1
|
Bhardwaj S, Thakur K, Sharma AK, Sharma D, Brar B, Mahajan D, Kumar S, Kumar R. Regulation of omega-3 fatty acids production by different genes in freshwater fish species: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1005-1016. [PMID: 37684550 DOI: 10.1007/s10695-023-01236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The present study aims to compare the gene expression of three different fish species (common carp, tilapia, and trout) with varying levels of fatty acids (FA). Based on transcriptome analysis and RNA sequencing, various genes and their associated metabolic pathways are identified. Pathways are categorized based on the genes they encode. Genes that were differentially expressed and their promoter's methylation patterns were revealed by RNA-seq analysis in common carp. Furthermore, fatty acid-enriched pathways, such as ARA4 and adipocytokine signaling, were also identified. Many genes and pathways may influence tilapia's growth and omega-3 content. Using the mTOR pathway, trout with differential expression were discovered to be involved in producing omega-3 fatty acids. This study revealed major pathways in fish species to produce omega-3 fatty acids.
Collapse
Affiliation(s)
- Shivani Bhardwaj
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India.
| |
Collapse
|
2
|
Zhao R, Yang CR, Wang YX, Xu ZM, Li SQ, Li JC, Sun XQ, Wang HW, Wang Q, Zhang Y, Li JT. Fads2b Plays a Dominant Role in ∆6/∆5 Desaturation Activities Compared with Fads2a in Common Carp ( Cyprinus carpio). Int J Mol Sci 2023; 24:10638. [PMID: 37445816 DOI: 10.3390/ijms241310638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Highly unsaturated fatty acids (HUFAs) are essential for mammalian health, development and growth. However, most mammals, including humans, are incapable of synthesizing n-6 and n-3 HUFAs. Fish can convert C18 unsaturated fatty acids into n-6 and n-3 HUFAs via fatty acid desaturase (Fads), in which Fads2 is a key enzyme in HUFA biosynthesis. The allo-tetraploid common carp theoretically encode two duplicated fads2 genes. The expression patterns and desaturase functions of these two homologous genes are still unknown. In this study, the full length of the fads2a and fads2b were identified in common carp (Cyprinus carpio). Expression analyses indicate that both genes were mainly expressed in the liver and the expression of fads2b is higher than fads2a at different developmental stages in carp embryos. Heterogenous expression and 3D docking analyses suggested that Fads2b demonstrated stronger ∆6 and ∆5 desaturase activities than Fads2a. The core promotor regions of fads2a and fads2b were characterized and found to have different potential transcriptional binding sites. These results revealed the same desaturase functions, but different activities of two homologues of fasd2 genes in common carp. The data showed that fads2b played a more important role in HUFA synthesis through both expression and functional analyses.
Collapse
Affiliation(s)
- Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Chen-Ru Yang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Ya-Xin Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Zi-Ming Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Shang-Qi Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Jin-Cheng Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Hong-Wei Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| |
Collapse
|
3
|
Torsabo D, Ishak SD, Noordin NM, Koh ICC, Abduh MY, Iber BT, Kuah MK, Abol-Munafi AB. Enhancing Reproductive Performance of Freshwater Finfish Species through Dietary Lipids. AQUACULTURE NUTRITION 2022; 2022:7138012. [PMID: 36860466 PMCID: PMC9973229 DOI: 10.1155/2022/7138012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 06/18/2023]
Abstract
Dietary lipid manipulation in the feed of commercially cultured finfish is used not only to improve production and culture but also to enhance their reproductive performances. The inclusion of lipid in broodstock diet positively affects growth, immunological responses, gonadogenesis, and larval survival. In this review, existing literature on the importance of freshwater finfish species to aquaculture and the inclusion of dietary lipid compounds in freshwater fish feed to accelerate the reproduction rate is being summarized and discussed. Although lipid compounds have been confirmed to improve reproductive performance, only a few members of the most economically important species have reaped benefits from quantitative and qualitative lipid studies. There is a knowledge gap on the effective inclusion and utilization of dietary lipids on gonad maturation, fecundity, fertilization, egg morphology, hatching rate, and consequently, larval quality contributing to the survival and good performance of freshwater fish culture. This review provides a baseline for potential future research for optimizing dietary lipid inclusion in freshwater broodstock diets.
Collapse
Affiliation(s)
- Donald Torsabo
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Department of Fisheries and Aquaculture, Federal University of Agriculture Makurdi, Makurdi, Benue State, Nigeria
| | - Sairatul Dahlianis Ishak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Noordiyana Mat Noordin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ivan Chong Chu Koh
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Muhammad Yazed Abduh
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Benedict Terkula Iber
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Department of Fisheries and Aquaculture, Federal University of Agriculture Makurdi, Makurdi, Benue State, Nigeria
| | - Meng-Kiat Kuah
- Lab-Ind Resource Sdn Bhd, 48300 Bandar Bukit Beruntung, Selangor, Malaysia
| | - Ambok Bolong Abol-Munafi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
4
|
Marrero M, Monroig Ó, Navarro JC, Ribes-Navarro A, Pérez JA, Galindo A, Rodríguez C. Metabolic and molecular evidence for long-chain PUFA biosynthesis capacity in the grass carp Ctenopharyngodon idella. Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111232. [PMID: 35580802 DOI: 10.1016/j.cbpa.2022.111232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
There is a growing interest to understand the capacity of farmed fish species to biosynthesise the physiologically important long-chain (≥C20) n-3 and n-6 polyunsaturated fatty acids (LC-PUFAs), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (ARA), from their C18 PUFA precursors available in the diet. In fish, the LC-PUFA biosynthesis pathways involve sequential desaturation and elongation reactions from α-linolenic acid (ALA) and linoleic acid (LA), catalysed by fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. Our current understanding of the grass carp (Ctenopharyngodon idella) LC-PUFA biosynthetic capacity is limited despite representing the most farmed finfish produced worldwide. To address this knowledge gap, this study first aimed at characterising molecularly and functionally three genes (fads2, elovl5 and elovl2) with putative roles in LC-PUFA biosynthesis. Using an in vitro yeast-based system, we found that grass carp Fads2 possesses ∆8 and ∆5 desaturase activities, with ∆6 ability to desaturase not only the C18 PUFA precursors (ALA and LA) but also 24:5n-3 to 24:6n-3, a key intermediate to obtain DHA through the "Sprecher pathway". Additionally, the Elovl5 showed capacity to elongate C18 and C20 PUFA substrates, whereas Elovl2 was more active over C20 and C22. Collectively, the molecular cloning and functional characterisation of fads2, elovl5 and elovl2 demonstrated that the grass carp has all the enzymatic activities required to obtain ARA, EPA and DHA from LA and ALA. Importantly, the hepatocytes incubated with radiolabelled fatty acids confirmed the yeast-based results and demonstrated that these enzymes are functionally active.
Collapse
Affiliation(s)
- Manuel Marrero
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna 38206, Santa Cruz de Tenerife, Spain.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Juan Carlos Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - Alberto Ribes-Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellón, Spain
| | - José Antonio Pérez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna 38206, Santa Cruz de Tenerife, Spain
| | - Ana Galindo
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna 38206, Santa Cruz de Tenerife, Spain
| | - Covadonga Rodríguez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna 38206, Santa Cruz de Tenerife, Spain
| |
Collapse
|
5
|
Khalili Tilami TS, Sampels S, Tomčala A, Mráz J. Essential fatty acids composition and oxidative stability of frozen minced carp meat. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2030751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- T. S. Khalili Tilami
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - S. Sampels
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A. Tomčala
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - J. Mráz
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Monroig Ó, Shu-Chien A, Kabeya N, Tocher D, Castro L. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions. Prog Lipid Res 2022; 86:101157. [DOI: 10.1016/j.plipres.2022.101157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
7
|
Association between the Polymorphisms of fads2a and fads2b and Poly-Unsaturated Fatty Acids in Common Carp ( Cyprinus carpio). Animals (Basel) 2021; 11:ani11061780. [PMID: 34203588 PMCID: PMC8232129 DOI: 10.3390/ani11061780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Fishes are the major dietary source of polyunsaturated fatty acids (PUFAs) for humans. The limited availability of PUFAs derived from fish represents a critical bottleneck in food production systems, one that numerous research institutions and aqua-feed companies in this field are trying to overcome. This problem could be minimized by select-bred fish to be capable of more effectively producing endogenous PUFAs. Fatty acid desaturase 2 (fads2) is one of the rate-limiting enzymes in the synthesis of PUFAs. The common carp, one of the most important food and ornamental allo-tetraploid fish, encodes two fads2 genes (fads2a and fads2b). The PUFA contents among common carp individuals were numerous, suggesting that there might exist polymorphisms in fads2a and fads2b. However, selective breeding of common carp with high PUFA contents was hindered due to a lack of effective molecular markers. This study investigated the contents of PUFAs in common carp and identified polymorphisms in the CDS regions of fads2a and fads2b. The association study identified three cSNPs associated with the PUFA contents and suggested that fads2b might be the major gene responding for common carp PUFA contents. These cSNPs would be potential markers for future selection to improve the PUFA contents in common carp. Abstract Fatty acid desaturase 2 (fads2) is one of the rate-limiting enzymes in PUFAs biosynthesis. Compared with the diploid fish encoding one fads2, the allo-tetraploid common carp, one most important food fish, encodes two fads2 genes (fads2a and fads2b). The associations between the contents of different PUFAs and the polymorphisms of fads2a and fads2b have not been studied. The contents of 12 PUFAs in common carp individuals were measured, and the polymorphisms in the coding sequences of fads2a and fads2b were screened. We identified five coding single nucleotide polymorphisms (cSNPs) in fads2a and eleven cSNPs in fads2b. Using the mixed linear model and analysis of variance, a synonymous fads2a cSNP was significantly associated with the content of C20:3n-6. One non-synonymous fads2b cSNP (fads2b.751) and one synonymous fads2b cSNP (fads2b.1197) were associated with the contents of seven PUFAs and the contents of six PUFAs, respectively. The heterozygous genotypes in both loci were associated with higher contents than the homozygous genotypes. The fads2b.751 genotype explained more phenotype variation than the fads2b.1197 genotype. These two SNPs were distributed in one haplotype block and associated with the contents of five common PUFAs. These results suggested that fads2b might be the major gene responding to common carp PUFA contents and that fads.751 might be the main effect SNP. These cSNPs would be potential markers for future selection to improve the PUFA contents in common carp.
Collapse
|
8
|
Xie D, Chen C, Dong Y, You C, Wang S, Monroig Ó, Tocher DR, Li Y. Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish. Prog Lipid Res 2021; 82:101095. [PMID: 33741387 DOI: 10.1016/j.plipres.2021.101095] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/24/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA, C20-24), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), are involved in numerous biological processes and have a range of health benefits. Fish have long been considered as the main source of n-3 LC-PUFA in human diets. However, the capacity for endogenous biosynthesis of LC-PUFA from C18 PUFA varies in fish species based on the presence, expression and activity of key enzymes including fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. In this article, we review progress on the identified Fads and Elovl, as well as the regulatory mechanisms of LC-PUFA biosynthesis both at transcriptional and post-transcriptional levels in teleosts. The most comprehensive advances have been obtained in rabbitfish Siganus canaliculatus, a marine teleost demonstrated to have the entire pathway for LC-PUFA biosynthesis, including the roles of transcription factors hepatocyte nuclear factor 4α (Hnf4α), liver X receptor alpha (Lxrα), sterol regulatory element-binding protein 1 (Srebp-1), peroxisome proliferator-activated receptor gamma (Pparγ) and stimulatory protein 1 (Sp1), as well as post-transcriptional regulation by individual microRNA (miRNA) or clusters. This research has, for the first time, demonstrated the involvement of Hnf4α, Pparγ and miRNA in the regulation of LC-PUFA biosynthesis in vertebrates. The present review provides readers with a relatively comprehensive overview of the progress made into understanding LC-PUFA biosynthetic systems in teleosts, and some insights into improving endogenous LC-PUFA biosynthesis capacity aimed at reducing the dependence of aquafeeds on fish oil while maintaining or increasing flesh LC-PUFA content and the nutritional quality of farmed fish.
Collapse
Affiliation(s)
- Dizhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yewei Dong
- Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Cuihong You
- Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Castellón, Spain.
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK94LA, Scotland, United Kingdom
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
9
|
Cui J, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Δ6 fatty acid desaturases in polyunsaturated fatty acid biosynthesis: insights into the evolution, function with substrate specificities and biotechnological use. Appl Microbiol Biotechnol 2020; 104:9947-9963. [PMID: 33094384 DOI: 10.1007/s00253-020-10958-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Δ6 fatty acid desaturases (FADS6) have different substrate specificities that impact the ratio of omega-6/omega-3 polyunsaturated fatty acids, which are involved in regulating multiple signalling pathways associated with various diseases. For decades, FADS6 with different substrate specificities have been characterized and the functions of these crucial enzymes have been investigated, while it remains enigmatic that the substrate specificities of FADS6 from various species have a huge difference. This review summarizes the substrate specificities of FADS6 in different species and reveals the underlying relationship. Further evaluation of biochemical properties has revealed that the FADS6 prefer linoleic acid that is more hydrophilic and stable. Domain-swapping and site-directed mutagenesis have been employed to delineate the regions and sites that affect the substrate specificities of FADS6. These analyses improve our understanding of the functions of FADS6 and offer information for the discovery of novel biological resources. KEY POINTS: • Outline of the excavation and identification of Δ6 fatty acid desaturases. • Overview of methods used to determine the pivotal resides of desaturases. • Application of substrate properties to generate specific fatty acids.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,Department of Cancer Biology, Wake Forest School of Medicine, 5, Winston-Salem, NC, 27127, USA
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| |
Collapse
|
10
|
Ferosekhan S, Turkmen S, Xu H, Afonso JM, Zamorano MJ, Kaushik S, Izquierdo M. The Relationship between the Expression of Fatty Acyl Desaturase 2 ( fads2) Gene in Peripheral Blood Cells (PBCs) and Liver in Gilthead Seabream, Sparus aurata Broodstock Fed a Low n-3 LC-PUFA Diet. Life (Basel) 2020; 10:life10070117. [PMID: 32707702 PMCID: PMC7400341 DOI: 10.3390/life10070117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
The principle aim of this study is to elucidate the relationship between the fatty acid desaturase 2 gene (fads2) expression pattern in peripheral blood cells (PBCs) and liver of gilthead seabream (GSB), Sparus aurata broodstock in order to determine the possible use of fads2 expression as a potential biomarker for the selection of broodstock. This selection could be utilized for breeding programs aiming to improve reproduction, health, and nutritional status. Passive Integrated Transponder (PIT)-tagged GSB broodstock (Male-1.22 ± 0.20 kg; 44.8 ± 2 cm and female-2.36 ± 0.64 kg; 55.1 cm) were fed a diet containing low levels of fish meal and fish oil (EPA 2.5; DHA 1.7 and n-3 LC-PUFA 4.6% TFA) for one month. After the feeding period, fads2 expression in PBCs and liver of both male and female broodstock were highly significantly correlated (r = 0.89; p < 0.001). Additionally, in male broodstock, liver fads2 expression was significantly correlated (p < 0.05) to liver contents in 16:0 (r = 0.95; p = 0.04) and total saturates (r = 0.97; p = 0.03) as well as to 20:3n–6/20:2n–6 (r = 0.98; p = 0.02) a Fads2 product/precursor ratio. Overall, we found a positive and significant correlation between fads2 expression levels in the PBCs and liver of GSB broodstock. PBCs fads2 expression levels indicate a strong potential for utilization as a non-invasive method to select animals having increased fatty acid bioconversion capability, better able to deal with diets free of fish meal and fish oil.
Collapse
Affiliation(s)
- Shajahan Ferosekhan
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, India
- Correspondence:
| | - Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
| | - Juan Manuel Afonso
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
| | - Maria Jesus Zamorano
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
| | - Sadasivam Kaushik
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain; (S.T.); (H.X.); (J.M.A.); (M.J.Z.); (S.K.); (M.I.)
| |
Collapse
|
11
|
Soo HJ, Sam KK, Chong J, Lau NS, Ting SY, Kuah MK, Kwang SY, Ranjani M, Shu-Chien AC. Functional characterisation of fatty acyl desaturase, Fads2, and elongase, Elovl5, in the Boddart's goggle-eyed goby Boleophthalmus boddarti (Gobiidae) suggests an incapacity for long-chain polyunsaturated fatty acid biosynthesis. JOURNAL OF FISH BIOLOGY 2020; 97:83-99. [PMID: 32222967 DOI: 10.1111/jfb.14328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
The biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA), a process to convert C18 polyunsaturated fatty acids into eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or arachidonic acid (ARA), requires the concerted activities of two enzymes, the fatty acyl desaturase (Fads) and elongase (Elovl). This study highlights the cloning, functional characterisation and tissue expression pattern of a Fads and an Elovl from the Boddart's goggle-eyed goby (Boleophthalmus boddarti), a mudskipper species widely distributed in the Indo-Pacific region. Phylogenetic analysis revealed that the cloned fads and elovl are clustered with other teleost orthologs, respectively. The investigation of the genome of several mudskipper species, namely Boleophthalmus pectinirostris, Periophthalmus schlosseri and Periophthalmus magnuspinnatus, revealed a single Fads2 and two elongases, Elovl5 and Elovl4 for each respective species. A heterologous yeast assay indicated that the B. boddarti Fads2 possessed low desaturation activity on C18 PUFA and no desaturation on C20 and C22 PUFA substrates. In comparison, the Elovl5 showed a wide range of substrate specificity, with a capacity to elongate C18, C20 and C22 PUFA substrates. An amino acid residue that affects the capacity to elongate C22:5n-3 was identified in the B. boddarti Elovl5. Both genes are highly expressed in brain tissue. Among all tissues, DHA is highly concentrated in neuron-rich tissues, whereas EPA is highly deposited in gills. Taken together, the results showed that due to the inability to perform desaturation steps, B. boddarti is unable to biosynthesise LC-PUFA, relying on dietary intake to acquire these nutrients.
Collapse
Affiliation(s)
- Han-Jie Soo
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ka Kei Sam
- Centre for Chemical Biology, Sains@USM, Bayan Lepas, Malaysia
| | - Joey Chong
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Sains@USM, Bayan Lepas, Malaysia
| | - Seng Yeat Ting
- Centre for Chemical Biology, Sains@USM, Bayan Lepas, Malaysia
| | - Meng-Kiat Kuah
- Centre for Chemical Biology, Sains@USM, Bayan Lepas, Malaysia
| | - Sim Yee Kwang
- Center for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
- Centre for Chemical Biology, Sains@USM, Bayan Lepas, Malaysia
| |
Collapse
|
12
|
Rivera-Pérez C, Valenzuela-Quiñonez F, Caraveo-Patiño J. Comparative and functional analysis of desaturase FADS1 (∆5) and FADS2 (∆6) orthologues of marine organisms. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100704. [PMID: 32554222 DOI: 10.1016/j.cbd.2020.100704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
Fatty acid desaturases are key enzymes involved in unsaturated fatty acid biosynthesis, which insert double bonds at specific positions of fatty acids, playing a pivotal role in unsaturated fatty acid synthesis required for membrane lipid fluidity. The ∆5 and ∆6 desaturases are responsible for producing long chain-polyunsaturated fatty acids (LC-PUFA) through their precursors α-linolenic acid and linoleic acid in organisms lacking or with very low ability to synthesize LC-PUFA by themselves. Extensive studies of fatty acid desaturases are available in model organisms, such as humans and mouse; however, the diversity of these genes in the marine biodiversity is less known. This study performed an exhaustive analysis to identify the ∆5 and ∆6 desaturases in the available marine genomes in databases, as well as transcriptomes and EST databases, and their coding sequences were compared to the well-characterized ∆5 and ∆6 desaturases from humans. The FADS1 and FADS2 genetic structures are well conserved among all the organisms analyzed. A common amino acid pattern was identified to discriminate between ∆5 and ∆6 desaturases. The analysis of the conserved motif involved in catalysis showed that 20% of the desaturases, ∆5 and ∆6, have lost motifs required for catalysis. Additionally, bifunctional ∆5/∆6 desaturases were able to be identified by amino acid sequence patterns found in previously described enzymes. A revision of the expression profiles and functional activity on sequences in databases and scientific literature provided information regarding the function of these marine organism enzymes.
Collapse
Affiliation(s)
| | | | - Javier Caraveo-Patiño
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S. 23096, Mexico
| |
Collapse
|
13
|
Morais S, Torres M, Hontoria F, Monroig Ó, Varó I, Agulleiro MJ, Navarro JC. Molecular and Functional Characterization of Elovl4 Genes in Sparus aurata and Solea senegalensis Pointing to a Critical Role in Very Long-Chain (>C 24) Fatty Acid Synthesis during Early Neural Development of Fish. Int J Mol Sci 2020; 21:ijms21103514. [PMID: 32429178 PMCID: PMC7278935 DOI: 10.3390/ijms21103514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023] Open
Abstract
Very long-chain fatty acids (VLC-FA) play critical roles in neural tissues during the early development of vertebrates. However, studies on VLC-FA in fish are scarce. The biosynthesis of VLC-FA is mediated by elongation of very long-chain fatty acid 4 (Elovl4) proteins and, consequently, the complement and activity of these enzymes determines the capacity that a given species has for satisfying its physiological demands, in particular for the correct development of neurophysiological functions. The present study aimed to characterize and localize the expression of elovl4 genes from Sparus aurata and Solea senegalensis, as well as to determine the function of their encoded proteins. The results confirmed that both fish possess two distinct elovl4 genes, named elovl4a and elovl4b. Functional assays demonstrated that both Elovl4 isoforms had the capability to elongate long-chain (C20–24), both saturated (SFA) and polyunsaturated (PUFA), fatty acid precursors to VLC-FA. In spite of their overlapping activity, Elovl4a was more active in VLC-SFA elongation, while Elovl4b had a preponderant elongation activity towards n-3 PUFA substrates, particularly in S. aurata, being additionally the only isoform that is capable of elongating docosahexaenoic acid (DHA). A preferential expression of elovl4 genes was measured in neural tissues, being elovl4a and elovl4b mRNAs mostly found in brain and eyes, respectively.
Collapse
Affiliation(s)
- Sofia Morais
- Instituto de Investigación y Tecnología Agroalimentaria (IRTA), Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Rápita, Tarragona, Spain; (S.M.); (M.J.A.)
| | - Miguel Torres
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; (M.T.); (Ó.M.); (I.V.); (J.C.N.)
| | - Francisco Hontoria
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; (M.T.); (Ó.M.); (I.V.); (J.C.N.)
- Correspondence: ; Tel.: +34-964319500 (ext. 229)
| | - Óscar Monroig
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; (M.T.); (Ó.M.); (I.V.); (J.C.N.)
| | - Inma Varó
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; (M.T.); (Ó.M.); (I.V.); (J.C.N.)
| | - María José Agulleiro
- Instituto de Investigación y Tecnología Agroalimentaria (IRTA), Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Rápita, Tarragona, Spain; (S.M.); (M.J.A.)
| | - Juan Carlos Navarro
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain; (M.T.); (Ó.M.); (I.V.); (J.C.N.)
| |
Collapse
|
14
|
The catadromous teleost Anguilla japonica has a complete enzymatic repertoire for the biosynthesis of docosahexaenoic acid from α-linolenic acid: Cloning and functional characterization of an Elovl2 elongase. Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110373. [DOI: 10.1016/j.cbpb.2019.110373] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 01/21/2023]
|
15
|
Bláhová Z, Harvey TN, Pšenička M, Mráz J. Assessment of Fatty Acid Desaturase (Fads2) Structure-Function Properties in Fish in the Context of Environmental Adaptations and as a Target for Genetic Engineering. Biomolecules 2020; 10:E206. [PMID: 32023831 PMCID: PMC7072455 DOI: 10.3390/biom10020206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Fatty acid desaturase 2 (Fads2) is the key enzyme of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis. Endogenous production of these biomolecules in vertebrates, if present, is insufficient to meet demand. Hence, LC-PUFA are considered as conditionally essential. At present, however, LC-PUFA are globally limited nutrients due to anthropogenic factors. Research attention has therefore been paid to finding ways to maximize endogenous LC-PUFA production, especially in production species, whereby deeper knowledge on molecular mechanisms of enzymatic steps involved is being generated. This review first briefly informs about the milestones in the history of LC-PUFA essentiality exploration before it focuses on the main aim-to highlight the fascinating Fads2 potential to play roles fundamental to adaptation to novel environmental conditions. Investigations are summarized to elucidate on the evolutionary history of fish Fads2, providing an explanation for the remarkable plasticity of this enzyme in fish. Furthermore, structural implications of Fads2 substrate specificity are discussed and some relevant studies performed on organisms other than fish are mentioned in cases when such studies have to date not been conducted on fish models. The importance of Fads2 in the context of growing aquaculture demand and dwindling LC-PUFA supply is depicted and a few remedies in the form of genetic engineering to improve endogenous production of these biomolecules are outlined.
Collapse
Affiliation(s)
- Zuzana Bláhová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Thomas Nelson Harvey
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Jan Mráz
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
16
|
Shet D, Ghosh J, Ajith S, Awachat VB, Bhat KS, Gowda NKS, Pal D, Elangovan AV. Dietary phytase supplementation during peak egg laying cycle of White Leghorn hens on nutrient utilization and functional gene mRNA expression in duodenum and kidney. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2018.1499220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Divya Shet
- ICAR- National Institute of Animal Nutrition and Physiology, Bangalore, India
- Department of Biotechnology, Jain University, Bangalore, India
| | - Jyotirmoy Ghosh
- ICAR- National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Sreeja Ajith
- ICAR- National Institute of Animal Nutrition and Physiology, Bangalore, India
- Department of Microbiology, Jain University, Bangalore, India
| | | | | | | | - Dintaran Pal
- ICAR- National Institute of Animal Nutrition and Physiology, Bangalore, India
| | | |
Collapse
|
17
|
Garrido D, Kabeya N, Betancor MB, Pérez JA, Acosta NG, Tocher DR, Rodríguez C, Monroig Ó. Functional diversification of teleost Fads2 fatty acyl desaturases occurs independently of the trophic level. Sci Rep 2019; 9:11199. [PMID: 31371768 PMCID: PMC6671994 DOI: 10.1038/s41598-019-47709-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/10/2019] [Indexed: 01/27/2023] Open
Abstract
The long-chain (≥C20) polyunsaturated fatty acid biosynthesis capacity of fish varies among species, with trophic level hypothesised as a major factor. The biosynthesis capacity is largely dependent upon the presence of functionally diversified fatty acyl desaturase 2 (Fads2) enzymes, since many teleosts have lost the gene encoding a Δ5 desaturase (Fads1). The present study aimed to characterise Fads2 from four teleosts occupying different trophic levels, namely Sarpa salpa, Chelon labrosus, Pegusa lascaris and Atherina presbyter, which were selected based on available data on functions of Fads2 from closely related species. Therefore, we had insight into the variability of Fads2 within the same phylogenetic group. Our results showed that Fads2 from S. salpa and C. labrosus were both Δ6 desaturases with further Δ8 activity while P. lascaris and A. presbyter Fads2 showed Δ4 activity. Fads2 activities of herbivorous S. salpa are consistent with those reported for carnivorous Sparidae species. The results suggested that trophic level might not directly drive diversification of teleost Fads2 as initially hypothesised, and other factors such as the species' phylogeny appeared to be more influential. In agreement, Fads2 activities from P. lascaris and A. presbyter were similar to their corresponding phylogenetic counterparts Solea senegalensis and Chirostoma estor.
Collapse
Affiliation(s)
- Diego Garrido
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna, 38206, Santa Cruz de Tenerife, Spain
| | - Naoki Kabeya
- Department of Aquatic Bioscience, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - José A Pérez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna, 38206, Santa Cruz de Tenerife, Spain
| | - N Guadalupe Acosta
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna, 38206, Santa Cruz de Tenerife, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Covadonga Rodríguez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna, 38206, Santa Cruz de Tenerife, Spain.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
18
|
Long-chain PUFA profiles in parental diets induce long-term effects on growth, fatty acid profiles, expression of fatty acid desaturase 2 and selected immune system-related genes in the offspring of gilthead seabream. Br J Nutr 2019; 122:25-38. [PMID: 31266551 DOI: 10.1017/s0007114519000977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study investigated the effects of nutritional programming through parental feeding on offspring performance and expression of selected genes related to stress resistance in a marine teleost. Gilthead seabream broodstock were fed diets containing various fish oil (FO)/vegetable oil ratios to determine their effects on offspring performance along embryogenesis, larval development and juvenile on-growing periods. Increased substitution of dietary FO by linseed oil (LO) up to 80 % LO significantly reduced the total number of eggs produced by kg per female per spawn. Moreover, at 30 d after hatching, parental feeding with increasing LO up to 80 % led to up-regulation of the fatty acyl desaturase 2 gene (fads2) that was correlated with the increase in conversion rates of related PUFA. Besides, cyclo-oxygenase 2 (cox2) and TNF-α (tnf-α) gene expression was also up-regulated by the increase in LO in broodstock diets up to 60 or 80 %, respectively. When 4-month-old offspring were challenged with diets having different levels of FO, the lowest growth was found in juveniles from broodstock fed 100 % FO. An increase in LO levels in the broodstock diet up to 60LO raised LC-PUFA levels in the juveniles, regardless of the juvenile's diet. The results showed that it is possible to nutritionally programme gilthead seabream offspring through the modification of the fatty acid profiles of parental diets to improve the growth performance of juveniles fed low FO diets, inducing long-term changes in PUFA metabolism with up-regulation of fads2 expression. The present study provided the first pieces of evidence of the up-regulation of immune system-related genes in the offspring of parents fed increased FO replacement by LO.
Collapse
|
19
|
Ren XD, Liu DY, Guo HQ, Wang L, Zhao N, Su N, Wei K, Ren S, Qu XM, Dai XT, Huang Q. Sensitive detection of low-abundance in-frame deletions in EGFR exon 19 using novel wild-type blockers in real-time PCR. Sci Rep 2019; 9:8276. [PMID: 31164704 PMCID: PMC6547704 DOI: 10.1038/s41598-019-44792-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/24/2019] [Indexed: 01/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations are associated with response of tyrosine kinase inhibitors (TKIs) for patients with advanced non-small cell lung cancer (NSCLC). However, the existing methods for detection of samples having rare mutations(i.e. ~0.01%) have limits in terms of specificity, time consumption or cost. In the current study, novel wild-type blocking (WTB) oligonucleotides modified with phosphorothioate or inverted dT at the 5'-termini were designed to precisely detect 11 common deletion mutations in exon 19 of EGFR gene (E19del) using a WTB-PCR assay. And internal competitive leptin amplifications were further applied to enhance the specificity of the WTB-PCR system. Our results showed that WTB-PCR could completely block amplification of wild-type EGFR when 200 ng of DNA was used as template. Furthermore, the current WTB-PCR assay facilitated the detection of E19del mutations with a selectivity of 0.01% and sensitivity as low as a single copy. And, the results showed that the current WTB-PCR system exceeded detection limits afforded by the ARMS-PCR assay. In conclusion, the current WTB-PCR strategy represents a simple and cost-effective method to precisely detect various low-abundance deletion mutations.
Collapse
Affiliation(s)
- Xiao-Dong Ren
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China
| | - Ding-Yuan Liu
- Department of Pulmonology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Hai-Qin Guo
- Department of Pulmonology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Liu Wang
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China
| | - Na Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Kun Wei
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Sai Ren
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Xue-Mei Qu
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China
| | - Xiao-Tian Dai
- Department of Pulmonology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China.
| |
Collapse
|
20
|
Torno C, Staats S, Fickler A, de Pascual-Teresa S, Soledad Izquierdo M, Rimbach G, Schulz C. Combined effects of nutritional, biochemical and environmental stimuli on growth performance and fatty acid composition of gilthead sea bream (Sparus aurata). PLoS One 2019; 14:e0216611. [PMID: 31086380 PMCID: PMC6516738 DOI: 10.1371/journal.pone.0216611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
The reliance of the aquafeed industry on marine resources has to be reduced by innovative approaches in fish nutrition. Thus, a three-factorial approach (fish oil reduced diet, phytochemical genistein, and temperature reduction) was chosen to investigate the interaction of effects on growth performance and tissue omega-3 long chain polyunsaturated fatty acid (LC-PUFA) levels in juvenile sea bream (Sparus aurata, 12.5 ± 2.2 g). Genistein is a phytoestrogen with estrogen-like activity and thus LC-PUFA increasing potential. A decrease in the rearing temperature was chosen based on the positive effects of low temperature on fish lipid quality. The experimental diets were reduced in marine ingredients and had a fish oil content of either 6% dry matter (DM; F6: positive control) or 2% DM (F2: negative control) and were administered in the plain variant or with inclusion of 0.15% DM genistein (F6 + G and F2 + G). The feeding trial was performed simultaneously at 23°C and 19°C. The results indicated that solely temperature had a significant effect on growth performance and whole body nutrient composition of sea bream. Nevertheless, the interaction of all three factors significantly affected the fatty acid compositions of liver and fillet tissue. Most importantly, they led to a significant increase by 4.3% of fillet LC-PUFA content in sea bream fed with the diet F6 + G in comparison to control fish fed diet F6, when both groups were held at 19°C. It is hypothesized that genistein can act via estrogen-like as well as other mechanisms and that the dietary LC-PUFA content may impact its mode of action. Temperature most likely exhibited its effects indirectly via altered growth rates and metabolism. Although effects of all three factors and of genistein in particular were only marginal, they highlight a possibility to utilize the genetic capacity of sea bream to improve tissue lipid quality.
Collapse
Affiliation(s)
- Claudia Torno
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
- * E-mail:
| | - Stefanie Staats
- Food Science Research Group, Institute of Human Nutrition and Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Anna Fickler
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN–CSIC), Madrid, Spain
| | - María Soledad Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Gerald Rimbach
- Food Science Research Group, Institute of Human Nutrition and Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Carsten Schulz
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
21
|
Yang B, Jiang WD, Wu P, Liu Y, Zeng YY, Jiang J, Kuang SY, Tang L, Tang WN, Wang SW, Zhou XQ, Feng L. Soybean isoflavones improve the health benefits, flavour quality indicators and physical properties of grass carp (Ctenopharygodon idella). PLoS One 2019; 14:e0209570. [PMID: 30699129 PMCID: PMC6353095 DOI: 10.1371/journal.pone.0209570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
Health benefits, flavour quality indicators and physical properties were analysed after feeding grass carp graded concentrations of soybean isoflavones (SIF) (0, 25, 50, 75, 100 and 125 mg/kg) for 60 days. The results demonstrated that optimal dietary SIF supplementation improved the protein and total PUFA content, especially healthcare n-3 PUFA (C18: 3n-3, EPA and DHA), and increased the flavour-related free amino acid [especially umami amino acid] and 5'-inosine monophosphate content, improving the health benefits and flavour quality indicators in the muscle of grass carp. In addition, optimal dietary SIF supplementation (25 or 50 mg SIF/kg diet) enhanced some physical properties [water-holding capacity and tenderness] and increased the collagen content; however, it reduced cathepsin activity and apoptosis. SIF supplementation enhanced the glutathione content and the activity of antioxidant enzymes (except CuZnSOD) by regulating their gene expression. The gene expression could be regulated by NF-E2-related factor 2 (Nrf2) signalling in the muscle of grass carp. We demonstrated that optimal dietary SIF supplementation elevated the health benefits, flavour quality indicators and physical properties of fish muscle.
Collapse
Affiliation(s)
- Bo Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, Sichuan, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, Sichuan, China
| | | | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Ferraz RB, Kabeya N, Lopes-Marques M, Machado AM, Ribeiro RA, Salaro AL, Ozório R, Castro LFC, Monroig Ó. A complete enzymatic capacity for long-chain polyunsaturated fatty acid biosynthesis is present in the Amazonian teleost tambaqui, Colossoma macropomum. Comp Biochem Physiol B Biochem Mol Biol 2019; 227:90-97. [DOI: 10.1016/j.cbpb.2018.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022]
|
23
|
Tay SS, Kuah MK, Shu-Chien AC. Transcriptional activation of zebrafish fads2 promoter and its transient transgene expression in yolk syncytial layer of zebrafish embryos. Sci Rep 2018; 8:3874. [PMID: 29497119 PMCID: PMC5832746 DOI: 10.1038/s41598-018-22157-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
The front-end desaturases (Fads) are rate-limiting enzymes responsible for production of long-chain polyunsaturated fatty acids (LC-PUFA). The full spectrum of the transcriptional regulation of fads is still incomplete, as cloning of fads promoter is limited to a few species. Here, we described the cloning and characterisation of the zebrafish fads2 promoter. Using 5'-deletion and mutation analysis on this promoter, we identified a specific region containing the sterol regulatory element (SRE) which is responsible for the activation of the fads2 promoter. In tandem, two conserved CCAAT boxes were also present adjacent to the SRE and mutation of either of these binding sites attenuates the transcriptional activation of the fads2 promoter. An in vivo analysis employing GFP reporter gene in transiently transfected zebrafish embryos showed that this 1754 bp upstream region of the fads2 gene specifically directs GFP expression in the yolk syncytial layer (YSL) region. This indicates a role for LC-PUFA in the transport of yolk lipids through this tissue layer. In conclusion, besides identifying novel core elements for transcriptional activation in zebrafish fads2 promoter, we also reveal a potential role for fads2 or LC-PUFA in YSL during development.
Collapse
Affiliation(s)
- Shu-Shen Tay
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Meng-Kiat Kuah
- Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Block B No. 10, Persiaran Bukit Jambul, 11900, Bayan Lepas, Penang, Malaysia
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia. .,Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Block B No. 10, Persiaran Bukit Jambul, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
24
|
Ayisi CL, Yamei C, Zhao JL. Genes, transcription factors and enzymes involved in lipid metabolism in fin fish. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aggene.2017.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Windisch HS, Fink P. The molecular basis of essential fatty acid limitation in Daphnia magna
: A transcriptomic approach. Mol Ecol 2018; 27:871-885. [DOI: 10.1111/mec.14498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Heidrun S. Windisch
- Institute for Cell Biology and Zoology; Heinrich-Heine-University; Düsseldorf Germany
| | - Patrick Fink
- Institute for Cell Biology and Zoology; Heinrich-Heine-University; Düsseldorf Germany
- Institute for Zoology; University of Cologne; Köln Germany
| |
Collapse
|
26
|
Fadhlaoui M, Pierron F, Couture P. Temperature and metal exposure affect membrane fatty acid composition and transcription of desaturases and elongases in fathead minnow muscle and brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:632-643. [PMID: 29132009 DOI: 10.1016/j.ecoenv.2017.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
In this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain. In muscle, an increase of temperature induced a decrease of polyunsaturated FA (PUFA) and an increase of saturated FA (SFA) in agreement with the current paradigm. Although a similar response was observed in brain between 15 and 25°C, at 30°C, brain membrane unsaturation was higher than predicted. In both tissues, metal exposure affected the normal thermal response of membrane FA composition. The transcription of desaturases and elongases was higher in the brain and varied with acclimation temperature and metal exposure but these variations did not generally reflect changes in membrane FA composition. The mismatch between gene transcription and membrane composition highlights that several levels of control other than gene transcription are involved in adjusting membrane FA composition, including post-transcriptional regulation of elongases and desaturases and de novo phospholipid biosynthesis. Our study also reveals that metal exposure affects the mechanisms involved in adjusting cell membrane FA composition in ectotherms.
Collapse
Affiliation(s)
- Mariem Fadhlaoui
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec QC Canada G1K 9A9
| | | | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec QC Canada G1K 9A9.
| |
Collapse
|
27
|
Cloning and functional characterization of fads2 desaturase and elovl5 elongase from Japanese flounder Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 2017; 214:36-46. [DOI: 10.1016/j.cbpb.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/23/2022]
|
28
|
The compositional and metabolic responses of gilthead seabream (Sparus aurata) to a gradient of dietary fish oil and associatedn-3 long-chain PUFA content. Br J Nutr 2017; 118:1010-1022. [DOI: 10.1017/s0007114517002975] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThe replacement of fish oil (FO) with vegetable oil (VO) in feed formulations reduces the availability ofn-3 long-chain PUFA (LC-PUFA) to marine fish such as gilthead seabream. The aim of this study was to examine compositional and physiological responses to a dietary gradient ofn-3 LC-PUFA. Six iso-energetic and iso-nitrogenous diets (D1–D6) were fed to seabream, with the added oil being a blend of FO and VO to achieve a dietary gradient ofn-3 LC-PUFA. Fish were sampled after 4 months feeding, to determine biochemical composition, tissue fatty acid concentrations and lipid metabolic gene expression. The results indicated a disturbance to lipid metabolism, with fat in the liver increased and fat deposits in the viscera reduced. Tissue fatty acid profiles were altered towards the fatty acid compositions of the diets. There was evidence of endogenous modification of dietary PUFA in the liver which correlated with the expression of fatty acid desaturase 2 (fads2). Expression of sterol regulatory element binding protein 1 (srebp1), fads2and fatty acid synthase increased in the liver, whereas PPARα1 pathways appeared to be supressed by dietary VO in a concentration-dependent manner. The effects in lipogenic genes appear to become measurable in D1–D3, which agrees with the weight gain data suggesting that disturbances to energy metabolism and lipogenesis may be related to performance differences. These findings suggested that suppression ofβ-oxidation and stimulation ofsrebp1-mediated lipogenesis may play a role in contributing toward steatosis in fish fedn-3 LC-PUFA deficient diets.
Collapse
|
29
|
Roy S, Chakraborty HJ, Kumar V, Behera BK, Rana RS, Babu G. In Silico Structural Studies and Molecular Docking Analysis of Delta6-desaturase in HUFA Biosynthetic Pathway. Anim Biotechnol 2017; 29:161-173. [DOI: 10.1080/10495398.2017.1332639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | - R S Rana
- ICAR - Krishi Anusandhan Bhawan I, New Delhi, India
| | | |
Collapse
|
30
|
Abstract
Docosahexaenoic acid (DHA) plays important physiological roles in vertebrates. Studies in rats and rainbow trout confirmed that DHA biosynthesis proceeds through the so-called “Sprecher pathway”, a biosynthetic process requiring a Δ6 desaturation of 24:5n−3 to 24:6n−3. Alternatively, some teleosts possess fatty acyl desaturases 2 (Fads2) that enable them to biosynthesis DHA through a more direct route termed the “Δ4 pathway”. In order to elucidate the prevalence of both pathways among teleosts, we investigated the Δ6 ability towards C24 substrates of Fads2 from fish with different evolutionary and ecological backgrounds. Subsequently, we retrieved public databases to identify Fads2 containing the YXXN domain responsible for the Δ4 desaturase function, and consequently enabling these species to operate the Δ4 pathway. We demonstrated that, with the exception of Δ4 desaturases, fish Fads2 have the ability to operate as Δ6 desaturases towards C24 PUFA enabling them to synthesise DHA through the Sprecher pathway. Nevertheless, the Δ4 pathway represents an alternative route in some teleosts and we identified the presence of putative Δ4 Fads2 in a further 11 species and confirmed the function as Δ4 desaturases of Fads2 from medaka and Nile tilapia. Our results demonstrated that two alternative pathways for DHA biosynthesis exist in teleosts.
Collapse
|
31
|
Molecular and functional characterization of a fads2 orthologue in the Amazonian teleost, Arapaima gigas. Comp Biochem Physiol B Biochem Mol Biol 2017; 203:84-91. [DOI: 10.1016/j.cbpb.2016.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/08/2016] [Accepted: 09/27/2016] [Indexed: 02/08/2023]
|
32
|
Sun X, Guo H, Zhu K, Zhang N, Yu W, Wu N, Jiang S, Zhang D. Feed type regulates the fatty acid profiles of golden pompano Trachinotus ovatus (Linnaeus 1758). JOURNAL OF APPLIED ANIMAL RESEARCH 2016. [DOI: 10.1080/09712119.2016.1259110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaoxiao Sun
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology & Environment, Guangdong Province; Division of Aquaculture and Genetic Breeding, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, People’s Republic of China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology & Environment, Guangdong Province; Division of Aquaculture and Genetic Breeding, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology & Environment, Guangdong Province; Division of Aquaculture and Genetic Breeding, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology & Environment, Guangdong Province; Division of Aquaculture and Genetic Breeding, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
| | - Wenbo Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology & Environment, Guangdong Province; Division of Aquaculture and Genetic Breeding, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, People’s Republic of China
| | - Na Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology & Environment, Guangdong Province; Division of Aquaculture and Genetic Breeding, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, People’s Republic of China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology & Environment, Guangdong Province; Division of Aquaculture and Genetic Breeding, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCX-FEPIC), Guangzhou, People’s Republic of China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Key Laboratory of Fishery Ecology & Environment, Guangdong Province; Division of Aquaculture and Genetic Breeding, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
| |
Collapse
|
33
|
Kuah MK, Jaya-Ram A, Shu-Chien AC. A fatty acyl desaturase (fads2) with dual Δ6 and Δ5 activities from the freshwater carnivorous striped snakehead Channa striata. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:146-155. [DOI: 10.1016/j.cbpa.2016.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
|
34
|
Dietary Oil Source and Selenium Supplementation Modulate Fads2 and Elovl5 Transcriptional Levels in Liver and Brain of Meagre (Argyrosomus regius). Lipids 2016; 51:729-41. [DOI: 10.1007/s11745-016-4157-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/19/2016] [Indexed: 02/07/2023]
|
35
|
Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Prog Lipid Res 2016; 62:25-40. [DOI: 10.1016/j.plipres.2016.01.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/28/2015] [Accepted: 01/01/2016] [Indexed: 01/01/2023]
|
36
|
Nutritional regulation of long-chain PUFA biosynthetic genes in rainbow trout (Oncorhynchus mykiss). Br J Nutr 2016; 115:1721-9. [DOI: 10.1017/s0007114516000830] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMost studies on dietary vegetable oil in rainbow trout (Oncorhynchus mykiss) have been conducted on a background of dietary EPA (20 : 5n-3) and DHA (22 : 6n-3) contained in the fishmeal used as a protein source in aquaculture feed. If dietary EPA and DHA repress their endogenous synthesis from α-linolenic acid (ALA, 18 : 3n-3), then the potential of ALA-containing vegetable oils to maintain tissue EPA and DHA has been underestimated. We examined the effect of individual dietary n-3 PUFA on the expression of the biosynthetic genes required for metabolism of ALA to DHA in rainbow trout. A total of 720 juvenile rainbow trout were allocated to twenty-four experimental tanks and assigned one of eight diets. The effect of dietary ALA, EPA or DHA, in isolation or in combination, on hepatic expression of fatty acyl desaturase (FADS)2a(Δ6), FADS2b(Δ5), elongation of very long-chain fatty acid (ELOVL)5 and ELOVL2 was examined after 3 weeks of dietary intervention. The effect of these diets on liver and muscle phospholipid PUFA composition was also examined. The expression levels of FADS2a(Δ6), ELOVL5 and ELOVL2 were highest when diets were high in ALA, with no added EPA or DHA. Under these conditions ALA was readily converted to tissue DHA. Dietary DHA had the largest and most consistent effect in down-regulating the gene expression of all four genes. The ELOVL5 expression was the least responsive of the four genes to dietary n-3 PUFA changes. These findings should be considered when optimising aquaculture feeds containing vegetable oils and/or fish oil or fishmeal to achieve maximum DHA synthesis.
Collapse
|
37
|
Abdul Hamid NK, Carmona-Antoñanzas G, Monroig Ó, Tocher DR, Turchini GM, Donald JA. Isolation and Functional Characterisation of a fads2 in Rainbow Trout (Oncorhynchus mykiss) with Δ5 Desaturase Activity. PLoS One 2016; 11:e0150770. [PMID: 26943160 PMCID: PMC4778901 DOI: 10.1371/journal.pone.0150770] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
Rainbow trout, Oncorhynchus mykiss, are intensively cultured globally. Understanding their requirement for long-chain polyunsaturated fatty acids (LC-PUFA) and the biochemistry of the enzymes and biosynthetic pathways required for fatty acid synthesis is important and highly relevant in current aquaculture. Most gnathostome vertebrates have two fatty acid desaturase (fads) genes with known functions in LC-PUFA biosynthesis and termed fads1 and fads2. However, teleost fish have exclusively fads2 genes. In rainbow trout, a fads2 cDNA had been previously cloned and found to encode an enzyme with Δ6 desaturase activity. In the present study, a second fads2 cDNA was cloned from the liver of rainbow trout and termed fads2b. The full-length mRNA contained 1578 nucleotides with an open reading frame of 1365 nucleotides that encoded a 454 amino acid protein with a predicted molecular weight of 52.48 kDa. The predicted Fads2b protein had the characteristic traits of the microsomal Fads family, including an N-terminal cytochrome b5 domain containing the heme-binding motif (HPPG), histidine boxes (HDXGH, HFQHH and QIEHH) and three transmembrane regions. The fads2b was expressed predominantly in the brain, liver, intestine and pyloric caeca. Expression of the fasd2b in yeast generated a protein that was found to specifically convert eicosatetraenoic acid (20:4n-3) to eicosapentaenoic acid (20:5n-3), and therefore functioned as a Δ5 desaturase. Therefore, rainbow trout have two fads2 genes that encode proteins with Δ5 and Δ6 desaturase activities, respectively, which enable this species to perform all the desaturation steps required for the biosynthesis of LC-PUFA from C18 precursors.
Collapse
Affiliation(s)
- Noor Khalidah Abdul Hamid
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, Geelong, Victoria, Australia
- Universiti Sains Malaysia, School of Biological Sciences, Penang, Malaysia
- * E-mail:
| | - Greta Carmona-Antoñanzas
- University of Stirling, Institute of Aquaculture, School of Natural Sciences, Stirling, Scotland, United Kingdom
| | - Óscar Monroig
- University of Stirling, Institute of Aquaculture, School of Natural Sciences, Stirling, Scotland, United Kingdom
| | - Douglas R. Tocher
- University of Stirling, Institute of Aquaculture, School of Natural Sciences, Stirling, Scotland, United Kingdom
| | - Giovanni M. Turchini
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, Geelong, Victoria, Australia
| | - John A. Donald
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, Geelong, Victoria, Australia
| |
Collapse
|
38
|
Geay F, Mellery J, Tinti E, Douxfils J, Larondelle Y, Mandiki SNM, Kestemont P. Effects of dietary linseed oil on innate immune system of Eurasian perch and disease resistance after exposure to Aeromonas salmonicida achromogen. FISH & SHELLFISH IMMUNOLOGY 2015; 47:782-796. [PMID: 26497094 DOI: 10.1016/j.fsi.2015.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
This study was designated to investigate the effects of dietary fish oil (FO diet) replacement by linseed oil (LO diet) on regulation of immune response and disease resistance in Eurasian perch (Perca fluviatilis). A control diet containing fish oil (FO = cod liver oil) and characterized by high levels of n-3 high LC-PUFA (6% EPA, 7.5% of total fatty acids (FAs)) was compared to linseed oil diet (LO diet) composed of low LC-PUFA contents (1% EPA, 2.3% DHA of total FAs) but high C18 fatty acids levels. The experiment was conducted in quadruplicate groups of 80 fish each. After 10 weeks of feeding, the innate immune status was evaluated in various organs (liver, spleen, and head-kidney) (feeding condition). Two days later, a bacterial challenge was performed on fish from 2 rearing conditions: fish infected with Aeromonas salmonicida (bacteria condition) and fish injected with sterile medium but maintained in the same flow system that fish challenged with bacteria (sentinel condition). Three days after injection of bacteria, a significant decrease of lymphocyte, thrombocyte and basophil populations was observed while neutrophils were not affected. In addition, plasma lysozyme activity and reactive oxygen species production in kidney significantly increased in fish challenged with A. salmonicida while the plasma alternative complement pathway activity was not affected. Increase of plasma lysozyme activity as well as reactive oxygen species production in spleen and kidney of sentinel fish suggest that these immune defenses can also be activated, but at lower bacteria concentration than infected fish. No differences in leucocyte populations, plasma lysozyme and alternative complement pathway activities were observed between dietary treatments. Similarly, expression of genes related to eicosanoid synthesis in liver were not affected by the dietary oil source but were strongly stimulated in fish challenged with A. salmonicida. These findings demonstrated that the use of linseed oil does not deplete the innate immune system of Eurasian perch juveniles.
Collapse
Affiliation(s)
- F Geay
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - J Mellery
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud, 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| | - E Tinti
- Unité de Chimie Physique Théorique et Structurale, Université de Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - J Douxfils
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Y Larondelle
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud, 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| | - S N M Mandiki
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - P Kestemont
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles, 61, 5000 Namur, Belgium.
| |
Collapse
|
39
|
Cloning and functional characterization of Δ6 fatty acid desaturase (FADS2) in Eurasian perch (Perca fluviatilis). Comp Biochem Physiol B Biochem Mol Biol 2015; 191:112-25. [PMID: 26478265 DOI: 10.1016/j.cbpb.2015.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/29/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022]
Abstract
The Eurasian perch (Perca fluviatilis) is a freshwater carnivorous species of high interest to diversify inland aquaculture. However, little is known about its ability to bioconvert polyunsaturated fatty acids (PUFAs) from plant oils into long chain polyunsaturated fatty acids (LC-PUFAs). In this study, special attention has been given to the fatty acid desaturase 2 (FADS2) which is commonly described to be a rate-limiting enzyme of the LC-PUFA biosynthesis. This work reports on the cloning, tissue expression and functional characterization of the Eurasian perch fads2, but also on the cloning of two alternative splicing transcripts named fads2-AS1 and fads2-AS2. The fads2 cDNA cloned is composed of an open reading frame (ORF) of 1338 nucleotides (nt) and encodes a protein of 445 amino acids. This deduced amino acid sequence displays the typical structure of microsomal FADS2 including two transmembrane domains and an N-terminal cytochrome b5 domain with the "HPGG" motif. Quantitative real-time PCR assay of fads2, fads2-AS1 and fads2-AS2 expressions revealed that the fads2 transcript was mainly expressed in the liver and intestine and exhibited a typical gene expression pattern of freshwater species while fads2-AS1 and fads2-AS2 genes were highly expressed in the brain, followed by the liver and intestine. Functional characterization of Eurasian perch FADS2 in transgenic yeast showed a fully functional Δ6 desaturation activity toward C18 PUFA substrates, without residual Δ5 and Δ8 desaturase activities.
Collapse
|
40
|
Geay F, Wenon D, Mellery J, Tinti E, Mandiki SNM, Tocher DR, Debier C, Larondelle Y, Kestemont P. Dietary Linseed Oil Reduces Growth While Differentially Impacting LC-PUFA Synthesis and Accretion into Tissues in Eurasian Perch (Perca fluviatilis). Lipids 2015; 50:1219-32. [PMID: 26439838 DOI: 10.1007/s11745-015-4079-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to evaluate the impact of replacing dietary fish oil (FO) with linseed oil (LO) on growth, fatty acid composition and regulation of lipid metabolism in Eurasian perch (Perca fluviatilis) juveniles. Fish (17.5 g initial body weight) were fed isoproteic and isoenergetic diets containing 116 g/kg of lipid for 10 weeks. Fish fed the LO diet displayed lower growth rates and lower levels of DHA in the liver and muscle than fish fed the FO diet, while mortality was not affected by dietary treatment. However, DHA content recorded in the liver and muscle of fish fed the LO diet remained relatively high, despite a weight gain of 134 % and a reduced dietary level of long-chain polyunsaturated fatty acids (LC-PUFA), suggesting endogenous LC-PUFA biosynthesis. This was supported by the higher amounts of pathway intermediates, including 18:4n-3, 20:3n-3, 20:4n-3, 18:3n-6 and 20:3n-6, recorded in the liver of fish fed the LO diet in comparison with those fed the FO diet. However, fads2 and elovl5 gene expression and FADS2 enzyme activity were comparable between the two groups. Similarly, the expression of genes involved in eicosanoid synthesis was not modulated by dietary LO. Thus, the present study demonstrated that in fish fed LO for 10 weeks, growth was reduced but DHA levels in tissues were largely maintained compared to fish fed FO, suggesting a physiologically relevant rate of endogenous LC-PUFA biosynthesis capacity.
Collapse
Affiliation(s)
- F Geay
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - D Wenon
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - J Mellery
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud, 2/L7.05.08, 1348, Louvain-La-Neuve, Belgium
| | - E Tinti
- Unité de Chimie Physique Théorique et Structurale, Université de Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - S N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - D R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - C Debier
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud, 2/L7.05.08, 1348, Louvain-La-Neuve, Belgium
| | - Y Larondelle
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud, 2/L7.05.08, 1348, Louvain-La-Neuve, Belgium
| | - P Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
41
|
Kabeya N, Yamamoto Y, Cummins SF, Elizur A, Yazawa R, Takeuchi Y, Haga Y, Satoh S, Yoshizaki G. Polyunsaturated fatty acid metabolism in a marine teleost, Nibe croaker Nibea mitsukurii: Functional characterization of Fads2 desaturase and Elovl5 and Elovl4 elongases. Comp Biochem Physiol B Biochem Mol Biol 2015; 188:37-45. [DOI: 10.1016/j.cbpb.2015.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/27/2022]
|
42
|
Comparative Analysis and Distribution of Omega-3 lcPUFA Biosynthesis Genes in Marine Molluscs. PLoS One 2015; 10:e0136301. [PMID: 26308548 PMCID: PMC4550275 DOI: 10.1371/journal.pone.0136301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/02/2015] [Indexed: 12/30/2022] Open
Abstract
Recent research has identified marine molluscs as an excellent source of omega-3 long-chain polyunsaturated fatty acids (lcPUFAs), based on their potential for endogenous synthesis of lcPUFAs. In this study we generated a representative list of fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) genes from major orders of Phylum Mollusca, through the interrogation of transcriptome and genome sequences, and various publicly available databases. We have identified novel and uncharacterised Fad and Elovl sequences in the following species: Anadara trapezia, Nerita albicilla, Nerita melanotragus, Crassostrea gigas, Lottia gigantea, Aplysia californica, Loligo pealeii and Chlamys farreri. Based on alignments of translated protein sequences of Fad and Elovl genes, the haeme binding motif and histidine boxes of Fad proteins, and the histidine box and seventeen important amino acids in Elovl proteins, were highly conserved. Phylogenetic analysis of aligned reference sequences was used to reconstruct the evolutionary relationships for Fad and Elovl genes separately. Multiple, well resolved clades for both the Fad and Elovl sequences were observed, suggesting that repeated rounds of gene duplication best explain the distribution of Fad and Elovl proteins across the major orders of molluscs. For Elovl sequences, one clade contained the functionally characterised Elovl5 proteins, while another clade contained proteins hypothesised to have Elovl4 function. Additional well resolved clades consisted only of uncharacterised Elovl sequences. One clade from the Fad phylogeny contained only uncharacterised proteins, while the other clade contained functionally characterised delta-5 desaturase proteins. The discovery of an uncharacterised Fad clade is particularly interesting as these divergent proteins may have novel functions. Overall, this paper presents a number of novel Fad and Elovl genes suggesting that many mollusc groups possess most of the required enzymes for the synthesis of lcPUFAs.
Collapse
|
43
|
Ren HT, Huang Y, Tang YK, Yu JH, Xu P. Two Elovl5-like elongase genes in Cyprinus carpio var. Jian: Gene characterization, mRNA expression, and nutritional regulation. Mol Biol 2015. [DOI: 10.1134/s0026893315040135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Song YF, Luo Z, Pan YX, Zhang LH, Chen QL, Zheng JL. Three unsaturated fatty acid biosynthesis-related genes in yellow catfish Pelteobagrus fulvidraco: Molecular characterization, tissue expression and transcriptional regulation by leptin. Gene 2015; 563:1-9. [DOI: 10.1016/j.gene.2014.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/30/2022]
|
45
|
Morais S, Mourente G, Martínez A, Gras N, Tocher DR. Docosahexaenoic acid biosynthesis via fatty acyl elongase and Δ4-desaturase and its modulation by dietary lipid level and fatty acid composition in a marine vertebrate. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:588-97. [PMID: 25660580 DOI: 10.1016/j.bbalip.2015.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
Abstract
The present study presents the first "in vivo" evidence of enzymatic activity and nutritional regulation of a Δ4-desaturase-dependent DHA synthesis pathway in the teleost Solea senegalensis. Juvenile fish were fed diets containing 2 lipid levels (8 and 18%, LL and HL) with either 100% fish oil (FO) or 75% of the FO replaced by vegetable oils (VOs). Fatty acyl elongation (Elovl5) and desaturation (Δ4Fad) activities were measured in isolated enterocytes and hepatocytes incubated with radiolabeled α-linolenic acid (ALA; 18:3n-3) and eicosapentaenoic acid (EPA; 20:5n-3). Tissue distributions of elovl5 and Δ4fad transcripts were also determined, and the transcriptional regulation of these genes in liver and intestine was assessed at fasting and postprandially. DHA biosynthesis from EPA occurred in both cell types, although Elovl5 and Δ4Fad activities tended to be higher in hepatocytes. In contrast, no Δ6Fad activity was detected on (14)C-ALA, which was only elongated to 20:3n-3. Enzymatic activities and gene transcription were modulated by dietary lipid level (LL>HL) and fatty acid (FA) composition (VO>FO), more significantly in the liver than in the intestine, which was reflected in tissue FA compositions. Dietary VO induced a significant up-regulation of Δ4fad transcripts in the liver 6h after feeding, whereas in fasting conditions the effect of lipid level possibly prevailed over or interacted with FA composition in regulating the expression of elovl5 and Δ4fad, which were down-regulated in the liver of fish fed the HL diets. Results indicated functionality and biological relevance of the Δ4 LC-PUFA biosynthesis pathway in S. senegalensis.
Collapse
Affiliation(s)
- Sofia Morais
- IRTA, Ctra. Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain.
| | - Gabriel Mourente
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| | - Almudena Martínez
- IRTA, Ctra. Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain.
| | - Noélia Gras
- IRTA, Ctra. Poble Nou Km 5.5, 43540 Sant Carles de la Rápita, Spain.
| | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
46
|
Liu H, Zhang H, Zheng H, Wang S, Guo Z, Zhang G. PUFA biosynthesis pathway in marine scallop Chlamys nobilis Reeve. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12384-12391. [PMID: 25439983 DOI: 10.1021/jf504648f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential in important physiological processes. However, the endogenous PUFA biosynthesis pathway is poorly understood in marine bivalves. Previously, a fatty acyl desaturase (Fad) with Δ5 activity was functionally characterized and an elongase termed Elovl2/5 was reported to efficiently elongate 18:2n-6 and 18:3n-3 to 20:2n-6 and 20:3n-3 respectively in Chlamys nobilis. In this study, another elongase and another Fad were identified. Functional characterization in recombinant yeast showed that the newly cloned elongase can elongate 20:4n-6 and 20:5n-3 to C22 and C24, while the newly cloned scallop Fad exhibited a Δ8-desaturation activity, and could desaturate exogenously added PUFA 20:3n-3 and 20:2n-6 to 20:4n-3 and 20:3n-6 respectively, providing the first compelling evidence that noble scallop could de novo biosynthesize 20:5n-3 and 20:4n-6 from PUFA precursors though the "Δ8 pathway". No Δ6 or Δ4 activity was detected for this Fad. Searching against our scallop transcriptome database failed to find any other Fad-like genes, indicating that noble scallop might have limited ability to biosynthesize 22:6n-3. Interestingly, like previously characterized Elovl2/5, the two newly cloned genes showed less efficient activity toward n-3 PUFA substrates than their homologous n-6 substrates, resulting in a relatively low efficiency to biosynthesize n-3 PUFA, implying an adaption to marine environment.
Collapse
Affiliation(s)
- Helu Liu
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University , Shantou, 515063, China
| | | | | | | | | | | |
Collapse
|
47
|
Rainbow trout (Oncorhynchus mykiss) Elovl5 and Elovl2 differ in selectivity for elongation of omega-3 docosapentaenoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1656-60. [DOI: 10.1016/j.bbalip.2014.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 02/08/2023]
|
48
|
Xue X, Feng CY, Hixson SM, Johnstone K, Anderson DM, Parrish CC, Rise ML. Characterization of the fatty acyl elongase (elovl) gene family, and hepatic elovl and delta-6 fatty acyl desaturase transcript expression and fatty acid responses to diets containing camelina oil in Atlantic cod (Gadus morhua). Comp Biochem Physiol B Biochem Mol Biol 2014; 175:9-22. [DOI: 10.1016/j.cbpb.2014.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 01/11/2023]
|
49
|
Benedito-Palos L, Ballester-Lozano G, Pérez-Sánchez J. Wide-gene expression analysis of lipid-relevant genes in nutritionally challenged gilthead sea bream (Sparus aurata). Gene 2014; 547:34-42. [DOI: 10.1016/j.gene.2014.05.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 05/31/2014] [Indexed: 12/22/2022]
|
50
|
Cell proliferation and long chain polyunsaturated fatty acid metabolism in a cell line from southern bluefin tuna (Thunnus maccoyii). Lipids 2014; 49:703-14. [PMID: 24825740 DOI: 10.1007/s11745-014-3910-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/21/2014] [Indexed: 01/01/2023]
Abstract
Southern bluefin tuna (SBT, Thunnus maccoyii) aquaculture is a highly valuable industry, but research on these fish is hampered by strict catch quotas and the limited success of captive breeding. To address these limitations, we have developed a SBT cell line (SBT-E1) and here we report on fatty acid metabolism in this cell line. The SBT-E1 cells proliferated well in standard Leibovitz's L-15 cell culture medium containing fetal bovine serum (FBS) as the source of fatty acids. Decreasing the FBS concentration decreased the cell proliferation. Addition of the C(18) polyunsaturated fatty acids (PUFA) α-linolenic acid (ALA, 18:3n-3) or linoleic acid (LNA, 18:2n-6) to the cell culture medium had little effect on the proliferation of the cells, whereas addition of the long-chain PUFA (LC-PUFA) arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) or docosahexaenoic acid (DHA, 22:6n-3) significantly reduced the proliferation of the cells, especially at higher concentrations and especially for DHA. Addition of vitamin E to the culture medium overcame this effect, suggesting that it was due to oxidative stress. The fatty acid profiles of the total lipid from the cells reflected those of the respective culture media with little evidence for desaturation or elongation of any of the fatty acids. The only exceptions were EPA and ARA, which showed substantial elongation to 22:5n-3 and 22:4n-6, respectively, and DHA, which was significantly enriched in the cells compared with the culture medium. The results are discussed in light of the dietary PUFA requirements of SBT in the wild and in aquaculture.
Collapse
|