1
|
Starodub T, Michalkiewicz S. TCNQ and Its Derivatives as Electrode Materials in Electrochemical Investigations-Achievement and Prospects: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5864. [PMID: 39685299 DOI: 10.3390/ma17235864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
7,7',8,8'-tetracyanoquinodimethane (TCNQ) is one of the most widely used effective surface electron acceptors in organic electronics and sensors, which opens up a very interesting field in electrochemical applications. In this review article, we outline the historical context of electrochemically stable selective electrode materials based on TCNQ and its derivatives and their development, their electrochemical characteristics, and the experimental aspects of their electrochemical applications. TCNQ-modified electrodes are characterized by long-term stability, reproducibility, and a low detection limit compared to other sensors; thus, their use can increase determination speed and flexibility and reduce investigation costs. TCNQ and its derivatives can also be successfully combined with other detector materials for cancer-related clinical diagnostic testing. Examples of simple, rapid, and sensitive detection procedures for various analytes are provided. Applications of new electrochemically stable TCNQ-based metal/covalent-organic hybrid frameworks, with exceptionally large surface areas, tunable pore sizes, diverse functionality, and high electrical conductivity, are also presented. As a result, they also offer enormous potential as revolutionary catalysts, drug carrier systems, and smart materials, as well as for use in gas storage. The use of TCNQ compounds as promising active electrode materials in high-power organic batteries/energy storage devices is discussed. We hope that the information featured in this review will provide readers with a good understanding of the chemistry of TCNQ and, more importantly, help to find good ways to prepare new micro-/nanoelectrode materials for rational sensor design.
Collapse
Affiliation(s)
- Tetiana Starodub
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka St. 7G, PL-25406 Kielce, Poland
| | - Slawomir Michalkiewicz
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka St. 7G, PL-25406 Kielce, Poland
| |
Collapse
|
2
|
Gopika MG, Gopidas S, Jayan GS, Arathy PS, Saraswathyamma B. Unveiling thiol biomarkers: Glutathione and cysteamine. Clin Chim Acta 2024; 563:119915. [PMID: 39134217 DOI: 10.1016/j.cca.2024.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
The physiological and clinical importance of Glutathione and Cysteamine is emphasized by their participation in a range of conditions, such as diabetes, cancer, renal failure, Parkinson's disease, and hypothyroidism. This necessitates the requirement for accessible, expedited, and cost-efficient testing that can facilitate clinical diagnosis and treatment options. This article examines numerous techniques used to detect both glutathione and cysteamine. The discussed methods include electroanalytical techniques such as voltammetry and amperometry, which are examined for their sensitivity and ability to provide real-time analysis. Furthermore, this study investigates the accuracy of gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) in measuring the concentrations of glutathione and cysteamine. Additionally, the potential of new nanotechnology-based methods, such as plasmonic nanoparticles and quantum dots, to improve the sensitivity of detecting glutathione and cysteamine is emphasized.
Collapse
Affiliation(s)
- M G Gopika
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Surya Gopidas
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Gokul S Jayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - P S Arathy
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India.
| |
Collapse
|
3
|
Asadpour F, Mazloum-Ardakani M. Electro-assisted self-assembly of mesoporous silica thin films: application to electrochemical sensing of glutathione in the presence of copper. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Zheng C, Zhou X, Wang H, Ji M, Wang P. A novel ratiometric fluorescent probe for the detection and imaging of cysteine in living cells. Bioorg Chem 2022; 127:106003. [DOI: 10.1016/j.bioorg.2022.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
|
5
|
Liu L, Zhang Q, Wang J, Zhao L, Liu L, Lu Y. A specific fluorescent probe for fast detection and cellular imaging of cysteine based on a water-soluble conjugated polymer combined with copper(II). Talanta 2019; 198:128-136. [PMID: 30876540 DOI: 10.1016/j.talanta.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 02/01/2019] [Indexed: 11/19/2022]
Abstract
In pure water system, the specific and rapid detection of cysteine (Cys) is very important and challenging. Herein, a new optical probe was developed for the purpose based on the complex of cupric ion (Cu2+) with a water-soluble conjugated polymer, poly[3-(3-N,N-diacetateaminopropoxy)-4-methyl thiophene disodium salts] (PTCO2). The fluorescence of PTCO2 in 100% aqueous solution can almost completely extinguished by Cu2+ ions due to its intrinsic paramagnetic properties. Among various amino acids, only Cys causes immediately the efficient recovery of the Cu2+-quenched fluorescence of PTCO2 with ~31-folds fluorescence enhancement because of the stronger affinity of Cys to Cu2+ leading to the formation of Cu2+-Cys complex through Cu-S bond and separation of Cu2+ from weak-fluorescent PTCO2-Cu(II) ensemble and thereby restoring the free PTCO2 fluorescence. In tris-HCl buffer solution (2 mM, pH 7.4), the intensity of the restored fluorescence is linear with the concentration of Cys, ranging from 0 to 120 μM and the estimated detection limit of Cys is 3.3 × 10-7 M with the correlation coefficient R = 0.9981. In addition, the PTCO2-Cu(II) ensemble probe exhibits low cytotoxicity and good membrane penetration, and its application in living cell imaging of Cys has also been explored.
Collapse
Affiliation(s)
- Lihua Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Zhang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Lixia Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
6
|
Yang S, Zeng Q, Guo Q, Chen S, Liu H, Liu M, McMahon MT, Zhou X. Detection and differentiation of Cys, Hcy and GSH mixtures by 19F NMR probe. Talanta 2018; 184:513-519. [DOI: 10.1016/j.talanta.2018.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 01/10/2023]
|
7
|
Maheshwaran D, Nagendraraj T, Manimaran P, Ashokkumar B, Kumar M, Mayilmurugan R. A Highly Selective and Efficient Copper(II) - “Turn-On” Fluorescence Imaging Probe forl-Cysteine. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601229] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Duraiyarasu Maheshwaran
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Thavasilingam Nagendraraj
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | - Paramasivam Manimaran
- School of Biotechnology; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| | | | - Mukesh Kumar
- Solid State Physics Division; Physics Group; Bhabha Atomic Research Center; Mumbai Maharashtra India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai Tamil Nadu India
| |
Collapse
|
8
|
Yang S, Jiang W, Ren L, Yuan Y, Zhang B, Luo Q, Guo Q, Bouchard LS, Liu M, Zhou X. Biothiol Xenon MRI Sensor Based on Thiol-Addition Reaction. Anal Chem 2016; 88:5835-40. [DOI: 10.1021/acs.analchem.6b00403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shengjun Yang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiping Jiang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lili Ren
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yaping Yuan
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bin Zhang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qing Luo
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qianni Guo
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Louis-S. Bouchard
- Department
of Chemistry and Biochemistry, California NanoSystems Institute, The
Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xin Zhou
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
9
|
Sheng X, Chen D, Cao M, Zhang Y, Han X, Chen X, Liu S, Chen H, Yin J. A Near Infrared Cyanine-Based Fluorescent Probe for Highly Selectively Detecting Glutathione in Living Cells. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500733] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Areias MCC, Shimizu K, Compton RG. Voltammetric detection of glutathione: an adsorptive stripping voltammetry approach. Analyst 2016; 141:2904-10. [DOI: 10.1039/c6an00550k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High sensitive detection of glutathione in presence of copper(ii) ions by cyclic voltammetry using a bare glassy carbon electrode is presented.
Collapse
Affiliation(s)
- Madalena C. C. Areias
- Departamento de Química Fundamental
- Centro de Ciências Exatas e da Natureza
- Universidade Federal de Pernambuco
- Brazil - CEP 50.740-560
| | - Kenichi Shimizu
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| | - Richard G. Compton
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| |
Collapse
|
11
|
Beitollahi H, Gholami A, Ganjali MR. Preparation, characterization and electrochemical application of Ag–ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:107-12. [DOI: 10.1016/j.msec.2015.07.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022]
|
12
|
Electrocatalytic determination of Reduced Glutathione using rutin as a mediator at acetylene black spiked carbon paste electrode. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.12.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
A high sensitive electrochemical nanosensor for simultaneous determination of glutathione, NADH and folic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 47:77-84. [PMID: 25492175 DOI: 10.1016/j.msec.2014.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/27/2014] [Accepted: 11/06/2014] [Indexed: 11/20/2022]
Abstract
In the present study, we report electrosynthesis of 4,5-bis(4-chloroanilino)-1,2-benzendiol (BCB) and its application as a selective electrochemical mediator at a surface of carbon paste electrode (CPE) modified ZnO/CNTs nanocomposite as a simple and rapid voltammetric sensor. The sensor showed an efficient catalytic activity for the electro-oxidation of glutathione (GSH), which leads to a lowered overpotential by more than 203 mV compared to unmodified carbon paste electrode. For the mixture containing GSH, nicotinamide adenine dinucleotide (NADH) and folic acid (FA), the electrooxidation signals were well separated. The square wave voltammetry (SWV) currents increased linearly with their concentration at the ranges of 0.006-161, 1.0-650 and 3.0-700 μM, respectively with the detection limits of 0.002, 0.3 and 1.0 μM. Finally, the electrode was successfully applied for the voltammetric determination of analytes in real samples with satisfactory results.
Collapse
|
14
|
Ensafi AA, Monsef M, Rezaei B, Karimi-Maleh H. Nanostructure-based electrochemical sensor for determination of glutathione in hemolysed erythrocytes and urine. JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1134/s1061934814090068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Su D, Teoh CL, Sahu S, Das RK, Chang YT. Live cells imaging using a turn-on FRET-based BODIPY probe for biothiols. Biomaterials 2014; 35:6078-85. [PMID: 24794926 DOI: 10.1016/j.biomaterials.2014.04.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/11/2014] [Indexed: 01/28/2023]
Abstract
We designed a red-emitting turn-on FRET-based molecular probe 1 for selective detection of cysteine and homocysteine. Probe 1 shows significant fluorescence enhancement after cleavage of the 2, 4-dinitrobenzensulfonyl (DNBS) unit from the fluorophore upon thiols treatment. The precursor of probe 1, BNM153, is a moderate quantum yield FRET dye which contributes a minimum emission leakage from its donor part. We synthesized this assembly by connecting a low quantum yield (less than 1%) BODIPY donor to a high quantum yield BODIPY acceptor via a 1, 3-triazine bridge system. It is noteworthy that the majority of the non-radiative energy loss of donor (BDN) was converted to the acceptor (BDM)'s fluorescence output with minimum leaks of donor emission. The fluorescence sensing mechanism of probe 1 was illustrated by fluorescence spectroscopy, kinetic measurements, HPLC-MS analysis and DFT calculations. Probe 1 is pH-independent at the physiological pH range. Finally, live cells imaging demonstrated the utility of probe 1 as a biosensor for thiols.
Collapse
Affiliation(s)
- Dongdong Su
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Chai Lean Teoh
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Srikanta Sahu
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Raj Kumar Das
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Young-Tae Chang
- Department of Chemistry and MedChem Program, Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium (SBIC), 11 Biopolis Way, #02-02 Helios, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138667, Singapore.
| |
Collapse
|
16
|
Dai Z, Tian L, Ye Z, Song B, Zhang R, Yuan J. A Lanthanide Complex-Based Ratiometric Luminescence Probe for Time-Gated Luminescence Detection of Intracellular Thiols. Anal Chem 2013; 85:11658-64. [DOI: 10.1021/ac403370g] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhichao Dai
- State Key Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lu Tian
- State Key Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Ye
- State Key Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State Key Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Run Zhang
- State Key Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine
Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Multiwall carbon nanotube paste electrode with 3,4-dihydroxy-cinnamic acid as mediator for the determination of glutathione in pharmaceutical and urine samples. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.1016/s1872-2067(12)60661-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Kanďár R, Vrbová M, Čandová J. AN ASSAY OF TOTAL GLUTATHIONE AND GLUTATHIONE DISULFIDE IN HUMAN WHOLE BLOOD AND PLASMA USING A HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH FLUORESCENCE DETECTION. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.706858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Roman Kanďár
- a Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Martina Vrbová
- a Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Jarmila Čandová
- a Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| |
Collapse
|
19
|
|
20
|
Moradi R, Sebt SA, Karimi-Maleh H, Sadeghi R, Karimi F, Bahari A, Arabi H. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Phys Chem Chem Phys 2013; 15:5888-97. [PMID: 23486920 DOI: 10.1039/c3cp00033h] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report the synthesis and application of a FePt/CNTs nanocomposite as a highly sensitive sensor and novel amide ligand (9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4-ethylbenzene-1,2-diol as a mediator for the determination of glutathione (GSH), nicotinamide adenine dinucleotide (NADH) and tryptophan (Trp). The synthesized materials were characterized with different methods such as NMR, IR spectroscopy, TEM, XRD, FESEM, cyclic voltammetry, electrochemical impedance spectroscopy and square wave voltammetry (SWV). The modified electrode exhibited a potent and persistent electron mediating behavior followed by well-separated oxidation peaks of GSH, NADH and Trp. The peak currents were linearly dependent on GSH, NADH and Trp concentrations in the range of 0.08-220, 1.0-400 and 5.0-500 μmol L(-1), with detection limits of 0.05, 0.8 and 1.0 μmol L(-1), respectively. The modified electrode was used for the determination of these compounds in real samples.
Collapse
Affiliation(s)
- R Moradi
- Department of Physics, Science and Research Branch, Islamic Azad University, P.O. Box 14665-678, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
21
|
Zamfir LG, Rotariu L, Bala C. Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene-tetracyanoquinodimethane/ionic liquid conductive gels. Biosens Bioelectron 2013; 46:61-7. [PMID: 23500478 DOI: 10.1016/j.bios.2013.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 01/17/2023]
Abstract
A highly sensitive acetylcholinesterase biosensor was developed for detection of carbamate drugs based on TTF-TCNQ-ionic liquid gel thiocholine sensor. The TTF-TCNQ-ionic/ionic liquid gel was characterized by FT-IR and scanning electron microscopy. The electrocatalytic behavior of TTF-TCNQ-ionic liquid gels toward oxidation of thiocholine was thoroughly investigated. 1-Ethyl-3-methylimidazolium tetracyanoborate gel based sensor allowed amperometric detection of thiocholine at +400 mV vs. Ag/AgCl with a high sensitivity of 55.9±1.2 μA mM(-1)cm(-2) and a low detection limit equal to 7.6 μM. The catalytic rate constant and diffusion constant of thiocholine were estimated from chronoamperometric data. The proposed biosensor based on AChE immobilized in sol-gel matrix was used for the detection of two carbamate therapeutic drugs. Very low detection limits of 26 pM eserine and 0.3 nM neostigmine were achieved. The analysis of spiked tap water proved the biosensor capability to be used as a screening method for detection of carbamate drugs in wastewaters.
Collapse
Affiliation(s)
- Lucian-Gabriel Zamfir
- Department of Analytical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | | | | |
Collapse
|
22
|
Wei M, Yin P, Shen Y, Zhang L, Deng J, Xue S, Li H, Guo B, Zhang Y, Yao S. A new turn-on fluorescent probe for selective detection of glutathione and cysteine in living cells. Chem Commun (Camb) 2013; 49:4640-2. [DOI: 10.1039/c3cc39045d] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Pandey PC, Pandey AK. Cyclohexanone and 3-aminopropyltrimethoxysilane mediated controlled synthesis of mixed nickel-iron hexacyanoferrate nanosol for selective sensing of glutathione and hydrogen peroxide. Analyst 2013; 138:952-9. [DOI: 10.1039/c2an36228g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Ensafi AA, Karimi-Maleh H, Mallakpour S. A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode. Colloids Surf B Biointerfaces 2012; 104:186-93. [PMID: 23314609 DOI: 10.1016/j.colsurfb.2012.12.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 11/29/2022]
Abstract
A novel electrochemical sensor for the simultaneous determination of glutathione (GSH) and nicotinamide adenine dinucleotide (NADH) is described. The sensor is based on a carbon paste electrode (CPE) modified with benzamide derivative and multiwall carbon nanotubes. This mixture makes a modified electrode that is sensitive for the electrochemical detection of these compounds. Under optimum conditions and at pH 7.0, oxidation of GSH occurs at a potential of about 330 mV less positive than that at an unmodified CPE. The voltammetric peak currents are linearly dependent on GSH and NADH concentrations in the ranges 0.09-300 μmol L(-1) GSH and 5.0-600 μmol L(-1) NADH. The detection limits found for GSH and NADH were 0.05 μmol L(-1) and 1.0 μmol L(-1), respectively. The electrochemical sensor was also used for the determination of GSH in urine, pharmaceutical and hemolysed erythrocyte samples.
Collapse
Affiliation(s)
- A A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | | | | |
Collapse
|
25
|
|
26
|
Novel sensor based on carbon paste/Nafion® modified with gold nanoparticles for the determination of glutathione. Anal Bioanal Chem 2012; 404:1661-72. [DOI: 10.1007/s00216-012-6276-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/07/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
27
|
Harfield JC, Batchelor-McAuley C, Compton RG. Electrochemical determination of glutathione: a review. Analyst 2012; 137:2285-96. [DOI: 10.1039/c2an35090d] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Guan Q, Noblitt SD, Henry CS. Electrophoretic separations in poly(dimethylsiloxane) microchips using a mixture of ionic and zwitterionic surfactants. Electrophoresis 2012; 33:379-87. [PMID: 22222982 PMCID: PMC3516918 DOI: 10.1002/elps.201100259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of mixtures of ionic and zwitterionic surfactants in poly(dimethylsiloxane) (PDMS) microchips is reported. The effect of surfactant concentration on electroosmotic flow (EOF) was studied for a single anionic surfactant (sodium dodecyl sulfate, SDS), a single zwitterionic surfactant (N-tetradecylammonium-N,N-dimethyl-3-ammonio-1-propanesulfonate, TDAPS), and a mixed SDS/TDAPS surfactant system. SDS increased the EOF as reported previously while TDAPS showed an initial increase in EOF followed by a reduction at higher concentrations. When TDAPS was added to a solution containing SDS, the EOF decreased in a concentration-dependent manner. The EOF for all three surfactant systems followed expected pH trends, with increasing EOF at higher pH. The mixed surfactant system allowed tuning of the EOF across a range of pH and concentration conditions. After establishing the EOF behavior, the adsorption/desorption kinetics were measured and showed a slower adsorption/desorption rate for TDAPS than SDS. Finally, the separation and electrochemical detection of model catecholamines in buffer and reduced glutathione in red blood cell lysate using the mixed surfactant system were explored. The mixed surfactant system provided shorter analysis times and/or improved resolution when compared to the single surfactant systems.
Collapse
Affiliation(s)
- Qian Guan
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | |
Collapse
|
29
|
Ensafi AA, Dadkhah-Tehrani S, Karimi-Maleh H. Voltammetric determination of glutathione in haemolysed erythrocyte and tablet samples using modified-multiwall carbon nanotubes paste electrode. Drug Test Anal 2011; 4:978-85. [DOI: 10.1002/dta.347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Ali A. Ensafi
- Department of Chemistry; Isfahan University of Technology; Isfahan; 84156-83111; Iran
| | | | - Hassan Karimi-Maleh
- Department of Chemistry; Isfahan University of Technology; Isfahan; 84156-83111; Iran
| |
Collapse
|
30
|
Huang KJ, Jing QS, Wei CY, Wu YY. Spectrofluorimetric determination of glutathione in human plasma by solid-phase extraction using graphene as adsorbent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:1860-1865. [PMID: 21684195 DOI: 10.1016/j.saa.2011.05.076] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 05/18/2011] [Accepted: 05/24/2011] [Indexed: 05/30/2023]
Abstract
An efficient solid phase extraction-spectrofluorimetric method using graphene as adsorbent was developed to sensitively determine glutathione (GSH) in biological samples. Fluorescent probe N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl)iodoacetamide (BODIPY Fl-C1-IA) was applied for the derivatization of GSH. The procedure was based on BODIPY Fl-C1-IA selective reaction with GSH to form highly fluorescent product BODIPY Fl-C1-IA-GSH, its extraction to the graphene-packed SPE cartridge and spectrofluorimetric determination. Some factors affecting the extraction efficiency, such as the type of the eluent and its volume, sample pH, extraction time, and sample volume were optimized. Comparative studies were also performed between graphene and other adsorbents including C18 silica, graphitic carbon, and multi-walled carbon nanotubes for the extraction of analyte. The calibration graph using the pretreatment system for GSH was linear over the range of 0.5-200 nM. The limit of detection was 0.01 nM (signal-to-noise ratio=3). Relative standard deviation for six replicate determinations of GSH at 80 nM concentration level was lower than 5.0%. The developed method was applied to the determination of GSH in human plasma with recoveries of 92-108%. This work revealed the great potentials of graphene as an excellent sorbent material in the analysis of biological samples.
Collapse
Affiliation(s)
- Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China.
| | | | | | | |
Collapse
|
31
|
Determination of thiol compounds by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with high-performance liquid chromatography-fluorescence detection. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0642-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Kanďár R, Žáková P, Marková M, Lotková H, Kučera O, Červinková Z. Determination of glutathione and glutathione disulfide in human whole blood using HPLC with coulometric detection: A comparison with fluorescence detection. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We describe a relatively simple method for the determination of glutathione (GSH) and glutathione disulfide (GSSG) in human whole blood. We have used an HPLC with coulometric electrochemical detection for the simultaneous measurement of GSH and GSSG. Diluted and filtered trichloroacetic acid extracts were injected directly into the HPLC system and were eluted isocratically on a Polaris 5u C18-A, 250 × 4.6 mm analytical column. Glutathione in samples extracted with trichloroacetic acid and diluted with 1.0 mMhydrochloric acid was stable at 4 °C for at least 8 h. The analytical performance of this method is satisfactory: the intra-assay and inter-assay coefficients of variation were below 10%. Quantitative recoveries from spiked whole blood samples were at intervals 91.6–97.6% for GSH and 85.0–104.4% for GSSG. The linear range is 5.0–2000.0 μmol/l, with a detection limit of 2.1 μmol/l (signal-to-noise ratio = 3) for GSH and 2.0–250.0 μmol/l, with a detection limit of 0.9 μmol/l for GSSG.
Collapse
|
33
|
Sezgintürk MK, Dinçkaya E. Glutathione (GSH) Determination by a Very Simple Electrochemical Method. Int J Pept Res Ther 2011. [DOI: 10.1007/s10989-011-9243-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Luz RCS, Maroneze CM, Tanaka AA, Kubota LT, Gushikem Y, Damos FS. The electrocatalytic activity of a supramolecular assembly of CoTsPc/FeT4MPyP on multi-walled carbon nanotubes towards L-glutathione, and its determination in human erythrocytes. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0417-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Uehara N, Ookubo K, Shimizu T. Colorimetric assay of glutathione based on the spontaneous disassembly of aggregated gold nanocomposites conjugated with water-soluble polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6818-6825. [PMID: 20373784 DOI: 10.1021/la100460w] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article describes the glutathione-triggered disassembly of gold nanocomposites composed of gold cores and water-soluble copolymers [poly(N-n-isopropylacrylamide-co-acryloyldiethyletriamine)] attached to the surfaces of gold cores. The gold nanocomposites exhibit a bluish purple color because of the assembled gold cores that are conjugated with the diethylenetriamine groups incorporated into the copolymers. Glutathione added to the gold nanocomposite solution adsorbs onto the surface of the gold cores to liberate diethylenetriamine groups, resulting in spontaneous disassembly that changes the color of the solution to a reddish shade. Increasing the glutathione concentration facilitates the spontaneous disassembly of the gold nanocomposites. For the determination of glutathione, the colorimetric change of the gold nanoparticles is quantified with the a* value of the L*a*b* color coordinates defined by the CIE (Commission Internationale de l'Eclairage) chromaticity diagram. A linear relationship between the a* value and the glutathione concentration of up to 6 x 10(-6) mol/L is obtained 15 min after the addition of glutathione that has a detection limit (defined as 3sigma) of 2.9 x 10(-8) mol/L. The colorimetric assay is successfully applied to the determination of glutathione in eye drops and health supplements.
Collapse
Affiliation(s)
- Nobuo Uehara
- Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
| | | | | |
Collapse
|
36
|
Molecular mechanisms of methylmercury-induced cell death in human HepG2 cells. Food Chem Toxicol 2010; 48:1405-11. [PMID: 20226830 DOI: 10.1016/j.fct.2010.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/03/2010] [Accepted: 03/08/2010] [Indexed: 12/29/2022]
Abstract
Methylmercury (MeHg) has been suggested to exert cytotoxicity through multiple mechanisms, but the precise biochemical machinery has not been fully defined. This study was aimed at investigating the time-course (0-24h) effect of 2mg/L MeHg on cell death in human HepG2 cells. MeHg decreased cell viability in a time-dependent manner, which was concomitant with increased LDH leakage, reduced GSH levels, CAT activity and altered activity of the antioxidant enzymes GPx and GR at the longest times of incubation (16 and 24h). Activity of the detoxifying enzyme GST was also early enhanced (2h). Caspase-3 activity reached a maximum value at 8h and continued increased up to 24h. This feature was preceded by an enhancement in the caspase-9 activity (2h), whereas caspase-8 activity remained unchanged. MeHg early diminished Bcl-x(L)/Bcl-x(S) ratio and increased levels of the pro-apoptotic Bax and Bad. Moreover, MeHg-induced cytotoxicity was completely inhibited by the antioxidants (GSH and NAC) and notably by the mitochondrial complex I inhibitor rotenone, but not by the NADH oxidase inhibitor DPI. In summary, MeHg induced an oxidative stress responsible for apoptosis in HepG2 cells through direct activation of the caspase cascade and altered the cellular antioxidant and detoxificant enzymatic system to later provoke necrosis at later stages.
Collapse
|
37
|
Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J Solid State Electrochem 2009. [DOI: 10.1007/s10008-009-0978-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Hou Y, Ndamanisha JC, Guo LP, Peng XJ, Bai J. Synthesis of ordered mesoporous carbon/cobalt oxide nanocomposite for determination of glutathione. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.05.091] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Selective spectrofluorimetric determination of glutathione in clinical and biological samples using 1,3,5,7-tetramethyl-8-phenyl-(2-maleimide)-difluoroboradiaza-s-indacene. Anal Chim Acta 2009; 633:71-5. [DOI: 10.1016/j.aca.2008.11.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/07/2008] [Accepted: 11/13/2008] [Indexed: 11/22/2022]
|
40
|
Electrocatalytic oxidation of glutathione at carbon paste electrode modified with 2,7-bis (ferrocenyl ethyl) fluoren-9-one: application as a voltammetric sensor. J APPL ELECTROCHEM 2009. [DOI: 10.1007/s10800-009-9781-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Raoof JB, Ojani R, Kolbadinezhad M. Voltammetric sensor for glutathione determination based on ferrocene-modified carbon paste electrode. J Solid State Electrochem 2008. [DOI: 10.1007/s10008-008-0690-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Lima PR, Santos WJR, Oliveira AB, Goulart MOF, Kubota LT. Electrocatalytic activity of 4-nitrophthalonitrile-modified electrode for the l-glutathione detection. J Pharm Biomed Anal 2008; 47:758-64. [PMID: 18434067 DOI: 10.1016/j.jpba.2008.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/04/2008] [Accepted: 03/07/2008] [Indexed: 11/16/2022]
Abstract
The present work describes the substantial electrocatalytic activity of (NC)2C6H3-NHOH/(NC)2C6H3-NO redox couple-modified electrode toward the low voltage detection of l-glutathione (GSH), in neutral medium, at an applied potential of 0.4V versus Ag/AgCl. After optimizing the operational conditions, the sensor provided a linear response range for GSH from 8.0 up to 83.0 micromol L(-1) with sensitivity, detection and quantification limits of 54nA L micromol(-1), 2.7 micromol L(-1) and 8.0 micromol L(-1), respectively. The proposed sensor presented higher sensitivity when compared to other modified electrodes described in the literature and showed a stable response for at least 100 successive determinations. The repeatability of the measurements with the same sensor and different sensors, evaluated in terms of relative standard deviation, were 4.1 and 5.0%, respectively, for n=10. The developed sensor was applied for GSH determination in yeast extract and the results were statistically the same with those obtained by the comparative method described in the literature at a confidence level of 95%.
Collapse
Affiliation(s)
- Phabyanno R Lima
- Institute of Chemistry, UNICAMP, P.O. Box 6154, 13084-971 Campinas-SP, Brazil
| | | | | | | | | |
Collapse
|
43
|
Wang T, An Y, He HB, Qian D, Cai RL. Simultaneous determination of oxidized and reduced glutathione in eel's (Monopterus albus) plasma by transient pseudoisotachophoresis coupled with capillary zone electrophoresis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:368-373. [PMID: 18092751 DOI: 10.1021/jf0721850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Both the reduced form of glutathione (GSH) and the oxidized form of glutathione (GSSG) in eel's ( Monopterus albus) plasma were for the first time determined by transient pseudoisotachophoresis coupled with capillary zone electrophoresis. The method of transient pseudoisotachophoresis coupled with capillary zone electrophoresis has been thoroughly optimized and adequately evaluated for the simultaneous determination of GSH and GSSG in eel's plasma. The detection limits (S/N = 3) of the method developed were 0.2 and 0.05 micromol/L for GSH and GSSG, respectively. The linearity of the calibration curves was valid in the range of 0-10 micromol/L GSH and 0-0.70 micromol/L GSSG. The method was simple, fast, and reproducible. It was found that the respective concentrations of GSH and GSSG were in the range of 9.1-14.5 and 0.31-0.58 micromol/L in the adult eel's plasma, and 10.8-17.9 and 0.49 - 0.68 micromol/L in the juvenile eel's plasma of the three populations determined. Each blood sample was a composite of five eels. For each of the three populations, the concentrations of GSH and GSSG in the adult eel's plasma were lower than those in the juvenile eel's plasma, and the concentrations of GSH and GSSG in the plasma of population 1 (deep yellow finless eels) were higher than those in populations 2 (light yellow finless eels) and 3 (green finless eels) for either the adult or the juvenile eels.
Collapse
Affiliation(s)
- Tianlin Wang
- Department of Chemistry, Shanghai University, Shanghai 200444, China.
| | | | | | | | | |
Collapse
|
44
|
de Cássia Silva Luz R, Damos FS, Gandra PG, de Macedo DV, Tanaka AA, Kubota LT. Electrocatalytic determination of reduced glutathione in human erythrocytes. Anal Bioanal Chem 2007; 387:1891-7. [PMID: 17200855 DOI: 10.1007/s00216-006-1053-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/17/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
The determination of reduced glutathione (GSH) in human erythrocytes using a simple, fast and sensitive method employing a glassy carbon electrode modified with cobalt tetrasulfonated phthalocyanine (CoTSPc) immobilized in poly(L: -lysine) (PLL) film was investigated. This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of GSH, decreasing substantially the anodic overpotentials for 0.2 V versus Ag/AgCl. The modified electrode presented better performance in 0.1 mol l(-1) piperazine-N,N'-bis(2-ethanesulfonic acid) buffer at pH 7.4. The other experimental parameters, such as the concentration of CoTSPc and PLL in the membrane preparation, pH, type of buffer solution and applied potential, were optimized. Under optimized operational conditions, a linear response from 50 to 2,160 nmol l(-1) was obtained with a high sensitivity of 1.5 nA l nmol(-1) cm(-2). The detection limit for GSH determination was 15 nmol l(-1). The proposed sensor presented good repeatability, evaluated in terms of the relative standard deviation (1.5%) for n = 10. The modified electrode was applied for determination of GSH in erythrocyte samples and the results were in agreement with those obtained by a comparative method described in the literature The average recovery for these fortified samples was 100 +/- 1)%. Applying a paired Student's-t test to compare these methods, we could observe that, at the 95% confidence level, there was no statistical difference between the reference and the proposed methods.
Collapse
|