1
|
Rouland A, Gautier T, Denimal D, Duvillard L, Simoneau I, Rageot D, Vergès B, Bouillet B. The Endogenous Inhibitor of CETP, apoC1, Remains Ineffective In Vivo after Correction of Hyperglycemia in People with Type 1 Diabetes. Metabolites 2024; 14:487. [PMID: 39330494 PMCID: PMC11434387 DOI: 10.3390/metabo14090487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
ApolipoproteinC1 (apoC1) is the main physiological inhibitor of the cholesterol ester transfer protein (CETP). Increased CETP activity is associated with macrovascular complications in patients with type 1 diabetes (T1D). ApoC1 has lost its ability to inhibit CETP in patients with T1D, and in vitro glycation of apoC1 increases CETP activity, suggesting that hyperglycemia could be a factor implicated in the loss of the inhibitory effect of apoC1 on CETP. Thus, we aimed to see whether improvement of glycemic control might restore apoC1 inhibitory effect on CETP. We studied 98 patients with T1D and HbA1c > 9% at baseline and 3 months after improvement of glycemic control by a medical intervention (insulin introduction or changes in multi-injection therapy or pump therapy introduction/therapeutic education for all patients). CETP activity was assessed by a radioactive method and plasma apoC1 levels were measured by ELISA. The different isoforms of apoC1 were determined by mass spectrometry. CETP activity was not significantly modified after improvement of glycemic control, despite a significant reduction in mean HbA1c (8.7 ± 1.7 vs. 10.8 ± 2, p < 0.0001). No association between plasma apoC1 and CETP activity was observed in patients with T1D at baseline, nor at 3 months, even in the subgroup of patients with optimal control (3-month HbA1c < 7%). We did not find any glycated form of apoC1 using mass spectrometry in people with T1D. Hyperglycemia in vivo does not seem to be a major factor implicated in the loss of apoC1 ability to inhibit CETP activity observed in T1D. Other factors, such as qualitative abnormalities of lipoproteins, could be involved. Our data emphasize the fact that hyperglycemia is not the only factor involved in lipid abnormalities and macrovascular complications in T1D. Clinical trial reg. no. NCT02816099 ClinicalTrials.gov.
Collapse
Affiliation(s)
- Alexia Rouland
- Department of Endocrinology, Diabetology and Nutrition, Dijon Bourgogne University Hospital, 21000 Dijon, France
- INSERM Research Center U1231 CTM, University of Burgundy, 21000 Dijon, France
| | - Thomas Gautier
- INSERM Research Center U1231 CTM, University of Burgundy, 21000 Dijon, France
| | - Damien Denimal
- INSERM Research Center U1231 CTM, University of Burgundy, 21000 Dijon, France
- Department of Clinical Biochemistry, Dijon Bourgogne University Hospital, 21000 Dijon, France
| | - Laurence Duvillard
- INSERM Research Center U1231 CTM, University of Burgundy, 21000 Dijon, France
- Department of Clinical Biochemistry, Dijon Bourgogne University Hospital, 21000 Dijon, France
| | - Isabelle Simoneau
- Department of Endocrinology, Diabetology and Nutrition, Dijon Bourgogne University Hospital, 21000 Dijon, France
| | - David Rageot
- INSERM Research Center U1231 CTM, University of Burgundy, 21000 Dijon, France
| | - Bruno Vergès
- Department of Endocrinology, Diabetology and Nutrition, Dijon Bourgogne University Hospital, 21000 Dijon, France
- INSERM Research Center U1231 CTM, University of Burgundy, 21000 Dijon, France
| | - Benjamin Bouillet
- Department of Endocrinology, Diabetology and Nutrition, Dijon Bourgogne University Hospital, 21000 Dijon, France
- INSERM Research Center U1231 CTM, University of Burgundy, 21000 Dijon, France
| |
Collapse
|
2
|
Rouland A, Masson D, Lagrost L, Vergès B, Gautier T, Bouillet B. Role of apolipoprotein C1 in lipoprotein metabolism, atherosclerosis and diabetes: a systematic review. Cardiovasc Diabetol 2022; 21:272. [PMID: 36471375 PMCID: PMC9724408 DOI: 10.1186/s12933-022-01703-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein C1 (apoC1) is a small size apolipoprotein whose exact role is not totally clarified but which seems to modulate significantly the metabolism of lipoproteins. ApoC1 is involved in the metabolism of triglyceride-rich lipoproteins by inhibiting the binding of very low density lipoproteins (VLDL) to VLDL-receptor (VLDL-R), to low density lipoprotein receptor (LDL-R) and to LDL receptor related protein (LRP), by reducing the activity of lipoprotein lipase (LPL) and by stimulating VLDL production, all these effects leading to increase plasma triglycerides. ApoC1 takes also part in the metabolism of high density lipoproteins (HDL) by inhibiting Cholesterol Ester Transfer Protein (CETP). The functionality of apoC1 on CETP activity is impaired in diabetes that might account, at least in part, for the increased plasma CETP activity observed in patients with diabetes. Its different effects on lipoprotein metabolism with a possible role in the modulation of inflammation makes the net impact of apoC1 on cardiometabolic risk difficult to figure out and apoC1 might be considered as pro-atherogenic or anti-atherogenic depending on the overall metabolic context. Making the link between total plasma apoC1 levels and the risk of cardio-metabolic diseases is difficult due to the high exchangeability of this small protein whose biological effects might depend essentially on its association with VLDL or HDL. The role of apoC1 in humans is not entirely elucidated and further studies are needed to determine its precise role in lipid metabolism and its possible pleiotropic effects on inflammation and vascular wall biology. In this review, we will present data on apoC1 structure and distribution among lipoproteins, on the effects of apoC1 on VLDL metabolism and HDL metabolism and we will discuss the possible links between apoC1, atherosclerosis and diabetes.
Collapse
Affiliation(s)
- Alexia Rouland
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - David Masson
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Laurent Lagrost
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Bruno Vergès
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - Thomas Gautier
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Benjamin Bouillet
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,grid.31151.37Service Endocrinologie, Diabétologie et Maladies Métaboliques, Hôpital François Mitterrand, CHU Dijon, BP 77908, 21079 Dijon, France
| |
Collapse
|
3
|
Paul S, Gangwar A, Bhargava K, Ahmad Y. D4F prophylaxis enables redox and energy homeostasis while preventing inflammation during hypoxia exposure. Biomed Pharmacother 2021; 133:111083. [PMID: 33378979 DOI: 10.1016/j.biopha.2020.111083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 02/02/2023] Open
Abstract
Apo-A1 is correlated with conditions like hyperlipidemia, cardiovascular diseases, high altitude pulmonary edema and etc. where hypoxia constitutes an important facet.Hypoxia causes oxidative stress, vaso-destructive and inflammatory outcomes.Apo-A1 is reported to have vasoprotective, anti-oxidative, anti-apoptotic, and anti-inflammatory effects. However, effects of Apo-A1 augmentation during hypoxia exposure are unknown.In this study, we investigated the effects of exogenously supplementing Apo-A1-mimetic peptide on SD rats during hypoxia exposure. For easing the processes of delivery, absorption and bio-availability, Apo-A1 mimetic peptide D4F was used. The rats were given 10 mg/kg BW dose (i.p.) of D4F for 7 days and then exposed to hypoxia. D4F was observed to attenuate both oxidative stress and inflammation during hypoxic exposure. D4F improved energy homeostasis during hypoxic exposure. D4F did not affect HIF-1a levels during hypoxia but increased MnSOD levels while decreasing CRP and Apo-B levels. D4F showed promise as a prophylactic against hypoxia exposure.
Collapse
Affiliation(s)
- Subhojit Paul
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Anamika Gangwar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Kalpana Bhargava
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India.
| |
Collapse
|
4
|
Liu YC, Tsai FJ, Chen CJ. A rapid, multiplexed kinase activity assay using 8-plex iTRAQ labeling, SPE, and MALDI-TOF/TOF MS. Analyst 2020; 145:992-1000. [PMID: 31829320 DOI: 10.1039/c9an01810g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesized peptide substrates have been used for in vitro phosphorylation using purified kinases or cell lysates. For screening assays, a direct readout and comparison among different experimental conditions without using an internal standard would be preferred. In this study, we developed a rapid, quantitative measurement method of multikinase activity based on MALDI-TOF/TOF MS. We combined 8-plex iTRAQ-labeled peptide substrates, solid phase extraction (SPE), and a phosphorylated peptide purification plate to rapidly determine multikinase activity in cell lysates. To enable our platform to be applicable in insulin stimulation and cancer drug inhibition, a list of peptide substrates was designed. By labeling peptide substrates with 8-plex iTRAQ reagents, protein kinase activity in 8 samples could be directly compared using the mass tags on their fragmented ion spectra. The protein amount and incubation time for multikinase activity assays were optimized, and the effect of insulin stimulation and an inhibitory drug on the cellular protein kinase activity was evaluated.
Collapse
Affiliation(s)
- Yu-Ching Liu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan.
| | | | | |
Collapse
|
5
|
Balashanmugam MV, Shivanandappa TB, Nagarethinam S, Vastrad B, Vastrad C. Analysis of Differentially Expressed Genes in Coronary Artery Disease by Integrated Microarray Analysis. Biomolecules 2019; 10:biom10010035. [PMID: 31881747 PMCID: PMC7022900 DOI: 10.3390/biom10010035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
Coronary artery disease (CAD) is a major cause of end-stage cardiac disease. Although profound efforts have been made to illuminate the pathogenesis, the molecular mechanisms of CAD remain to be analyzed. To identify the candidate genes in the advancement of CAD, microarray dataset GSE23766 was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified, and pathway and gene ontology (GO) enrichment analyses were performed. The protein-protein interaction network was constructed and the module analysis was performed using the Biological General Repository for Interaction Datasets (BioGRID) and Cytoscape. Additionally, target genes-miRNA regulatory network and target genes-TF regulatory network were constructed and analyzed. There were 894 DEGs between male human CAD samples and female human CAD samples, including 456 up regulated genes and 438 down regulated genes. Pathway enrichment analyses revealed that DEGs (up and down regulated) were mostly enriched in the superpathway of steroid hormone biosynthesis, ABC transporters, oxidative ethanol degradation III and Complement and coagulation cascades. Similarly, geneontology enrichment analyses revealed that DEGs (up and down regulated) were mostly enriched in the forebrain neuron differentiation, filopodium membrane, platelet degranulation and blood microparticle. In the PPI network and modules (up and down regulated), MYC, NPM1, TRPC7, UBC, FN1, HEMK1, IFT74 and VHL were hub genes. In the target genes-miRNA regulatory network and target genes—TF regulatory network (up and down regulated), TAOK1, KHSRP, HSD17B11 and PAH were target genes. In conclusion, the pathway and GO ontology enriched by DEGs may reveal the molecular mechanism of CAD. Its hub and target genes, MYC, NPM1, TRPC7, UBC, FN1, HEMK1, IFT74, VHL, TAOK1, KHSRP, HSD17B11 and PAH were expected to be new targets for CAD. Our finding provided clues for exploring molecular mechanism and developing new prognostics, diagnostic and therapeutic strategies for CAD.
Collapse
Affiliation(s)
- Meenashi Vanathi Balashanmugam
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Al Dawadmi 11911, Saudi Arabia; (M.V.B.); (T.B.S.); (S.N.)
| | - Thippeswamy Boreddy Shivanandappa
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Al Dawadmi 11911, Saudi Arabia; (M.V.B.); (T.B.S.); (S.N.)
| | - Sivagurunathan Nagarethinam
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Al Dawadmi 11911, Saudi Arabia; (M.V.B.); (T.B.S.); (S.N.)
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET’S College of Pharmacy, Dharwad, Karnataka 580002, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka
- Correspondence: ; Tel.: +91-9480-073398
| |
Collapse
|
6
|
Fuior EV, Gafencu AV. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int J Mol Sci 2019; 20:ijms20235939. [PMID: 31779116 PMCID: PMC6928722 DOI: 10.3390/ijms20235939] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein C1 (apoC1), the smallest of all apolipoproteins, participates in lipid transport and metabolism. In humans, APOC1 gene is in linkage disequilibrium with APOE gene on chromosome 19, a proximity that spurred its investigation. Apolipoprotein C1 associates with triglyceride-rich lipoproteins and HDL and exchanges between lipoprotein classes. These interactions occur via amphipathic helix motifs, as demonstrated by biophysical studies on the wild-type polypeptide and representative mutants. Apolipoprotein C1 acts on lipoprotein receptors by inhibiting binding mediated by apolipoprotein E, and modulating the activities of several enzymes. Thus, apoC1 downregulates lipoprotein lipase, hepatic lipase, phospholipase A2, cholesterylester transfer protein, and activates lecithin-cholesterol acyl transferase. By controlling the plasma levels of lipids, apoC1 relates directly to cardiovascular physiology, but its activity extends beyond, to inflammation and immunity, sepsis, diabetes, cancer, viral infectivity, and-not last-to cognition. Such correlations were established based on studies using transgenic mice, associated in the recent years with GWAS, transcriptomic and proteomic analyses. The presence of a duplicate gene, pseudogene APOC1P, stimulated evolutionary studies and more recently, the regulatory properties of the corresponding non-coding RNA are steadily emerging. Nonetheless, this prototypical apolipoprotein is still underexplored and deserves further research for understanding its physiology and exploiting its therapeutic potential.
Collapse
Affiliation(s)
- Elena V. Fuior
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
| | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
7
|
Chang CT, Lim YP, Lee CW, Liao HY, Chen FY, Chang CM, Tang FY, Yang CY, Chen CJ. PON-1 carbamylation is enhanced in HDL of uremia patients. J Food Drug Anal 2019; 27:542-550. [PMID: 30987726 PMCID: PMC9296198 DOI: 10.1016/j.jfda.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
High-density lipoprotein (HDL) carbamylation has been known in uremia patients. Paraoxonase-1 (PON-1) is an important HDL protein responsible for HDL anti-oxidant, arylesterase and lactonase activities. PON-1 carbamylation in uremic HDL has never been explored. We isolated HDL from uremia patients and control healthy subjects for study. Sandwich ELISA was used to estimate carbamylated PON-1 protein expression in HDL, and nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) was applied to identify the amino acid in PON-1 carbamylated. PON-1 enzyme activities were estimated by substrates conversion method. HDL anti-oxidant activity was gauged by fluorescence changes of indicator dye in the presence of H2O2. Our study results proved that the degree of PON-1 carbamylation was higher in uremic HDL than in control HDL. Sandwich ELISA study showed that carbamylated PON-1 concentration in uremic HDL was 1.49 ± 0.08 fold higher than that in HDL from controls (p < 0.05). The nanoLC-MS/MS showed that the carbamylation of lysine 290 (K290) of PON-1, a residue adjacent to PON-1 activity determining site, was detected in uremic HDL but not detected in control HDL. K290 carbamylation leads to local conformation changes that reduce accessible solvent accessibility. The HDL paraoxonase, arylesterase, and lactonase activities were all significantly lower in uremia patients than in control subjects. Additionally, HDL anti-antioxidant ability was also lower in uremia patients. Carbamylation of PON-1 in uremia patients could be one of the factors in impairing PON-1 enzyme activities and HDL anti-oxidation function.
Collapse
|
8
|
D'Aronco S, Crotti S, Agostini M, Traldi P, Chilelli NC, Lapolla A. The role of mass spectrometry in studies of glycation processes and diabetes management. MASS SPECTROMETRY REVIEWS 2019; 38:112-146. [PMID: 30423209 DOI: 10.1002/mas.21576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
In the last decade, mass spectrometry has been widely employed in the study of diabetes. This was mainly due to the development of new, highly sensitive, and specific methods representing powerful tools to go deep into the biochemical and pathogenetic processes typical of the disease. The aim of this review is to give a panorama of the scientifically valid results obtained in this contest. The recent studies on glycation processes, in particular those devoted to the mechanism of production and to the reactivity of advanced glycation end products (AGEs, AGE peptides, glyoxal, methylglyoxal, dicarbonyl compounds) allowed to obtain a different view on short and long term complications of diabetes. These results have been employed in the research of effective markers and mass spectrometry represented a precious tool allowing the monitoring of diabetic nephropathy, cardiovascular complications, and gestational diabetes. The same approaches have been employed to monitor the non-insulinic diabetes pharmacological treatments, as well as in the discovery and characterization of antidiabetic agents from natural products. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 38:112-146, 2019.
Collapse
Affiliation(s)
- Sara D'Aronco
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sara Crotti
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Pietro Traldi
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | | | | |
Collapse
|
9
|
Increased electronegativity of high-density lipoprotein in uremia patients impairs its functional properties and is associated with the risk of coronary artery disease. Atherosclerosis 2018; 278:147-155. [DOI: 10.1016/j.atherosclerosis.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 01/28/2023]
|
10
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
11
|
Lin HC, Lu JJ, Lin LC, Ho CM, Hwang KP, Liu YC, Chen CJ. Identification of a proteomic biomarker associated with invasive ST1, serotype VI Group B Streptococcus by MALDI-TOF MS. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 52:81-89. [PMID: 29317173 DOI: 10.1016/j.jmii.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Group B Streptococcus (GBS) is an important invasive pathogen in neonates, pregnant women and the elderly. Serotype VI GBS, which has been rarely reported globally, has emerged as a significant pathogen in Asia. However, traditional serologic latex agglutination (LA) methods may fail to type isolates that lack of or low expression of CPS. METHODS A total of 104 GBS strains were analyzed by MALDI-TOF MS. Multiplex PCR and multilocus sequence typing (MLST) were also performed to confirm their strains. The protein markers were purified with gel electrophoresis and LC-column, followed by identification with nanoLC-MS/MS analysis. RESULTS Protein peak of 6251-Da was appeared in most (20/24, 92%) serotypes VI (94% ST-1 or single locus variant of ST-1), and protein peak of 6891-Da was appeared in most serotypes III (15/18, 83%) and Ib (19/23, 83%) strains. The protein peak of 6251-Da and 6891-Da were identified as CsbD family protein and UPF0337 protein gbs0600, respectively. CONCLUSIONS The protein peak of 6251 Da may play a role of emergence of ST-1 clone, serotype VI GBS in central Taiwan and could be useful in rapid identifying invasive serotype VI from III isolates, which is hardly achieved by LA.
Collapse
Affiliation(s)
- Hsiao-Chuan Lin
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Pediatric Infectious Diseases, China Medical University Children's Hospital, Taichung, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Linkou Chang-Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Linkou Chang-Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Mao Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kao-Pin Hwang
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Pediatric Infectious Diseases, China Medical University Children's Hospital, Taichung, Taiwan
| | - Yu-Ching Liu
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Liao HY, Tsai FJ, Lai CC, Tseng MC, Hsu CY, Chen CJ. Rapid fabrication of functionalized plates for peptides, glycopeptides and protein purification and mass spectrometry analysis. Analyst 2017; 141:2183-90. [PMID: 26948663 DOI: 10.1039/c6an00113k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A rapid and simple approach for fabricating a disposable functionalized membrane on matrix-assisted laser desorption ionization (MALDI) targets, glass, or plastic substrates, without using complex mechanical protocols or chemical reactions, was developed for sample enrichment and mass spectrometry analysis. By coating functionalized-silica particles on a polydimethylsiloxane (PDMS)-coated plate, these particles can form a monolayer of materials on the PDMS membrane for sample handling without peeling off. An octadecyl(C18)-functionalized plate was fabricated by coating porous C18-silica particles on a PDMS-coated plate. The C18 particle-coated PDMS plate (CP plate) has better sensitivity than C18 tips and magnetic nanoparticles, along with a higher sample recovery (64.3 ± 4.9%) compared to the C18 tip method, when analyzing trace amounts of 5 fm BSA digest samples. The CP plate shows significantly higher urea/SDS removal efficiency on the cell lysate proteome compared to C18 tips. The capacity of the C18 spot (∼2.8 mm in diameter) on the CP plate was ∼10 μg of BSA digests. A hydrophilic particle-coated PDMS plate was also fabricated and successfully used for glycopeptide enrichment and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis.
Collapse
Affiliation(s)
- Hsin-Yi Liao
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chung Y Hsu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan. and Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
13
|
Chang CT, Tsai TY, Liao HY, Chang CM, Jheng JS, Huang WH, Chou CY, Chen CJ. Double Filtration Plasma Apheresis Shortens Hospital Admission Duration of Patients With Severe Hypertriglyceridemia-Associated Acute Pancreatitis. Pancreas 2016; 45:606-12. [PMID: 26491906 DOI: 10.1097/mpa.0000000000000507] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The treatment effectiveness of double filtration plasma apheresis (DFPP) on severe hypertriglyceridemia-associated acute pancreatitis (STAP) has been questioned because the currently defined serum triglyceride level--1000 mg/dL--is too low for STAP. Given this, we aimed to investigate DFPP effectiveness when we elevated STAP definition to 5000 mg/dL serum triglyceride. METHODS We performed nested case-control studies for STAP patients and divided them into groups "with" or "without" DFPP. We further recruited outpatient asymptomatic hypertriglyceridemia patients with STAP history, then divided them into groups "with" or "without" prophylactic DFPP once every 3 to 6 months for 2 years. We observed hospitalization duration and STAP recurrence between patients with and patients without DFPP. RESULTS Twelve STAP patients receiving DFPP had a median hospitalization of 5 days, whereas 24 patients without DFPP had 10 days (P = 0.009). Six outpatient referrals with STAP history receiving prophylactic DFPP showed no STAP recurrences whereas 6 without DFPP showed 3 recurrences (P = 0.046). For the 25 patients whose serum triglyceride exceeded 5000 mg/dL, 11 receiving DFPP had median hospitalization of 5 days while 14 without DFPP had 11 days (P = 0.012). CONCLUSIONS When applied to serum triglyceride in excess of 5000 mg/dL, DFPP removes oxidized and inflammatory lipoproteins, shortens hospitalization duration, and minimizes STAP recurrence.
Collapse
Affiliation(s)
- Chiz-Tzung Chang
- From the *College of Medicine, China Medical University; †Division of Nephrology, ‡L5 Research Center, §Division of Gastroenterology, ∥Proteomic Core Laboratory, China Medical University Hospital; and ¶Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mass Spectrometry-Based Proteomic Study Makes High-Density Lipoprotein a Biomarker for Atherosclerotic Vascular Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:164846. [PMID: 26090384 PMCID: PMC4450224 DOI: 10.1155/2015/164846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/01/2014] [Accepted: 02/12/2015] [Indexed: 02/02/2023]
Abstract
High-density lipoprotein (HDL) is a lipid and protein complex that consists of apolipoproteins and lower level HDL-associated enzymes. HDL dysfunction is a factor in atherosclerosis and decreases patient survival. Mass spectrometry- (MS-) based proteomics provides a high throughput approach for analyzing the composition and modifications of complex HDL proteins in diseases. HDL can be separated according to size, surface charge, electronegativity, or apoprotein composition. MS-based proteomics on subfractionated HDL then allows investigation of lipoprotein roles in diseases. Herein, we review recent developments in MS-based quantitative proteomic techniques, HDL proteomics and lipoprotein modifications in diseases, and HDL subfractionation studies. We also discuss future directions and perspectives in MS-based proteomics on HDL.
Collapse
|
15
|
Liu YC, Lee MR, Chen CJ, Lin YC, Ho HC. Purification of Cu/Zn superoxide dismutase from Piper betle leaf and its characterization in the oral cavity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2225-2232. [PMID: 25650283 DOI: 10.1021/jf505753d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to purify protein(s) from Piper betle leaf for identification and further characterization. A functionally unknown protein was purified to apparent homogeneity with a molecular mass of 15.7 kDa and identified as Cu/Zn superoxide dismutase (SOD). The purified SOD appeared to be monomeric and converted to its dimeric form with increased enzymatic activity in betel nut oral extract. This irreversible conversion was mainly induced by slaked lime, resulting from the increase in pH of the oral cavity. Oral extract from chewing areca nut alone also induced SOD dimerization due to the presence of arginine. The enhanced activity of the SOD dimer was responsible for the continuous production of hydrogen peroxide in the oral cavity. Thus, SOD may contribute to oral carcinogenesis through the continuous formation of hydrogen peroxide in the oral cavity, in spite of its protective role against cancer in vivo.
Collapse
Affiliation(s)
- Yu-Ching Liu
- Proteomics Core Lab, Department of Medical Research, China Medical University Hospital , No. 2 Yu-De Road, Taichung, 40407, Taiwan R.O.C
| | | | | | | | | |
Collapse
|
16
|
Chang CT, Liao HY, Huang WH, Lin SY, Tsai TY, Yang CY, Tsai FJ, Chen CJ. Early prediction of severe acute pancreatitis by urinary β-2 microglobulin/saposin B peak ratios on MALDI-TOF. Clin Chim Acta 2014; 440:115-22. [PMID: 25447703 DOI: 10.1016/j.cca.2014.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/18/2014] [Accepted: 11/10/2014] [Indexed: 01/01/2023]
Abstract
The current methods for predicting severe acute pancreatitis (severe AP) are either complicated or lack efficient sensitivity and specificity. In this study, a simple and practical approach was developed to predict severe AP by using peak intensity ratio of urinary β-2 microglobulin (B2M) to saposin B (SB) on MALDI-TOF MS. Patients with B2M/SB ratio higher than 1.127 present severe AP symptom with a higher Ranson score, computed tomography (CT) grade and longer hospitalization with a sensitivity of 83.7% and specificity of 74.3%. Label-free quantitative proteomics by nanoLC-MS/MS was applied to urine of severe AP patients and found that severe AP is accompanied with kidney injury and inflammation. The measurement of B2M/SB ratios by MALDI-TOF MS could be a simple, accurate and rapid method to diagnose severe AP as well as to monitor AP progression.
Collapse
Affiliation(s)
- Chiz-Tzung Chang
- College of Medicine, China Medical University, Taichung, Taiwan; Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yi Liao
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Wen-Hsin Huang
- College of Medicine, China Medical University, Taichung, Taiwan; Division of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Yi Lin
- College of Medicine, China Medical University, Taichung, Taiwan; Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Yu Tsai
- Division of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Yuh Yang
- L5 Research Center, China Medical University Hospital, Taichung, Taiwan; Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Fuu-Jen Tsai
- Department of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
17
|
Moxon JV, Liu D, Moran CS, Crossman DJ, Krishna SM, Yonglitthipagon P, Emeto TI, Morris DR, Padula MP, Mulvenna JP, Rush CM, Golledge J. Proteomic and genomic analyses suggest the association of apolipoprotein C1 with abdominal aortic aneurysm. Proteomics Clin Appl 2014; 8:762-72. [DOI: 10.1002/prca.201300119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Joseph V. Moxon
- Vascular Biology Unit; Queensland Research Centre for Peripheral Vascular Disease; School of Medicine and Dentistry; James Cook University; Townsville Australia
| | - Dawei Liu
- Vascular Biology Unit; Queensland Research Centre for Peripheral Vascular Disease; School of Medicine and Dentistry; James Cook University; Townsville Australia
| | - Corey S. Moran
- Vascular Biology Unit; Queensland Research Centre for Peripheral Vascular Disease; School of Medicine and Dentistry; James Cook University; Townsville Australia
| | - David J. Crossman
- Faculty of Medical and Health Sciences; Department of Physiology; the University of Auckland; Auckland New Zealand
| | - Smriti M. Krishna
- Vascular Biology Unit; Queensland Research Centre for Peripheral Vascular Disease; School of Medicine and Dentistry; James Cook University; Townsville Australia
| | | | - Theophilus I. Emeto
- Vascular Biology Unit; Queensland Research Centre for Peripheral Vascular Disease; School of Medicine and Dentistry; James Cook University; Townsville Australia
- Microbiology and Immunology Department; School of Veterinary and Biomedical Sciences; James Cook University; Townsville Australia
| | - Dylan R. Morris
- Vascular Biology Unit; Queensland Research Centre for Peripheral Vascular Disease; School of Medicine and Dentistry; James Cook University; Townsville Australia
| | - Matthew P. Padula
- Proteomics Core Facility; University of Technology; Sydney Australia
| | - Jason P. Mulvenna
- Infectious Disease and Cancer; QIMR Berghofer Medical Research Institute; Brisbane Australia
| | - Catherine M. Rush
- Vascular Biology Unit; Queensland Research Centre for Peripheral Vascular Disease; School of Medicine and Dentistry; James Cook University; Townsville Australia
- Microbiology and Immunology Department; School of Veterinary and Biomedical Sciences; James Cook University; Townsville Australia
| | - Jonathan Golledge
- Vascular Biology Unit; Queensland Research Centre for Peripheral Vascular Disease; School of Medicine and Dentistry; James Cook University; Townsville Australia
- Department of Vascular and Endovascular Surgery; The Townsville Hospital; Townsville Australia
| |
Collapse
|
18
|
Chen R, Zhang F, Song L, Shu Y, Lin Y, Dong L, Nie X, Zhang D, Chen P, Han M. Transcriptome profiling reveals that the SM22α-regulated molecular pathways contribute to vascular pathology. J Mol Cell Cardiol 2014; 72:263-72. [DOI: 10.1016/j.yjmcc.2014.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/20/2014] [Accepted: 04/04/2014] [Indexed: 01/11/2023]
|
19
|
Hsieh JY, Chang CT, Huang MT, Chang CM, Chen CY, Shen MY, Liao HY, Wang GJ, Chen CH, Chen CJ, Yang CY. Biochemical and functional characterization of charge-defined subfractions of high-density lipoprotein from normal adults. Anal Chem 2013; 85:11440-11448. [PMID: 24171625 PMCID: PMC3919464 DOI: 10.1021/ac402516u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-density lipoprotein (HDL) is regarded as atheroprotective because it provides antioxidant and anti-inflammatory benefits and plays an important role in reverse cholesterol transport. In this paper, we outline a novel methodology for studying the heterogeneity of HDL. Using anion-exchange chromatography, we separated HDL from 6 healthy individuals into five subfractions (H1 through H5) with increasing charge and evaluated the composition and biologic activities of each subfraction. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that apolipoprotein (apo) AI and apoAII were present in all 5 subfractions; apoCI was present only in H1, and apoCIII and apoE were most abundantly present in H4 and H5. HDL-associated antioxidant enzymes such as lecithin-cholesterol acyltransferase, lipoprotein-associated phospholipase A2, and paraoxonase 1 were most abundant in H4 and H5. Lipoprotein isoforms were analyzed in each subfraction by using matrix-assisted laser desorption-time-of-flight mass spectrometry. To quantify other proteins in the HDL subfractions, we used the isobaric tags for the relative and absolute quantitation approach followed by nanoflow liquid chromatography-tandem mass spectrometry analysis. Most antioxidant proteins detected were found in H4 and H5. The ability of each subfraction to induce cholesterol efflux from macrophages increased with increasing HDL electronegativity, with the exception of H5, which promoted the least efflux activity. In conclusion, anion-exchange chromatography is an attractive method for separating HDL into subfractions with distinct lipoprotein compositions and biologic activities. By comparing the properties of these subfractions, it may be possible to uncover HDL-specific proteins that play a role in disease.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
| | - Chiz-Tzung Chang
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
- College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Max T. Huang
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Chia-Ming Chang
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
| | - Chia-Ying Chen
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
| | - Ming-Yi Shen
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
| | - Hsin-Yi Liao
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Guei-Jane Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Chu-Huang Chen
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Chao-Jung Chen
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Chao-Yuh Yang
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| |
Collapse
|
20
|
Peroxidase as the major protein constituent in areca nut and identification of its natural substrates. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:412851. [PMID: 24250715 PMCID: PMC3821912 DOI: 10.1155/2013/412851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 01/17/2023]
Abstract
Numerous reports illustrate the diverse effects of chewing the areca nut, most of which are harmful and have been shown to be associated with oral cancer. Nearly all of the studies are focused on the extract and/or low molecular weight ingredients in the areca nut. The purpose of this report is to identify the major protein component in the areca nut. After ammonium sulfate fractionation, the concentrated areca nut extract is subjected to DEAE-cellulose chromatography. A colored protein is eluted at low NaCl concentration and the apparently homogeneous eluent represents the major protein component compared to the areca nut extract. The colored protein shares partial sequence identity with the royal palm tree peroxidase and its peroxidase activity is confirmed using an established assay. In the study, the natural substrates of areca nut peroxidase are identified as catechin, epicatechin, and procyanidin B1. The two former substrates are similarly oxidized to form a 576 Da product with concomitant removal of four hydrogen atoms. Interestingly, oxidation of procyanidin B1 occurs only in the presence of catechin or epicatechin and an additional product with an 864 Da molecular mass. In addition, procyanidin B1 is identified as a peroxidase substrate for the first time.
Collapse
|