
Collapse
Affiliation(s)
- Yuzhu Yan
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing Lv
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaojian Cui
- Department of Radiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Heping Zhao
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
17
|
Gao Z, Zhang J, Li F, Zheng J, Xu G. Effect of Oils in Feed on the Production Performance and Egg Quality of Laying Hens. Animals (Basel) 2021; 11:3482. [PMID: 34944258 PMCID: PMC8698086 DOI: 10.3390/ani11123482] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
With the development of a large-scale and intensive production industry, the number of laying hens in China is rapidly increasing. Oils, as an important source of essential fatty acids, can be added to the diet to effectively improve the production performance and absorption of other nutrients. The present review discusses the practical application of different types and qualities of oils in poultry diets and studies the critical effects of these oils on production performance, such as the egg weight, feed intake, feed conversion ratio (FCR), and various egg quality parameters, including the albumen height, Haugh units, yolk color, and saturated/unsaturated fatty acids. This article reviews the effects of different dietary oil sources on the production performance and egg quality of laying hens and their potential functional mechanisms and provides a reference for the selection of different sources of oils to include in the diet with the aim of improving egg production. This review thus provides a reference for the application of oils to the diets of laying hens. Future studies are needed to determine how poultry products can be produced with the appropriate proper oils in the diet and without negative effects on production performance and egg quality.
Collapse
Affiliation(s)
- Zhouyang Gao
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| | - Junnan Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Jiangxia Zheng
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| | - Guiyun Xu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.G.); (J.Z.)
| |
Collapse
|
18
|
Zhang X, Hu Y, Ansari AR, Akhtar M, Chen Y, Cheng R, Cui L, Nafady AA, Elokil AA, Abdel-Kafy ESM, Liu H. Caecal microbiota could effectively increase chicken growth performance by regulating fat metabolism. Microb Biotechnol 2021; 15:844-861. [PMID: 34264533 PMCID: PMC8913871 DOI: 10.1111/1751-7915.13841] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
It has been established that gut microbiota influences chicken growth performance and fat metabolism. However, whether gut microbiota affects chicken growth performance by regulating fat metabolism remains unclear. Therefore, seven‐week‐old chickens with high or low body weight were used in the present study. There were significant differences in body weight, breast and leg muscle indices, and cross‐sectional area of muscle cells, suggesting different growth performance. The relative abundance of gut microbiota in the caecal contents at the genus level was compared by 16S rRNA gene sequencing. The results of LEfSe indicated that high body weight chickens contained Microbacterium and Sphingomonas more abundantly (P < 0.05). In contrast, low body weight chickens contained Slackia more abundantly (P < 0.05). The results of H & E, qPCR, IHC, WB and blood analysis suggested significantly different fat metabolism level in serum, liver, abdominal adipose, breast and leg muscles between high and low body weight chickens. Spearman correlation analysis revealed that fat metabolism positively correlated with the relative abundance of Microbacterium and Sphingomonas while negatively correlated with the abundance of Slackia. Furthermore, faecal microbiota transplantation was performed, which verified that transferring faecal microbiota from adult chickens with high body weight into one‐day‐old chickens improved growth performance and fat metabolism in liver by remodelling the gut microbiota. Overall, these results suggested that gut microbiota could affect chicken growth performance by regulating fat metabolism.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yafang Hu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Muhammad Akhtar
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yan Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ranran Cheng
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lei Cui
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Abdallah A Nafady
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Abdelmotaleb A Elokil
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - El-Sayed M Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
19
|
Hu X, Kong L, Xiao C, Zhu Q, Song Z. The AMPK-mTOR signaling pathway is involved in regulation of food intake in the hypothalamus of stressed chickens. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110979. [PMID: 33991669 DOI: 10.1016/j.cbpa.2021.110979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Glucocorticoids (GCs) can stimulate the appetite and AMPK in broilers. The activation of hypothalamic mTOR has been proposed as an important anorexigenic signal. However, inhibitory effect of AMPK activity on appetite and AMPK downstream signaling pathway under stress has not been reported. In this study, we performed an intracerebroventricular (icv) injection of compound C, an AMPK inhibitor, in GC-treated birds to explore the regulatory mechanism on appetite and AMPK downstream signaling pathway. A total of 48 7-day-old broilers, which had received an icv cannula, were randomly subjected to one of two treatments: subcutaneous injection of dexamethasone (DEX) or saline. After 3 days of continuous DEX injection, chicks of each group received an icv injection with either compound C (6 μg/2 μL) or vehicle (dimethyl sulfoxide, 2 μL). The results showed that body weight gain was reduced by the DEX treatment. Compared with the control, icv injection of compound C reduced feed intake at 0.5-1.5 h. In the DEX-treated group, the inhibitory effect of compound C on appetite remained apparent at 0.5-1 h. The DEX treatment increased the gene expression of liver kinase B1 (LKB1), neuropeptide Y (NPY), and decreased p-mTOR protein level. In stressed broilers, inhibition of AMPK relieved the decreased mTOR activity. A significant interaction was noted in DEX and compound C on protein expression of phospho-AMPK. Taken together, in stressed broilers, the central injection of compound C could inhibit central AMPK activity and reduce appetite, in which the AMPK/mTOR signaling pathway might be involved.
Collapse
Affiliation(s)
- Xiyi Hu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Linglian Kong
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chuanpi Xiao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Qidong Zhu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
20
|
Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. Int J Mol Sci 2021; 22:ijms22020623. [PMID: 33435513 PMCID: PMC7827500 DOI: 10.3390/ijms22020623] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are steroids secreted by the adrenal cortex under the hypothalamic-pituitary-adrenal axis control, one of the major neuro-endocrine systems of the organism. These hormones are involved in tissue repair, immune stability, and metabolic processes, such as the regulation of carbohydrate, lipid, and protein metabolism. Globally, GCs are presented as ‘flight and fight’ hormones and, in that purpose, they are catabolic hormones required to mobilize storage to provide energy for the organism. If acute GC secretion allows fast metabolic adaptations to respond to danger, stress, or metabolic imbalance, long-term GC exposure arising from treatment or Cushing’s syndrome, progressively leads to insulin resistance and, in fine, cardiometabolic disorders. In this review, we briefly summarize the pharmacological actions of GC and metabolic dysregulations observed in patients exposed to an excess of GCs. Next, we describe in detail the molecular mechanisms underlying GC-induced insulin resistance in adipose tissue, liver, muscle, and to a lesser extent in gut, bone, and brain, mainly identified by numerous studies performed in animal models. Finally, we present the paradoxical effects of GCs on beta cell mass and insulin secretion by the pancreas with a specific focus on the direct and indirect (through insulin-sensitive organs) effects of GCs. Overall, a better knowledge of the specific action of GCs on several organs and their molecular targets may help foster the understanding of GCs’ side effects and design new drugs that possess therapeutic benefits without metabolic adverse effects.
Collapse
|
21
|
Hu X, Wang Y, Sheikhahmadi A, Li X, Buyse J, Lin H, Song Z. Effects of dietary energy level on appetite and central adenosine monophosphate-activated protein kinase (AMPK) in broilers. J Anim Sci 2019; 97:4488-4495. [PMID: 31586423 PMCID: PMC6827410 DOI: 10.1093/jas/skz312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/03/2019] [Indexed: 12/23/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) acts as a sensor of cellular energy changes and is involved in the control of food intake. A total of 216 1-d-old broilers were randomly allotted into 3 treatments with 6 replicates per treatment and 12 broilers in each cage. The dietary treatments included 1) high-energy (HE) diet (3,500 kcal/kg), 2) normal-energy (NE) diet (3,200 kcal/kg), and 3) low-energy (LE) diet (2,900 kcal/kg). The present study was conducted to investigate the effects of dietary energy level on appetite and the central AMPK signal pathway. The results showed that a HE diet increased average daily gain (ADG), whereas a LE diet had the opposite effect (P < 0.05, N = 6). The average daily feed intake (ADFI) of the chickens fed the LE diet was significantly higher than that of the control (P < 0.05, N = 6). Overall, the feed conversion rate gradually decreased with increasing dietary energy level (P < 0.05, N = 6). Moreover, the chickens fed the LE and HE diets demonstrated markedly improved urea content compared with the control group (P < 0.0001, N = 8). The triglyceride (TG) content in the LE group was obviously higher than that in the HE group but showed no change compared with the control (P = 0.0678, N = 8). The abdominal fat rate gradually increased with increased dietary energy level (P = 0.0927, N = 8). The HE group showed downregulated gene expression levels of liver kinase B1 (LKB1), neuropeptide Y (NPY), cholecystokinin (CCK), and glucocorticoid receptor (GR) in the hypothalamus compared with the control group (P < 0.05, N = 8). However, LE treatment significantly increased the mRNA level of AMP-activated protein kinase α2 (AMPKα2) compared with other groups (P = 0.0110, N = 8). In conclusion, a HE diet inhibited appetite and central AMPK signaling. In contrast, a LE diet activated central AMPK and appetite. Overall, the central AMPK signal pathway and appetite were modulated in accordance with the energy level in the diet to regulate nutritional status and maintain energy homeostasis in birds.
Collapse
Affiliation(s)
- Xiyi Hu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yufeng Wang
- Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg, Leuven, Belgium
| | - Ardashir Sheikhahmadi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Xianlei Li
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Johan Buyse
- Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg, Leuven, Belgium
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
22
|
Ding Y, Tang J, You X, Zhang X, Wang G, Yao C, Lin M, Wang X, Cheng D. Study on the mechanism underlying Al-induced hepatotoxicity based on the identification of the Al-binding proteins in liver. Metallomics 2019; 11:1353-1362. [PMID: 31343013 DOI: 10.1039/c9mt00150f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aluminum (Al) is the most abundant metal element in the earth's crust, and is implicated in the pathogenesis of liver lesions. However, the mechanisms underlying Al3+-induced hepatotoxicity are still largely elusive. Based on analysis with native gel electrophoresis, Al3+ plus 8-hydroxyquinoline staining and LC-MS/MS, the proteins with high Al3+ affinity were identified to be carbamoyl-phosphate synthase, adenosylhomocysteinase, heat shock protein 90-alpha, carbonic anhydrase 3, serum albumin and calreticulin. These proteins are involved in physiological processes such as the urea cycle, redox reactions, apoptosis and so on. Then we established an Al3+-treated rat model for biochemical tests, morphology observation and Ca2+ homeostasis analysis, in order to evaluate the extent of oxidative damage, hepatic histopathology and specific indicators of Al3+-related proteins in liver. Our findings indicated the high-affinity interactions with Al3+ perturbed the normal function of the above proteins, which could account for the mechanism underlying Al3+-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Jinlei Tang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Xun You
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Xiongfeng Zhang
- Jiangxi Province Tobacco Science Research Institute, Nanchang, 330000, China
| | - Guangliang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Congying Yao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Mibin Lin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Xuerui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China.
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin, 300457, China. and Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|