1
|
Xiang JX, Nan YL, He J, Lopez-Aguiar AG, Poultsides G, Rocha F, Weber S, Fields R, Idrees K, Cho C, Maithel SK, Lv Y, Zhang XF, Pawlik TM. Preoperative anemia: impact on short- and long-term outcomes following curative-intent resection of gastroenteropancreatic neuroendocrine tumors. J Gastrointest Surg 2024; 28:852-859. [PMID: 38538480 DOI: 10.1016/j.gassur.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 03/09/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The effect of preoperative anemia on clinical outcomes of patients undergoing resection of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) has not been previously investigated. This study aimed to characterize how preoperative anemia affected short- and long-term outcomes of patients undergoing curative-intent resection of GEP-NETs. METHODS Patients who underwent curative-intent resection for GEP-NETs between January 1990 and December 2020 were identified from 8 major institutions. The last preoperative hemoglobin level was recorded; anemia was defined as <13.5 g/dL in males or <12.0 g/dL in females based on the guides of the American Society of Hematology. The effect of anemia on postoperative outcomes was assessed on uni- and multivariate analyses. RESULTS Among 1559 patients, the median age was 58 years (IQR, 48-66), and roughly one-half of the cohort was male (796 [51.1%]). Most patients had a pancreatic tumor (1040 [66.7%]), followed by small bowel (259 [16.6%]), duodenum (103 [6.6%]), stomach (66 [4.2%]), appendix (53 [3.4%]), and other locations (38 [2.6%]). The median preoperative hemoglobin level was 13.4 g/dL (IQR, 12.2-14.5). Overall, 101 (6.7%) and 119 (8.5%) patients received an intra- or postoperative packed red blood cell (pRBC) transfusion, respectively. A total of 972 patients (44.5%) experienced a postoperative complication. Although the overall incidence of complications was no different among patients who did (anemic: 48.7%) vs patients who did not (nonanemic: 47.3%) have anemia (P = .597), patients with preoperative anemia were more likely to develop a major (Clavien-Dindo grade ≥IIIa: 48.9% [anemic] vs 38.0% [nonanemic]; P = .006) and multiple (≥3 types of complications: 32.2% [anemic] vs 19.7% [anemic]; P < .001) complications. Of note, 1-, 3-, and 5-year overall survival (OS) rates were 96.7%, 90.5%, and 86.6%, respectively. On multivariable analysis, anemia (hazard ratio, 2.0; 95% CI, 1.2-3.2; P = .006) remained associated with worse OS; postoperative pRBC transfusion was associated with an OS (5-year OS: 75.0% vs 87.7%; P = .017) and recurrence-free survival (RFS; 5-year RFS: 66.9% vs 76.5%; P = .047). CONCLUSION Preoperative anemia was commonly identified in roughly 1 in 3 patients who underwent curative-intent resection for GEP-NETs. Preoperative anemia was strongly associated with a higher risk of postoperative morbidity and worse long-term outcomes.
Collapse
Affiliation(s)
- Jun-Xi Xiang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang-Long Nan
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin He
- Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland, United States
| | - Alexandra G Lopez-Aguiar
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States
| | - George Poultsides
- Department of Surgery, Stanford University, Palo Alto, California, United States
| | - Flavio Rocha
- Department of Surgery, Virginia Mason Medical Center, Seattle, Washington, United States
| | - Sharon Weber
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Ryan Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, Wisconsin, United States
| | - Kamran Idrees
- Division of Surgical Oncology, Department of Surgery, Vanderbilt University, Nashville, Tennessee, United States
| | - Cliff Cho
- Division of Hepatopancreatobiliary and Advanced Gastrointestinal Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Shishir K Maithel
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States
| | - Yi Lv
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, United States.
| | - Timothy M Pawlik
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, United States.
| |
Collapse
|
2
|
Li Q, Yang W, Liu H, Yao J, Wang Q, Lin D, Shi J. Analysis of related factors of CRA in lung cancer patients with different serum iron levels: A retrospective cohort study. Cancer Med 2024; 13:e7147. [PMID: 38562035 PMCID: PMC10985406 DOI: 10.1002/cam4.7147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Serum iron, an essential component of hemoglobin (Hb) synthesis in vivo, is a crucial parameter for evaluating the body's iron storage and metabolism capacity. Iron deficiency leads to reduced Hb synthesis in red blood cells and smaller red blood cell volume, ultimately resulting in iron-deficiency anemia. Although serum iron cannot independently evaluate iron storage or metabolism ability, it can reflect iron concentration in vivo and serve as a good predictor of iron-deficiency anemia. Therefore, exploring the influence of different serum iron levels on anemia and diagnosing and treating iron deficiency in the early stages is of great significance for patients with lung cancer. AIM This study aims to explore the related factors of cancer-related anemia (CRA) in lung cancer and construct a nomogram prediction model to evaluate the risk of CRA in patients with different serum iron levels. METHODS A single-center retrospective cohort study was conducted, including 1610 patients with lung cancer, of whom 1040 had CRA. The relationship between CRA and its influencing factors was analyzed using multiple linear regression models. Lung cancer patients were divided into two groups according to their serum iron levels: decreased serum iron and normal serum iron. Each group was randomly divided into a training cohort and a validation cohort at a ratio of 7:3. The influencing factors were screened by univariate and multivariate logistic regression analyses, and nomogram models were constructed. The area under the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the models. RESULTS CRA in lung cancer is mainly related to surgery, chemotherapy, Karnofsky Performance Status (KPS) score, serum iron, C-reactive protein (CRP), albumin, and total cholesterol (p < 0.05). CRA in lung cancer patients with decreased serum iron is primarily associated with albumin, age, and cancer staging, while CRA in lung cancer patients with normal serum iron is mainly related to CRP, albumin, total cholesterol, and cancer staging. The area under the ROC curve of the training cohort and validation cohort for the prediction model of lung cancer patients with decreased serum iron was 0.758 and 0.760, respectively. Similarly, the area under the ROC curve of the training cohort and validation cohort for the prediction model of lung cancer patients with normal serum iron was 0.715 and 0.730, respectively. The calibration curves of both prediction models were around the ideal 45° line, suggesting good discrimination and calibration. DCA showed that the nomograms had good clinical utility. CONCLUSION Both models have good reliability and validity and have significant clinical value. They can help doctors better assess the risk of developing CRA in lung cancer patients. CRP is a risk factor for CRA in lung cancer patients with normal serum iron but not in patients with decreased serum iron. Therefore, whether CRP and the inflammatory state represented by CRP will further aggravate the decrease in serum iron levels, thus contributing to anemia, warrants further study.
Collapse
Affiliation(s)
- Quan‐yao Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wen‐xiao Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hui Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia‐lin Yao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qin Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dan Lin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jun Shi
- Department of Traditional Chinese MedicineShanghai Fourth People's Hospital Affiliated to Tongji University of MedicineShanghaiChina
| |
Collapse
|
3
|
Wei R, Fu G, Li Z, Liu Y, Xue M. Engineering Iron-Based Nanomaterials for Breast Cancer Therapy Associated with Ferroptosis. Nanomedicine (Lond) 2024; 19:537-555. [PMID: 38293902 DOI: 10.2217/nnm-2023-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024] Open
Abstract
Ferroptosis has received increasing attention as a novel nonapoptotic programmed death. Recently, iron-based nanomaterials have been extensively exploited for efficient tumor ferroptosis therapy, as they directly release high concentrations of iron and increase intracellular reactive oxygen species levels. Breast cancer is one of the commonest malignant tumors in women; inhibiting breast cancer cell proliferation through activating the ferroptosis pathway could be a potential new target for patient treatment. Here, we briefly introduce the background of ferroptosis and systematically review the current cancer therapeutic strategies based on iron-based ferroptosis inducers. Finally, we summarize the advantages of these various ferroptosis inducers and shed light on future perspectives. This review aims to provide better guidance for the development of iron-based nanomaterial ferroptosis inducers.
Collapse
Affiliation(s)
- Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Gaoliang Fu
- Henan Provincial Key Laboratory of Nanocomposites & Applications, Institute of Nanostructured Functional Materials, Huanghe Science & Technology College, Zhengzhou, 450006, Henan, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
4
|
Chen C, Tang WH, Wu CC, Lee TL, Tsai IT, Hsuan CF, Wang CP, Chung FM, Lee YJ, Yu TH, Wei CT. Pretreatment Circulating Albumin, Platelet, and RDW-SD Associated with Worse Disease-Free Survival in Patients with Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:23-39. [PMID: 38250195 PMCID: PMC10799625 DOI: 10.2147/bctt.s443292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Objective Breast cancer is the second most common malignancy globally and a leading cause of cancer death in women. Analysis of factors related to disease-free survival (DFS) has improved understanding of the disease and characteristics related to recurrence. The aim of this study was to investigate the predictors of DFS in patients with breast cancer to enable the identification of patients at high risk who may benefit from prevention interventions. Methods We retrospectively analyzed 559 women with breast cancer who underwent treatment between 2004 and 2022. The study endpoint was DFS. Recurrence was defined as local recurrence, regional recurrence, distant metastases, contralateral breast cancer, other second primary cancer, and death. Baseline tumor-related characteristics, treatment-related characteristics, sociodemographic and biochemical data were analyzed using Cox proportional hazards analysis. Results The median DFS was 45 months (range, 2 to 225 months). Breast cancer recurred in 86 patients (15.4%), of whom 10 had local recurrence, 10 had regional recurrence, 17 had contralateral breast cancer, 29 had distant metastases, 10 had second primary cancer, and 10 patients died. Multivariate forward stepwise Cox regression analysis showed that AJCC stage III, Ki67 ≥14%, albumin, platelet, and red cell distribution width-standard deviation (RDW-SD) were predictors of worse DFS. In addition, the effects of albumin, platelet, and RDW-SD on disease recurrence were confirmed by structural equation model (SEM) analysis. Conclusion In addition to the traditional predictors of worse DFS such as AJCC stage III and Ki67 ≥14%, lower pretreatment circulating albumin, higher pretreatment circulating platelet count and RDW-SD could significantly predict worse DFS in this study, and SEM delineated possible causal pathways and inter-relationships of albumin, platelet, and RDW-SD contributing to the disease recurrence among Chinese women with breast cancer.
Collapse
Affiliation(s)
- Chia‐Chi Chen
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Department of Physical Therapy, I-Shou University, Kaohsiung, 82445, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Yuli Branch, Hualien, 98142, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Cheng-Ching Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Cancer Hospital, I-Shou, University, Kaohsiung, 82445, Taiwan
| | - Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chin-Feng Hsuan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Yau-Jiunn Lee
- Lee’s Endocrinologic Clinic, Pingtung, 90000, Taiwan
| | - Teng-Hung Yu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Ching-Ting Wei
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of General Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| |
Collapse
|
5
|
Cao B, Lei Y, Xue H, Liang Y, Liu Y, Xie Q, Yan L, Cui L, Li N. Changes in the Serum Concentrations of Essential Trace Metals in Patients with Benign and Malignant Breast Cancers. Biol Trace Elem Res 2022; 200:3537-3544. [PMID: 34671925 DOI: 10.1007/s12011-021-02964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Essential trace metals (ETMs) may play important roles in the pathophysiology of benign and malignant breast cancers. Our study aimed to find associations between ETMs and benign and malignant breast cancers. We recruited 146 patients with benign (n = 73) and malignant (n = 73) breast tumors and 95 healthy controls (HCs) from Peking University Third Hospital, Beijing, China. The serum concentrations of seven ETMs (Zn, Mn, Cu, Fe, Co, Ni, and Mo) were evaluated using inductively coupled plasma mass spectrometry (ICP-MS). The serum concentrations of Zn were significantly lower in the malignant group than in the HC group, whereas the concentrations of Cu (p < 0.001) were significantly higher in the malignant group. The concentrations of Fe were significantly lower in both malignant and benign groups than in the HC group (p < 0.05). We observed that the Fe/Cu ratio was lower and the Cu/Ni ratio was higher in the malignant group than in the HCs, as well as in the benign group than in the HCs. The serum concentration of Fe (OR = 0.454; 95% CI, 0.263, 0.784; p = 0.005) was negatively associated with breast tumors after adjusting for potential confounders, including age, BMI, and smoking, drinking and menopause statuses; that of Cu (OR = 2.274; 95% CI, 1.282, 4.031; p = 0.005) was positively associated. Changes in the concentrations of ETMs (Zn, Cu, Fe, and Ni) may be involved in the development of malignant breast cancer. The findings provide foundations for further exploration of ETMs in the prevention and treatment of breast tumors.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality (SWU), Faculty of Psychology, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yutao Lei
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Heng Xue
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yongming Liang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yaqiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Qing Xie
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
6
|
Islam S, Hoque N, Nasrin N, Hossain M, Rizwan F, Biswas K, Asaduzzaman M, Rahman S, Hoskin DW, Sultana S, Lehmann C. Iron Overload and Breast Cancer: Iron Chelation as a Potential Therapeutic Approach. Life (Basel) 2022; 12:963. [PMID: 35888054 PMCID: PMC9317809 DOI: 10.3390/life12070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer has historically been one of the leading causes of death for women worldwide. As of 2020, breast cancer was reported to have overtaken lung cancer as the most common type of cancer globally, representing an estimated 11.3% of all cancer diagnoses. A multidisciplinary approach is taken for the diagnosis and treatment of breast cancer that includes conventional and targeted treatments. However, current therapeutic approaches to treating breast cancer have limitations, necessitating the search for new treatment options. Cancer cells require adequate iron for their continuous and rapid proliferation. Excess iron saturates the iron-binding capacity of transferrin, resulting in non-transferrin-bound iron (NTBI) that can catalyze free-radical reactions and may lead to oxidant-mediated breast carcinogenesis. Moreover, excess iron and the disruption of iron metabolism by local estrogen in the breast leads to the generation of reactive oxygen species (ROS). Therefore, iron concentration reduction using an iron chelator can be a novel therapeutic strategy for countering breast cancer development and progression. This review focuses on the use of iron chelators to deplete iron levels in tumor cells, specifically in the breast, thereby preventing the generation of free radicals. The inhibition of DNA synthesis and promotion of cancer cell apoptosis are the targets of breast cancer treatment, which can be achieved by restricting the iron environment in the body. We hypothesize that the usage of iron chelators has the therapeutic potential to control intracellular iron levels and inhibit the breast tumor growth. In clinical settings, iron chelators can be used to reduce cancer cell growth and thus reduce the morbidity and mortality in breast cancer patients.
Collapse
Affiliation(s)
- Sufia Islam
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Nazia Hoque
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Nishat Nasrin
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Mehnaz Hossain
- Department of Political Science and Global Governance, Balsillie School of International Affairs, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Farhana Rizwan
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Kushal Biswas
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Muhammad Asaduzzaman
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Sabera Rahman
- Department of Pharmacy, City University, Dhaka 1215, Bangladesh;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Saki Sultana
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (S.S.); (C.L.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (S.S.); (C.L.)
| |
Collapse
|
7
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
8
|
Truong LB, Medina Cruz D, Mostafavi E, O’Connell CP, Webster TJ. Advances in 3D-Printed Surface-Modified Ca-Si Bioceramic Structures and Their Potential for Bone Tumor Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3844. [PMID: 34300763 PMCID: PMC8306413 DOI: 10.3390/ma14143844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023]
Abstract
Bioceramics such as calcium silicate (Ca-Si), have gained a lot of interest in the biomedical field due to their strength, osteogenesis capability, mechanical stability, and biocompatibility. As such, these materials are excellent candidates to promote bone and tissue regeneration along with treating bone cancer. Bioceramic scaffolds, functionalized with appropriate materials, can achieve desirable photothermal effects, opening up a bifunctional approach to osteosarcoma treatments-simultaneously killing cancerous cells while expediting healthy bone tissue regeneration. At the same time, they can also be used as vehicles and cargo structures to deliver anticancer drugs and molecules in a targeted manner to tumorous tissue. However, the traditional synthesis routes for these bioceramic scaffolds limit the macro-, micro-, and nanostructures necessary for maximal benefits for photothermal therapy and drug delivery. Therefore, a different approach to formulate bioceramic scaffolds has emerged in the form of 3D printing, which offers a sustainable, highly reproducible, and scalable method for the production of valuable biomedical materials. Here, calcium silicate (Ca-Si) is reviewed as a novel 3D printing base material, functionalized with highly photothermal materials for osteosarcoma therapy and drug delivery platforms. Consequently, this review aims to detail advances made towards functionalizing 3D-printed Ca-Si and similar bioceramic scaffold structures as well as their resulting applications for various aspects of tumor therapy, with a focus on the external surface and internal dispersion functionalization of the scaffolds.
Collapse
Affiliation(s)
- Linh B. Truong
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (L.B.T.); (D.M.C.); (C.P.O.); (T.J.W.)
| | - David Medina Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (L.B.T.); (D.M.C.); (C.P.O.); (T.J.W.)
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (L.B.T.); (D.M.C.); (C.P.O.); (T.J.W.)
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine P. O’Connell
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (L.B.T.); (D.M.C.); (C.P.O.); (T.J.W.)
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (L.B.T.); (D.M.C.); (C.P.O.); (T.J.W.)
| |
Collapse
|
9
|
Gamage SMK, Lee KTW, Dissabandara DLO, Lam AKY, Gopalan V. Dual role of heme iron in cancer; promotor of carcinogenesis and an inducer of tumour suppression. Exp Mol Pathol 2021; 120:104642. [PMID: 33905708 DOI: 10.1016/j.yexmp.2021.104642] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/14/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Heme is a crucial compound for cell survival but is also equipped with the potential to be toxic and carcinogenic to cells. However, with the recent advancement of knowledge regarding ferroptosis, the iron mediated cell death, heme can be postulated to induce tumour suppression through ferroptosis. This review summarizes the literature on the carcinogenic and anticarcinogenic properties of heme with specific emphasis on the alterations observed on heme synthesis, metabolism and transport in tumour cells. METHODS Literature search was performed in PubMed data base using the MeSH terms 'heme iron or heme', 'cancer or carcinogenesis' and 'tumour suppression' or 'anticarcinogenic properties. Out of 189 results, 166 were relevant to the current review. RESULTS Heme supports carcinogenesis via modulation of immune cell function, promoting inflammation and gut dysbiosis, impeding tumour suppressive potential of P53 gene, promoting cellular cytotoxicity and reactive oxygen species generation and modulating Nfr2 /HO-1 axis. The carcinogenic and anticarcinogenic properties of heme are both dose and oxygen concentration dependant. At low doses, heme is harmless and even helpful in maintaining the much-needed redox balance within the cell. However, when heme exceeds physiological concentrations, it could initiate and propagate carcinogenesis, due to its ability to produce reactive oxygen species (ROS). The same phenomenon of heme mediated ROS generation could be manipulated to initiate tumour suppression via ferroptosis, but the therapeutic doses are yet to be determined. CONCLUSION Heme iron possesses powerful carcinogenic and anticarcinogenic properties which are dosage and oxygen availability dependant.
Collapse
Affiliation(s)
- Sujani M K Gamage
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia; Department of Anatomy, Faculty of Medicine, University of Peradeniya, Sri Lanka
| | - Katherine T W Lee
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - D Lakal O Dissabandara
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
10
|
Nieto C, Vega MA, Martín del Valle EM. Tailored-Made Polydopamine Nanoparticles to Induce Ferroptosis in Breast Cancer Cells in Combination with Chemotherapy. Int J Mol Sci 2021; 22:3161. [PMID: 33808898 PMCID: PMC8003616 DOI: 10.3390/ijms22063161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/16/2023] Open
Abstract
Ferroptosis is gaining followers as mechanism of selective killing cancer cells in a non-apoptotic manner, and novel nanosystems capable of inducing this iron-dependent death are being increasingly developed. Among them, polydopamine nanoparticles (PDA NPs) are arousing interest, since they have great capability of chelating iron. In this work, PDA NPs were loaded with Fe3+ at different pH values to assess the importance that the pH may have in determining their therapeutic activity and selectivity. In addition, doxorubicin was also loaded to the nanoparticles to achieve a synergist effect. The in vitro assays that were performed with the BT474 and HS5 cell lines showed that, when Fe3+ was adsorbed in PDA NPs at pH values close to which Fe(OH)3 begins to be formed, these nanoparticles had greater antitumor activity and selectivity despite having chelated a smaller amount of Fe3+. Otherwise, it was demonstrated that Fe3+ could be released in the late endo/lysosomes thanks to their acidic pH and their Ca2+ content, and that when Fe3+ was co-transported with doxorubicin, the therapeutic activity of PDA NPs was enhanced. Thus, reported PDA NPs loaded with both Fe3+ and doxorubicin may constitute a good approach to target breast tumors.
Collapse
Affiliation(s)
| | - Milena A. Vega
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Eva M. Martín del Valle
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| |
Collapse
|
11
|
Relationships between Exercise Modality and Activity Restriction, Quality of Life, and Hematopoietic Profile in Korean Breast Cancer Survivors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186899. [PMID: 32967252 PMCID: PMC7559845 DOI: 10.3390/ijerph17186899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
This study aimed to examine the relationships between activity restriction, quality of life (QoL), and hematopoietic profile in breast cancer survivors according to exercise modality. The subjects in this study were 187 female breast cancer survivors among a total of 32,631 participants in the Korea National Health and Nutrition Examination Survey, which was conducted from 2016 to 2018. The selected subjects participated in a questionnaire survey and blood analysis. A cross-analysis was conducted to determine the relationship between participation in various modality of exercise (e.g., aerobic exercise, resistance exercise, walking exercise). The phi coefficients or Cramer’s V value for activity restriction and QoL were calculated; an independent t-test was conducted to evaluate the differences between hematopoietic profiles based on the modality of exercise. Statistically significant correlations were seen between obesity and aerobic exercise and walking frequency, as well as between diabetes and aerobic exercise and activity restriction. With respect to QoL, there was a statistically significant correlation between participation in aerobic exercise and exercise ability, participation in aerobic exercise and anxiety/depression, participation in resistance exercise and subjective health status, participation in resistance exercise and exercise ability, and participation in weekly walking exercise and self-care ability. Regarding hemodynamic changes, red blood cells increased significantly in breast cancer survivors who participated in weekly resistance exercise compared to in those who did not. In conclusion, exercise participation had a positive effect on activity restriction, QoL, and hematopoietic profile in breast cancer survivors; in particular, some modalities of aerobic exercise were more effective.
Collapse
|
12
|
Khoo TC, Tubbesing K, Rudkouskaya A, Rajoria S, Sharikova A, Barroso M, Khmaladze A. Quantitative label-free imaging of iron-bound transferrin in breast cancer cells and tumors. Redox Biol 2020; 36:101617. [PMID: 32863219 PMCID: PMC7327243 DOI: 10.1016/j.redox.2020.101617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Transferrin (Tf) is an essential serum protein which delivers iron throughout the body via transferrin-receptor (TfR)-mediated uptake and iron release in early endosomes. Currently, there is no robust method to assay the population of iron-bound Tf in intact cells and tissues. Raman hyperspectral imaging detected spectral peaks that correlated with iron-bound Tf in intact cells and tumor xenografts sections (~1270-1300 cm-1). Iron-bound (holo) and iron-free (apo) human Tf forms were endocytosed by MDAMB231 and T47D human breast cancer cells. The Raman iron-bound Tf peak was identified in cells treated with holo-Tf, but not in cells incubated with apo-Tf. A reduction in the Raman peak intensity between 5 and 30 min of Tf internalization was observed in T47D, but not in MDAMB231, suggesting that T47D can release iron from Tf more efficiently than MDAMB231. MDAMB231 may display a disrupted iron homeostasis due to iron release delays caused by alterations in the pH or ionic milieu of the early endosomes. In summary, we have demonstrated that Raman hyperspectral imaging can be used to identify iron-bound Tf in cell cultures and tumor xenografts and detect iron release behavior of Tf in breast cancer cells.
Collapse
Affiliation(s)
- Ting Chean Khoo
- Physics Department, SUNY University at Albany, 1400, Washington Avenue, Albany, NY, USA
| | - Kate Tubbesing
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Shilpi Rajoria
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Anna Sharikova
- Physics Department, SUNY University at Albany, 1400, Washington Avenue, Albany, NY, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Alexander Khmaladze
- Physics Department, SUNY University at Albany, 1400, Washington Avenue, Albany, NY, USA.
| |
Collapse
|
13
|
Jiang M, Qiao M, Zhao C, Deng J, Li X, Zhou C. Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res 2020; 9:1569-1584. [PMID: 32953528 PMCID: PMC7481593 DOI: 10.21037/tlcr-20-341] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ferroptosis is a novel form of non-apoptotic regulated cell death (RCD), with distinct characteristics and functions in physical conditions and multiple diseases such as cancers. Unlike apoptosis and autophagy, this new RCD is an iron-dependent cell death with features of lethal accumulation of reactive oxygen species (ROS) and over production of lipid peroxidation. Excessive iron from aberrant iron metabolisms or the maladjustment of the two main redox systems thiols and lipid peroxidation role as the major causes of ROS generation, and the redox-acrive ferrous (intracellular labile iron) is a crucial factor for the lipid peroxidation. Regulation of ferrroptosis also involves different pathways such as mevalonate pathway, P53 pathway and p62-Keap1-Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. Ferroptosis roles as a double-edged sword either suppressing or promoting tumor progression with the release of multiple signaling molecules in the tumor microenvironment. Emerging evidence suggests ferroptosis as a potential target for cancer therapy and ferroptosis inducers including small molecules and nanomaterials have been developed. The application of ferroptosis inducers also relates to overcoming drug resistance and preventing tumor metastasis, and may become a promising strategy combined with other anti-cancer therapies. Here, we summarize the ferroptosis characters from its underlying basis and role in cancer, followed by its possible applications in cancer therapies and challenges maintained.
Collapse
Affiliation(s)
- Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Chuanliang Zhao
- Department of Otolaryngology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Juan Deng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Xuefei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Restrepo-Gallego M, Díaz LE, Rondó PHC. Classic and emergent indicators for the assessment of human iron status. Crit Rev Food Sci Nutr 2020; 61:2827-2840. [PMID: 32619106 DOI: 10.1080/10408398.2020.1787326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron deficiency is the leading cause of anemia, a significant global public health problem. Different methods exist for assessing iron nutritional status, including laboratory tests that focus on storage, transportation, and iron functional compartment parameters. Classical markers such as bone marrow, serum iron, ferritin, hemoglobin, erythrocyte parameters, transferrin, transferrin receptors, and zinc protoporphyrin are discussed in this review. Additional parameters calculated from these indicators, including transferrin saturation, ferritin index and Thomas plot, and some emergent parameters such as hepcidin, erythroferrone, and low hemoglobin density are also discussed. There is no a single indicator for assessing iron nutritional status. Therefore, the use of more than one indicator may be the best practice to obtain the correct diagnosis, also considering the influence of inflammation/infection on many of these indicators. The constant validation of the current parameters, the improvement of assessment methods, and the identification of new indicators will be the key to refine the assessment of iron nutritional status and the right choice of treatment for its improvement.
Collapse
Affiliation(s)
| | - Luis E Díaz
- Doctorate Program in Bioscience, La Sabana University, Chía, Colombia
| | - Patrícia H C Rondó
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Sanagoo A, Kiani F, Saei Gharenaz M, Sayehmiri F, Koohi F, Jouybari L, Dousti M. A systematic review and meta-analysis on the association of serum and tumor tissue iron and risk of breast cancer. CASPIAN JOURNAL OF INTERNAL MEDICINE 2020; 11:1-11. [PMID: 32042380 PMCID: PMC6992715 DOI: 10.22088/cjim.11.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Some studies have investigated the effects of iron on breast carcinogenesis and reported different findings about the association between Fe and breast cancer risk. This study was conducted to estimate this effect using meta-analysis method. METHODS A total of 20 articles published between 1984 and 2017 worldwide were selected through searching PubMed, Scopus, Embase, Web of Science, and Cochrane Library. Keywords such Breast Cancer, Neoplasm, Trace elements, Iron, Breast tissue concentration, Plasma concentration, Scalp hair concentration, toenail concentration and their combination were used in the search. RESULTS The total number of participants was 4,110 individuals comprising 1,624 patients with breast cancer and 2,486 healthy subjects. Fe concentration was measured in the various subgroups in both case and control groups. There were significant correlations between Fe concentration and breast cancer in breast tissue subgroup (SMD: 0.67 [95% CI: 0.17 to 1.17; P=0.009]). Whereas, there was no meaningful difference in Fe status between women with and without breast cancer related to scalp hair and plasma subgroups; (SMD: -3.74 [95% CI: -7.58 to 0.10; P=0.056] and (SMD:-1.14[95% CI: -2.30 to 0.03; P=0.055], respectively. CONCLUSION The present meta-analysis indicated a positive and straight association between iron concentrations and risk of breast cancer but because of high heterogeneity we recommend more accurate future studies.
Collapse
Affiliation(s)
- Akram Sanagoo
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Faezeh Kiani
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzieh Saei Gharenaz
- Students Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Koohi
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majjid Dousti
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
16
|
Chen C, Liu P, Duan X, Cheng M, Xu LX. Deferoxamine-induced high expression of TfR1 and DMT1 enhanced iron uptake in triple-negative breast cancer cells by activating IL-6/PI3K/AKT pathway. Onco Targets Ther 2019; 12:4359-4377. [PMID: 31213851 PMCID: PMC6549404 DOI: 10.2147/ott.s193507] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Deferoxamine (DFO) is a commonly used iron chelator, which can reduce the iron levels in cells. DFO is normally used to treat iron-overload disease, including some types of cancer. However, our previous studies revealed that DFO treatment significantly increased the iron concentrations in triple-negative breast cancer cells (TNBCs) resulting in enhanced cell migration. But the mechanism of DFO-induced increasing iron uptake in aggressive TNBCs still remained unclear. Materials and methods: Iron metabolism-related proteins in aggressive breast cancer MDA-MB-231, HS578T and BT549 cells and nonaggressive breast cancer MCF-7 and T47D cells were examined by immunofluorescence and Western blotting. The possible regulatory mechanism was explored by Western blotting, co-incubation with neutralizing antibodies or inhibitors, and transwell assay. Results: In this study, we found that DFO treatment significantly increased the levels of iron uptake proteins, DMT1 and TfR1, in aggressive TNBCs. Moreover, both TfR1 and DMT1 expressed on cell membrane were involved in high iron uptake in TNBCs under DFO-induced iron deficient condition. For the possible regulatory mechanism, we found that DFO treatment could promote a high expression level of IL-6 in aggressive MDA-MB-231 cells. The activated IL-6/PI3K/AKT pathway upregulated the expression of iron-uptake related proteins, TfR1 and DMT1, leading to increased iron uptakes. Conclusion: We demonstrated that DFO could upregulate expression of TfR1 and DMT1 , which enhanced iron uptake via activating IL-6/PI3K/AKT signaling pathway in aggressive TNBCs.
Collapse
Affiliation(s)
- Chunli Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyue Duan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Man Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lisa X Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Alonso-García FJ, Blanco-González E, Montes-Bayón M. An inductively coupled plasma-mass spectrometry (ICP-MS) linked immunoassay by means of iodinated antibodies for transferrin quantitative analysis in breast cancer cell lines. Talanta 2019; 194:336-342. [DOI: 10.1016/j.talanta.2018.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
|
18
|
Zhang J, Chen X. p53 tumor suppressor and iron homeostasis. FEBS J 2018; 286:620-629. [PMID: 30133149 DOI: 10.1111/febs.14638] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Iron is an essential nutrient for all living organisms and plays a vital role in many fundamental biochemical processes, such as oxygen transport, energy metabolism, and DNA synthesis. Due to its capability to produce free radicals, iron has deleterious effects and thus, its level needs to be tightly controlled in the body. Deregulation of iron metabolism is known to cause diseases, including anemia by iron deficiency and hereditary hemochromatosis by iron overload. Interestingly, dysregulated iron metabolism occurs frequently in tumor cells and contributes to tumorigenesis. In this review, we will discuss the role of p53 tumor suppressor in iron homeostasis.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, School of Veterinary Medicine and Medicine, University of California at Davis, CA, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, School of Veterinary Medicine and Medicine, University of California at Davis, CA, USA
| |
Collapse
|
19
|
Jiang X, Zhang C, Qi S, Guo S, Chen Y, Du E, Zhang H, Wang X, Liu R, Qiao B, Yang K, Zhang Z, Xu Y. Elevated expression of ZNF217 promotes prostate cancer growth by restraining ferroportin-conducted iron egress. Oncotarget 2018; 7:84893-84906. [PMID: 27768596 PMCID: PMC5356707 DOI: 10.18632/oncotarget.12753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023] Open
Abstract
Although we and other studies indicated ZNF217 expression was increased in prostate cancer (PCa), the factors mediating its misregulated expression and their oncogenic activity remain largely unexplored. Recent evidence demonstrated that ferroportin (FPN) reduction lead to decreased iron export and increased intercellular iron that consequently aggravates the oncogenic effects of iron. In the present study, ZNF217 was identified as a transcriptional repressor that inhibits FPN expression. Increased of ZNF217 expression led to decreased FPN concentration, coupled with resultant intracellular iron retention, increased iron-related cellular activities and enhanced tumor cell growth. In contrast, decreased of ZNF217 expression restrained tumor cell growth by promoting FPN-driven iron egress. Mechanistic investigation manifested that ZNF217 facilitated the H3K27me3 levels of FPN promoter by interacting with EZH2. Besides, we also found that MAZ increased the transcription level of ZNF217, and subsequently inhibited the FPN expression and their iron–related activities. Strikingly, the expression of MAZ, EZH2 and ZNF217 were concurrently upregulated in PCa, leading to decreased expression of FPN, which induce disordered iron metabolism. Collectively, this study underscored that elevated expression of ZNF217 promotes prostate cancer growth by restraining FPN-conducted iron egress.
Collapse
Affiliation(s)
- Xingkang Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Changwen Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shanqi Guo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Hongtuan Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Xiaoming Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Ranlu Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Baomin Qiao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Kuo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| |
Collapse
|
20
|
Abel MR, Nie LH. Monte Carlo simulations of elemental imaging using the neutron-associated particle technique. Med Phys 2018; 45:1631-1644. [PMID: 29405301 DOI: 10.1002/mp.12797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/12/2017] [Accepted: 01/23/2018] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study is to develop and employ a Monte Carlo (MC) simulation model of associated particle neutron elemental imaging (APNEI) in order to determine the three-dimensional (3D) imaging resolution of such a system by examining relevant physical and technological parameters and to thereby begin to explore the range of clinical applicability of APNEI to fields such as medical diagnostics, intervention, and etiological research. METHODS The presented APNEI model was defined in MCNP by a Gaussian-distributed and isotropic surface source emitting deuterium + deuterium (DD) neutrons, iron as the target element, nine iron-containing voxels (1 cm3 volume each) arranged in a 3-by-3 array as the interrogated volume of interest, and finally, by high-purity germanium (HPGe) gamma-ray detectors anterior and posterior to the 9-voxel array. The MCNP f8 pulse height tally was employed in conjunction with the PTRAC particle tracking function to not only determine the signal acquired from iron inelastic scatter gamma-rays but also to quantitate each of the nine target voxels' contribution to the overall iron signal - each detected iron inelastic scatter gamma-ray being traced to the source neutron which incited its emission. RESULTS With the spatial, vector, and timing information of the series of events for each relevant neutron history as collected by PTRAC, realistic grayscale images of the distribution of iron concentration in the 9-voxel array were simulated in both the projective and depth dimensions. With an overall 225 ps timing resolution, 6.25 mm2 imaging plate pixels assumed to have well localized scintillation, and a DD neutron, Gaussian-distributed source spot with a diameter of 2 mm, projective and depth resolutions of < 1 cm and <3 cm are achievable, respectively, for iron-containing voxels on the order of 1,000 ppm Fe. CONCLUSIONS The imaging resolution offered by APNEI of target elements such as iron lends itself to potential applications in disease diagnosis and treatment planning (high resolution) as well as to ordnance and contraband detection (low resolution). However, experimental study beyond simulation is required to optimize the layout and electronic configuration of APNEI system components - including realistic shielding and phantom materials - for background signal reduction in order to accurately determine the detection limits and spatial resolution of iron and other elements of interest on a case-by-case basis.
Collapse
Affiliation(s)
- Michael R Abel
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Linda H Nie
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
21
|
Lappano R, Malaguarnera R, Belfiore A, Maggiolini M. Recent advances on the stimulatory effects of metals in breast cancer. Mol Cell Endocrinol 2017; 457:49-56. [PMID: 27765682 DOI: 10.1016/j.mce.2016.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 01/08/2023]
Abstract
Certain environmental chemicals may accumulate in human serum and tissues eliciting estrogenic and/or carcinogenic effects. Therefore, there is heightened interest in determining whether environmental chemicals may increase the risk for endocrine-related tumors like breast cancer. For instance, metals as cadmium, zinc, copper, iron, nickel and aluminum have been shown to mimic estrogen action. Moreover, the exposure to these chemicals has been reported to stimulate diverse malignancies including breast cancer, which is the most common tumor in women worldwide. In this review, we summarize the epidemiologic and experimental evidence regarding the association between the exposure to some trace elements and breast cancer risk. We also address recent insights on the molecular mechanisms involved by metals in breast tumorigenesis.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
22
|
Alonso García J, Turiel Fernández D, Añón Álvarez E, Blanco González E, Montes-Bayón M, Sanz-Medel A. Iron speciation, ferritin concentrations and Fe : ferritin ratios in different malignant breast cancer cell lines: on the search for cancer biomarkers. Metallomics 2017; 8:1090-1096. [PMID: 27730247 DOI: 10.1039/c6mt00100a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Iron is an essential element for cell growth and division. Recent experiments have linked a deregulation of iron's metabolism with breast cancer progression, aggressiveness and recurrence. In fact, it is conceived that chronic failure in the redox balance due to the presence of a high intracellular concentration of this metal has the potential to modulate specific signaling networks associated with cancer malignancy. Thus, this work has been focused on the comparative evaluation of part of the Fe metallome in two breast cancer cell lines of different malignancies: MCF-7 and MDA-MB-231. Evaluation of the total cytosolic iron content as well as the ultrafiltrable iron content has been conducted using inductively coupled plasma mass spectrometry (ICP-MS) as a Fe selective detector. The obtained results revealed a significantly higher total Fe concentration in the less malignant phenotype. Additionally, Fe-fractionation experiments, conducted by coupling size exclusion chromatography (SEC) to ICP-MS showed a similar Fe distribution (speciation) in both cell phenotypes. However, further specific ferritin measurement using immunochemical based ICP-MS assays showed important differences regarding the total protein content among cell lines and, most importantly, significant differences in the Fe-content of the ferritin molecules between cell lines. This finding points out an iron-storage independent function also associated with ferritin in the most malignant phenotype of the evaluated breast cancer cells that stresses the interest in this molecule as a cancer biomarker.
Collapse
Affiliation(s)
- J Alonso García
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - D Turiel Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - E Añón Álvarez
- Servicio de Bioquímica, Hospital Central Universitario de Asturias (HUCA), Oviedo, Spain
| | - E Blanco González
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - M Montes-Bayón
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - A Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
23
|
G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun 2017; 8:274. [PMID: 28819251 PMCID: PMC5561105 DOI: 10.1038/s41467-017-00350-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/23/2017] [Indexed: 01/16/2023] Open
Abstract
G9a, a H3K9 methyltransferase, shows elevated expression in many types of human cancers, particularly breast cancer. However, the tumorigenic mechanism of G9a is still far from clear. Here we report that G9a exerts its oncogenic function in breast cancer by repressing hephaestin and destruction cellular iron homeostasis. In the case of pharmacological inhibition or short hairpin RNA interference-mediated suppression of G9a, the expression and activity of hephaestin increases, leading to the observed decrease of intracellular labile iron content and the disturbance of breast cancer cell growth in vitro and in vivo. We also provide evidence that G9a interacts with HDAC1 and YY1 to form a multi-molecular complex that contributes to hephaestin silencing. Furthermore, high G9a expression and low hephaestin expression correlate with poor survival of breast cancer are investigated. All these suggest a G9a-dependent epigenetic program in the control of iron homeostasis and tumor growth in breast cancer. G9a is a histone methyltransferase highly expressed in several cancers including breast cancer. Here the authors propose a mechanism through which G9a promotes breast cancer by regulating iron metabolism through the repression of ferroxidase hephaestin.
Collapse
|
24
|
Lang E, Bissinger R, Qadri SM, Lang F. Suicidal death of erythrocytes in cancer and its chemotherapy: A potential target in the treatment of tumor-associated anemia. Int J Cancer 2017; 141:1522-1528. [DOI: 10.1002/ijc.30800] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Elisabeth Lang
- Department of Molecular Medicine II; Heinrich Heine University of Düsseldorf; Düsseldorf Germany
| | - Rosi Bissinger
- Department of Internal Medicine III; Eberhard-Karls-University of Tübingen; Tübingen Germany
| | - Syed M. Qadri
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
- Centre for Innovation, Canadian Blood Services; Hamilton ON Canada
| | - Florian Lang
- Department of Internal Medicine III; Eberhard-Karls-University of Tübingen; Tübingen Germany
| |
Collapse
|
25
|
Expression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors. Int J Mol Sci 2017; 18:ijms18020410. [PMID: 28216608 PMCID: PMC5343944 DOI: 10.3390/ijms18020410] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/29/2022] Open
Abstract
We have previously reported hepcidin and ferritin increases in the plasma of breast cancer patients, but not in patients with benign breast disease. We hypothesized that these differences in systemic iron homeostasis may reflect alterations in different iron-related proteins also play a key biochemical and regulatory role in breast cancer. Thus, here we explored the expression of a bundle of molecules involved in both iron homeostasis and tumorigenesis in tissue samples. Enzyme-linked immunosorbent assay (ELISA) or reverse-phase protein array (RPPA), were used to measure the expression of 20 proteins linked to iron processes in 24 non-cancerous, and 56 cancerous, breast tumors. We found that cancerous tissues had higher level of hepcidin than benign lesions (p = 0.012). The univariate analysis of RPPA data highlighted the following seven proteins differentially expressed between non-cancerous and cancerous breast tissue: signal transducer and transcriptional activator 5 (STAT5), signal transducer and activator of transcription 3 (STAT3), bone morphogenetic protein 6 (BMP6), cluster of differentiation 74 (CD74), transferrin receptor (TFRC), inhibin alpha (INHA), and STAT5_pY694. These findings were confirmed for STAT5, STAT3, BMP6, CD74 and INHA when adjusting for age. The multivariate statistical analysis indicated an iron-related 10-protein panel effective in separating non-cancerous from cancerous lesions including STAT5, STAT5_pY694, myeloid differentiation factor 88 (MYD88), CD74, iron exporter ferroportin (FPN), high mobility group box 1 (HMGB1), STAT3_pS727, TFRC, ferritin heavy chain (FTH), and ferritin light chain (FTL). Our results showed an association between some iron-related proteins and the type of tumor tissue, which may provide insight in strategies for using iron chelators to treat breast cancer.
Collapse
|
26
|
Rychtarcikova Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, Zjablovskaja P, Alberich-Jorda M, Neuzil J, Truksa J. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget 2017; 8:6376-6398. [PMID: 28031527 PMCID: PMC5351639 DOI: 10.18632/oncotarget.14093] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
The importance of iron in the growth and progression of tumors has been widely documented. In this report, we show that tumor-initiating cells (TICs), represented by spheres derived from the MCF7 cell line, exhibit higher intracellular labile iron pool, mitochondrial iron accumulation and are more susceptible to iron chelation. TICs also show activation of the IRP/IRE system, leading to higher iron uptake and decrease in iron storage, suggesting that level of properly assembled cytosolic iron-sulfur clusters (FeS) is reduced. This finding is confirmed by lower enzymatic activity of aconitase and FeS cluster biogenesis enzymes, as well as lower levels of reduced glutathione, implying reduced FeS clusters synthesis/utilization in TICs. Importantly, we have identified specific gene signature related to iron metabolism consisting of genes regulating iron uptake, mitochondrial FeS cluster biogenesis and hypoxic response (ABCB10, ACO1, CYBRD1, EPAS1, GLRX5, HEPH, HFE, IREB2, QSOX1 and TFRC). Principal component analysis based on this signature is able to distinguish TICs from cancer cells in vitro and also Leukemia-initiating cells (LICs) from non-LICs in the mouse model of acute promyelocytic leukemia (APL). Majority of the described changes were also recapitulated in an alternative model represented by MCF7 cells resistant to tamoxifen (TAMR) that exhibit features of TICs. Our findings point to the critical importance of redox balance and iron metabolism-related genes and proteins in the context of cancer and TICs that could be potentially used for cancer diagnostics or therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Biological Transport
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Iron/metabolism
- Iron Chelating Agents/pharmacology
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- MCF-7 Cells
- Male
- Mice, Transgenic
- Mitochondria/enzymology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Phenotype
- Principal Component Analysis
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Spheroids, Cellular
- Tamoxifen/pharmacology
- Transcriptome
Collapse
Affiliation(s)
- Zuzana Rychtarcikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Sandra Lettlova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Sciences, Prague, Czech Republic
| | - Veronika Tomkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Sciences, Prague, Czech Republic
| | - Vlasta Korenkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Langerova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ekaterina Simonova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Polina Zjablovskaja
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- School of Medical Science, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
27
|
Cheng Y, Zhou J, Li Q, Liu Y, Wang K, Zhang Y. The effects of polysaccharides from the root of Angelica sinensis on tumor growth and iron metabolism in H22-bearing mice. Food Funct 2016; 7:1033-9. [PMID: 26757699 DOI: 10.1039/c5fo00855g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The crude polysaccharide was obtained from the root of Angelica sinensis (AS) to investigate its effect on tumor growth and iron metabolism in H22-bearing mice. In our study, we showed that Angelica sinensis polysaccharide (ASP) was mainly composed of arabinose, glucose and galactose in a molar ratio of 1:1:1.75, with a molecular weight of 80,900 Da and a sugar content of 88.0%. Animal experimental results revealed that three doses of ASP all had anti-tumor effects with inhibition ratios of 27.11%, 31.65% and 37.05%. With respect to iron metabolism, the mean levels of serum hepcidin, interleukin-6 (IL-6), ferritin, transferrin (Tf), transferrin receptor 1 (TfR1) and transferrin receptor 2 (TfR2) in H22-bearing mice were promoted, and serum iron concentration decreased significantly. After treatment with ASP, these iron-related indicators recovered in different degrees. The findings suggested that the anti-tumor activity of ASP may be affected by its regulation on iron metabolism in H22-bearing mice.
Collapse
Affiliation(s)
- Yao Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, 430022 Wuhan, China.
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, 430022 Wuhan, China.
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, 430022 Wuhan, China.
| | - Ying Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, 430022 Wuhan, China.
| |
Collapse
|
28
|
Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Ann N Y Acad Sci 2016; 1368:149-61. [PMID: 26890363 DOI: 10.1111/nyas.13008] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
Iron is an essential dietary element. However, the ability of iron to cycle between oxidized and reduced forms also renders it capable of contributing to free radical formation, which can have deleterious effects, including promutagenic effects that can potentiate tumor formation. Dysregulation of iron metabolism can increase cancer risk and promote tumor growth. Cancer cells exhibit an enhanced dependence on iron relative to their normal counterparts, a phenomenon we have termed iron addiction. Work conducted in the past few years has revealed new cellular processes and mechanisms that deepen our understanding of the link between iron and cancer. Control of iron efflux through the combined action of ferroportin, an iron efflux pump, and its regulator hepcidin appears to play an important role in tumorigenesis. Ferroptosis is a form of iron-dependent cell death involving the production of reactive oxygen species. Specific mechanisms involved in ferroptosis, including depletion of glutathione and inhibition of glutathione peroxidase 4, have been uncovered. Ferritinophagy is a newly identified mechanism for degradation of the iron storage protein ferritin. Perturbations of mechanisms that control transcripts encoding proteins that regulate iron have been observed in cancer cells, including differences in miRNA, methylation, and acetylation. These new insights may ultimately provide new therapeutic opportunities for treating cancer.
Collapse
Affiliation(s)
- David H Manz
- Department of Molecular Biology and Biophysics.,School of Dental Medicine
| | | | | | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | | |
Collapse
|
29
|
Miseta A, Nagy J, Nagy T, Poór VS, Fekete Z, Sipos K. Hepcidin and its potential clinical utility. Cell Biol Int 2015; 39:1191-202. [PMID: 26109250 DOI: 10.1002/cbin.10505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
Abstract
A number of pathophysiological conditions are related to iron metabolism disturbances. Some of them are well known, others are newly discovered or special. Hepcidin is a newly identified iron metabolism regulating hormone, which could be a promising biomarker for many disorders. In this review, we provide background information about mammalian iron metabolism, cellular iron trafficking, and the regulation of expression of hepcidin. Beside these molecular biological processes, we summarize the methods that have been used to determine blood and urine hepcidin levels and present those pathological conditions (cancer, inflammation, neurological disorders) when hepcidin measurement may have clinical relevance.
Collapse
Affiliation(s)
- Attila Miseta
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Judit Nagy
- Department of Anaesthesiology and Intensive Care, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Tamas Nagy
- Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Ifjusag Street 13. Pecs, Hungary
| | - Viktor Soma Poór
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Pécs, 7624 Szigeti Street 12. Pecs, Hungary
| | - Zsuzsanna Fekete
- Department of Medical Biology, Faculty of Medical Sciences, University of Pécs, 7624 Szigeti Street 12. Pecs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Medical Sciences, University of Pécs, 7624 Rokus Street 2. Pecs, Hungary
| |
Collapse
|
30
|
Bosco C, Wulaningsih W, Melvin J, Santaolalla A, De Piano M, Arthur R, Van Hemelrijck M. Metabolic serum biomarkers for the prediction of cancer: a follow-up of the studies conducted in the Swedish AMORIS study. Ecancermedicalscience 2015; 9:555. [PMID: 26284119 PMCID: PMC4531132 DOI: 10.3332/ecancer.2015.555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
The Swedish Apolipoprotein MOrtality RISk study (AMORIS) contains information on more than 500 biomarkers collected from 397,443 men and 414,630 women from the greater Stockholm area during the period 1985–1996. Using a ten-digit personal identification code, this database has been linked to Swedish national registries, which provide data on socioeconomic status, vital status, cancer diagnosis, comorbidity, and emigration. Within AMORIS, 18 studies assessing risk of overall and site-specific cancers have been published, utilising a range of serum markers representing glucose and lipid metabolism, immune system, iron metabolism, liver metabolism, and bone metabolism. This review briefly summarises these findings in relation to more recently published studies and provides an overview of where we are today and the challenges of observational studies when studying cancer risk prediction. Overall, more recent observational studies supported previous findings obtained in AMORIS, although no new results have been reported for serum fructosamine and inorganic phosphate with respect to cancer risk. A drawback of using serum markers in predicting cancer risk is the potential fluctuations following other pathological conditions, resulting in non-specificity and imprecision of associations observed. Utilisation of multiple combination markers may provide more specificity, as well as give us repeated instead of single measurements. Associations with other diseases may also necessitate further analytical strategies addressing effects of serum markers on competing events in addition to cancer. Finally, delineating the role of serum metabolic markers may generate valuable information to complement emerging clinical studies on preventive effects of drugs and supplements targeting metabolic disorders against cancer.
Collapse
Affiliation(s)
- Cecilia Bosco
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK ; Both authors contributed equally
| | - Wahyu Wulaningsih
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK ; Both authors contributed equally
| | - Jennifer Melvin
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Aida Santaolalla
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Mario De Piano
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Rhonda Arthur
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Mieke Van Hemelrijck
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
31
|
Baqader NO, Radulovic M, Crawford M, Stoeber K, Godovac-Zimmermann J. Nuclear cytoplasmic trafficking of proteins is a major response of human fibroblasts to oxidative stress. J Proteome Res 2014; 13:4398-423. [PMID: 25133973 PMCID: PMC4259009 DOI: 10.1021/pr500638h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have used a subcellular spatial razor approach based on LC-MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function.
Collapse
Affiliation(s)
- Noor O. Baqader
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Marko Radulovic
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
- Insitute of Oncology and Radiology, Pasterova 14, 11000 Belgrade, Serbia
| | - Mark Crawford
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, Center for Nephrology, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|