1
|
Saleem A, Saleem Bhat S, A. Omonijo F, A Ganai N, M. Ibeagha-Awemu E, Mudasir Ahmad S. Immunotherapy in mastitis: state of knowledge, research gaps and way forward. Vet Q 2024; 44:1-23. [PMID: 38973225 PMCID: PMC11232650 DOI: 10.1080/01652176.2024.2363626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Mastitis is an inflammatory condition that affects dairy cow's mammary glands. Traditional treatment approaches with antibiotics are increasingly leading to challenging scenarios such as antimicrobial resistance. In order to mitigate the unwanted side effects of antibiotics, alternative strategies such as those that harness the host immune system response, also known as immunotherapy, have been implemented. Immunotherapy approaches to treat bovine mastitis aims to enhance the cow's immune response against pathogens by promoting pathogen clearance, and facilitating tissue repair. Various studies have demonstrated the potential of immunotherapy for reducing the incidence, duration and severity of mastitis. Nevertheless, majority of reported therapies are lacking in specificity hampering their broad application to treat mastitis. Meanwhile, advancements in mastitis immunotherapy hold great promise for the dairy industry, with potential to provide effective and sustainable alternatives to traditional antibiotic-based approaches. This review synthesizes immunotherapy strategies, their current understanding and potential future perspectives. The future perspectives should focus on the development of precision immunotherapies tailored to address individual pathogens/group of pathogens, development of combination therapies to address antimicrobial resistance, and the integration of nano- and omics technologies. By addressing research gaps, the field of mastitis immunotherapy can make significant strides in the control, treatment and prevention of mastitis, ultimately benefiting both animal and human health/welfare, and environment health.
Collapse
Affiliation(s)
- Afnan Saleem
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | | | - Faith A. Omonijo
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Canada
| | | |
Collapse
|
2
|
Uotani K, Fujiwara T, Ueda K, Yoshida A, Iwata S, Morita T, Kiyono M, Kunisada T, Takeda K, Hasei J, Yoshioka Y, Ochiya T, Ozaki T. Identification of ENO-1 positive extracellular vesicles as a circulating biomarker for monitoring of Ewing sarcoma. Cancer Sci 2024; 115:3660-3671. [PMID: 39307979 PMCID: PMC11531948 DOI: 10.1111/cas.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 11/05/2024] Open
Abstract
The lack of circulating biomarkers for tumor monitoring is a major problem in Ewing sarcoma management. The development of methods for accurate tumor monitoring is required, considering the high recurrence rate of drug-resistant Ewing sarcoma. Here, we describe a sensitive analytical technique for tumor monitoring of Ewing sarcoma by detecting circulating extracellular vesicles secreted from Ewing sarcoma cells. Proteomic analysis of Ewing sarcoma cell-derived extracellular vesicles identified 564 proteins prominently observed in extracellular vesicles from three Ewing sarcoma cell lines. Among these, CD99, SLC1A5, and ENO-1 were identified on extracellular vesicles purified from sera of patients with Ewing sarcoma before treatment but not on extracellular vesicles from those after treatment and healthy individuals. Notably, not only Ewing sarcoma-derived extracellular vesicles but also Ewing sarcoma cells demonstrated proteomic expression of CD99 and ENO-1 on their surface membranes. ENO-1+CD63+ extracellular vesicle detection was reduced after tumor resection while both CD99+CD63+ and ENO-1+CD63+ extracellular vesicles were detected in serum from Ewing sarcoma-bearing mice. Finally, the accuracy of liquid biopsy targeting these candidates was assessed using extracellular vesicles from the sera of patients with Ewing sarcoma. Elevated ENO-1+CD81+ extracellular vesicles in the serum of patients before treatments distinguished patients with Ewing sarcoma from healthy individuals with an area under the curve value of 0.92 (P < 0.001) and reflected the tumor burden in patients with Ewing sarcoma during multidisciplinary treatments. Collectively, circulating ENO-1+CD81+ extracellular vesicle detection could represent a novel tool for tumor monitoring of Ewing sarcoma.
Collapse
Affiliation(s)
- Koji Uotani
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Tomohiro Fujiwara
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Center of Innovative MedicineOkayama University HospitalOkayamaJapan
| | - Koji Ueda
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Aki Yoshida
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Shintaro Iwata
- Department of Musculoskeletal OncologyNational Cancer Center HospitalTokyoJapan
| | - Takuya Morita
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Masahiro Kiyono
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal ReconstructionOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Ken Takeda
- Department of Intelligent Orthopedic SystemOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Joe Hasei
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular MedicineInstitute of Medical Science, Tokyo Medical UniversityTokyoJapan
| | - Takahiro Ochiya
- Department of Molecular and Cellular MedicineInstitute of Medical Science, Tokyo Medical UniversityTokyoJapan
| | - Toshifumi Ozaki
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
3
|
Zhang L, Li D, Bao S. A bibliometric and visualization analysis of global trends and frontiers on macrophages in abdominal aortic aneurysms research. Medicine (Baltimore) 2024; 103:e40274. [PMID: 39470505 PMCID: PMC11521088 DOI: 10.1097/md.0000000000040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Macrophages are key regulators of the inflammatory and innate immune responses. Researchers have shown that aberrant expression of macrophages contributes to the development of abdominal aortic aneurysms (AAA). However, a comprehensive bibliometric analysis exploring the research status and knowledge mapping of this area is lacking. This study aimed to explore the research status, knowledge mapping and hotspots of macrophages in AAA research from a bibliometric perspective. METHODS In this study, we retrieved articles published between 2000 and 2022 on macrophages associated with AAA research from the Web of Science Core Collection (WoSCC) database. The retrieved literature data were further analyzed using Citespace and VOSviewer software. RESULTS A total of 918 qualified publications related to AAA-associated macrophages were retrieved. The number of publications in this field has been increasing annually. China and the United States were the 2 main drivers in this field, contributing to more than 64% of the publications. In addition, the US had the most publications, top institutions, and expert researchers, dominating in research on macrophages in AAA. The Harvard University was the most productive institution, with 60 publications. The journal with the most publications was Arteriosclerosis, Thrombosis, and Vascular Biology (86). Daugherty Alan was the most prolific author (28 publications) and he was also the most cited co- author. Furthermore, the exploration of established animal models, macrophage-related inflammatory-microenvironment, macrophage-related immune mechanism, clinical translation and molecular imaging research remained future research directions in this field. CONCLUSIONS Our findings offered new insights for scholars in this field. They will help researchers explore new directions for their work.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Breast Surgery, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongyu Li
- Department of VIP In-Patient Ward, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shiyang Bao
- Department of VIP In-Patient Ward, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Pedersen C, Chen VT, Herbst P, Zhang R, Elfert A, Krishan A, Azar DT, Chang JH, Hu WY, Kremsmayer TP, Jalilian E, Djalilian AR, Guaiquil VH, Rosenblatt MI. Target specification and therapeutic potential of extracellular vesicles for regulating corneal angiogenesis, lymphangiogenesis, and nerve repair. Ocul Surf 2024; 34:459-476. [PMID: 39426677 DOI: 10.1016/j.jtos.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 μm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.
Collapse
Affiliation(s)
- Cameron Pedersen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria T Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Runze Zhang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amr Elfert
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tobias P Kremsmayer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Shanmugam I, Radhakrishnan S, Santosh S, Ramnath A, Anil M, Devarajan Y, Maheswaran S, Narayanan V, Pitchaimani A. Emerging role and translational potential of small extracellular vesicles in neuroscience. Life Sci 2024; 355:122987. [PMID: 39151884 DOI: 10.1016/j.lfs.2024.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Small extracellular vesicles (sEV) are endogenous lipid-bound membrane vesicles secreted by both prokaryotic and eukaryotic cells into the extracellular environment, performs several biological functions such as cell-cell communication, transfer of proteins, mRNA, and ncRNA to target cells in distant sites. Due to their role in molecular pathogenesis and its potential to deliver biological cargo to target cells, it has become a prominent area of interest in recent research in the field of Neuroscience. However, their role in neurological disorders, like neurodegenerative diseases is more complex and still unaddressed. Thus, this review focuses on the role of sEV in neurodegenerative and neurodevelopmental diseases, including their biogenesis, classification, and pathogenesis, with translational advantages and limitations in the area of neurobiology.
Collapse
Affiliation(s)
- Iswarya Shanmugam
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Sivani Radhakrishnan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Shradha Santosh
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Akansha Ramnath
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Meghna Anil
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Yogesh Devarajan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Saravanakumar Maheswaran
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Vaibav Narayanan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Arunkumar Pitchaimani
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
6
|
Cunha Silva L, Branco F, Cunha J, Vitorino C, Gomes C, Carrascal MA, Falcão A, Miguel Neves B, Teresa Cruz M. The potential of exosomes as a new therapeutic strategy for glioblastoma. Eur J Pharm Biopharm 2024; 203:114460. [PMID: 39218361 DOI: 10.1016/j.ejpb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective. Hence, efforts are underway to develop novel and effective treatment approaches against this type of cancer. Exosomes are being explored as a promising strategy for conveying and delivering therapeutic cargo to GBM cells. They can fuse with the GBM cell membrane and, consequently, serve as delivery systems in this context. Due to their nanoscale size, exosomes can cross the blood-brain barrier (BBB), which constitutes a significant hurdle to most chemotherapeutic drugs used against GBM. They can subsequently inhibit oncogenes, activate tumour suppressor genes, induce immune responses, and control cell growth. However, despite representing a promising tool for the treatment of GBM, further research and clinical studies regarding exosome biology, engineering, and clinical applications still need to be completed. Here, we sought to review the application of exosomes in the treatment of GBM through an in-depth analysis of the scientific and clinical studies on the entire process, from the isolation and purification of exosomes to their design and transformation into anti-oncogenic drug delivery systems. Surface modification of exosomes to enhance BBB penetration and GBM-cell targeting is also a topic of discussion.
Collapse
Affiliation(s)
- Leonor Cunha Silva
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3004 535, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra 3000-504, Portugal
| | - Mylène A Carrascal
- Tecnimede Group, Sintra 2710-089, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra 3000-548, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
7
|
Thiruvengadam R, Thiruvengadam M. Extracellular vesicles in oral oncology: interplay between the tumor microenvironment and disease progression. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101964. [PMID: 38971223 DOI: 10.1016/j.jormas.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Muthu Thiruvengadam
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India; Department of Applied Bioscience, School of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Rahnama M, Heidari M, Poursalehi Z, Golchin A. Global Trends of Exosomes Application in Clinical Trials: A Scoping Review. Stem Cell Rev Rep 2024:10.1007/s12015-024-10791-7. [PMID: 39340738 DOI: 10.1007/s12015-024-10791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Exosomes, nano-sized extracellular vesicles, have emerged as a promising tool for the diagnosis and treatment of various intractable diseases, including chronic wounds and cancers. As our understanding of exosomes continues to grow, their potential as a powerful therapeutic modality in medicine is also expanding. This systematic review aims to examine the progress of exosome-based clinical trials and provide a comprehensive overview of the therapeutic perspectives of exosomes. METHODS This systematic review strictly follows PRISMA guidelines and has been registered in PROSPERO, the International Prospective Register of Systematic Reviews. It encompasses articles from January 2000 to January 2023, sourced from bibliographic databases, with targeted search terms targeting exosome applications in clinical trials. During the screening process, strict inclusion and exclusion criteria were applied, including a focus on clinical trials utilizing different cell-derived exosomes for therapeutic purposes. RESULTS Among the 522 publications initially identified, only 10 studies met the stringent eligibility criteria after meticulous screening. The selection process involved systematically excluding duplicates and irrelevant articles to provide a transparent overview. CONCLUSION According to our systematic review, exosomes have promising applications in a variety of medical fields, including cell-free therapies and drug delivery systems for treating a variety of diseases, especially cancers and chronic wounds. To ensure safety, potency, and broader clinical applications, further optimization of exosome extraction, loading, targeting, and administration is necessary. While cell-based therapeutics are increasingly utilizing exosomes, this field is still in its infancy, and ongoing clinical trials will provide valuable insights into the clinical utility of exosomes.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Heidari
- Department of Biostatistics and Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Poursalehi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Ore A, Angelastro JM, Giulivi C. Integrating Mitochondrial Biology into Innovative Cell Therapies for Neurodegenerative Diseases. Brain Sci 2024; 14:899. [PMID: 39335395 PMCID: PMC11429837 DOI: 10.3390/brainsci14090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The role of mitochondria in neurodegenerative diseases is crucial, and recent developments have highlighted its significance in cell therapy. Mitochondrial dysfunction has been implicated in various neurodegenerative disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and Huntington's diseases. Understanding the impact of mitochondrial biology on these conditions can provide valuable insights for developing targeted cell therapies. This mini-review refocuses on mitochondria and emphasizes the potential of therapies leveraging mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, stem cell-derived secretions, and extracellular vesicles. Mesenchymal stem cell-mediated mitochondria transfer is highlighted for restoring mitochondrial health in cells with dysfunctional mitochondria. Additionally, attention is paid to gene-editing techniques such as mito-CRISPR, mitoTALENs, mito-ZNFs, and DdCBEs to ensure the safety and efficacy of stem cell treatments. Challenges and future directions are also discussed, including the possible tumorigenic effects of stem cells, off-target effects, disease targeting, immune rejection, and ethical issues.
Collapse
Affiliation(s)
- Adaleiz Ore
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
- Department of Chemical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James M. Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
- University of California Medical Investigations of Neurodevelopmental Disorders Institute (MIND Institute), University of California Health, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Ekram S, Khalid S, Ramzan F, Salim A, Bashir I, Durrieu MC, Khan I. Mesenchymal Stem Cell-Derived Extracellular Vesicles Protect Rat Nucleus Pulposus Cells from Oxidative Stress. Cartilage 2024; 15:328-344. [PMID: 37139781 PMCID: PMC11418459 DOI: 10.1177/19476035231172154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Oxidative stress (OS) is mainly associated with the pathogenesis of intervertebral disc (IVD) degeneration; it causes nucleus pulposus cells (NPCs) to undergo senescence and triggers autophagy and apoptosis. This study aims to evaluate the regeneration potential of extracellular vesicles (EVs) derived from human umbilical cord-mesenchymal stem cells (hUC-MSCs) in an in vitro rat NPC-induced OS model. DESIGN NPCs were isolated from rat coccygeal discs, propagated, and characterized. OS was induced by hydrogen peroxide (H2O2), which is confirmed by 2,7-dichlorofluorescein diacetate (H2DCFDA) assay. EVs were isolated from hUC-MSCs and characterized by analyzing the vesicles using fluorescence microscope, scanning electron microscope (SEM), atomic force microscope (AFM), dynamic light scattering (DLS), and Western blot (WB). The in vitro effects of EVs on migration, uptake, and survival of NPCs were determined. RESULTS SEM and AFM topographic images revealed the size distribution of EVs. The phenotypes of isolated EVs showed that the size of EVs was 403.3 ± 85.94 nm, and the zeta potential was -0.270 ± 4.02 mV. Protein expression analysis showed that EVs were positive for CD81 and annexin V. Treatment of NPCs with EVs reduced H2O2-induced OS as evidenced by a decrease in reactive oxygen species (ROS) levels. Co-culture of NPCs with DiI-labeled EVs showed the cellular internalization of EVs. In the scratch assay, EVs significantly increased NPC proliferation and migration toward the scratched area. Quantitative polymerase chain reaction analysis showed that EVs significantly reduced the expression of OS genes. CONCLUSION EVs protected NPCs from H2O2-induced OS by reducing intracellular ROS generation and improved NPC proliferation and migration.
Collapse
Affiliation(s)
- Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Faiza Ramzan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Imtiaz Bashir
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | | | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
12
|
Lee KWA, Chan LKW, Hung LC, Phoebe LKW, Park Y, Yi KH. Clinical Applications of Exosomes: A Critical Review. Int J Mol Sci 2024; 25:7794. [PMID: 39063033 PMCID: PMC11277529 DOI: 10.3390/ijms25147794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes, small membrane-bound vesicles secreted by cells, have gained significant attention for their therapeutic potential. Measuring 30-100 nm in diameter and derived from various cell types, exosomes play a crucial role in intercellular communication by transferring proteins, lipids, and RNA between cells. This review analyzes existing literature on the clinical applications of exosomes. We conducted a comprehensive search of peer-reviewed articles and clinical trial data to evaluate the benefits, limitations, and challenges of exosome-based therapies. Key areas of focus included regenerative medicine, cancer therapy, gene therapy, and diagnostic biomarkers. This review highlights the vast clinical applications of exosomes. In regenerative medicine, exosomes facilitate tissue repair and regeneration. In cancer therapy, exosomes can deliver therapeutic agents directly to tumor cells. In gene therapy, exosomes serve as vectors for gene delivery. As diagnostic biomarkers, they are useful in diagnosing various diseases. Challenges such as the isolation, purification, and characterization of exosomes were identified. Current clinical trials demonstrate the potential of exosome-based therapies, though they also reveal significant hurdles. Regulatory issues, including the need for standardization and validation of exosome products, are critical for advancing these therapies. While significant progress has been made in understanding exosome biology, further research is essential to fully unlock their clinical potential. Addressing challenges in isolation, purification, and regulatory standardization is crucial for their successful application in clinical practice. This review provides a concise overview of the clinical applications of exosomes, emphasizing both their therapeutic promise and the obstacles that need to be overcome.
Collapse
Affiliation(s)
- Kar Wai Alvin Lee
- EverKeen Medical Centre, Hong Kong; (K.W.A.L.); (L.K.W.C.); (L.C.H.)
| | | | - Lee Cheuk Hung
- EverKeen Medical Centre, Hong Kong; (K.W.A.L.); (L.K.W.C.); (L.C.H.)
| | | | | | - Kyu-Ho Yi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Maylin Clinic (Apgujeong), Seoul B1F 450, Republic of Korea
| |
Collapse
|
13
|
Baruah H, Sarma A, Basak D, Das M. Exosome: From biology to drug delivery. Drug Deliv Transl Res 2024; 14:1480-1516. [PMID: 38252268 DOI: 10.1007/s13346-024-01515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
In recent years, different advancements have been observed in nanosized drug delivery systems. Factors such as stability, safety and targeting efficiency cause hindrances in the clinical translation of these synthetic nanocarriers. Therefore, researchers employed endogenous nanocarriers like exosomes as drug delivery vehicles that have an inherent ability to target more efficiently after appropriate functionalization and show higher biocompatibility and less immunogenicity and facilitate penetration through the biological barriers more quickly than the other available carriers. Exosomes are biologically derived lipid bilayer-enclosed nanosized extracellular vesicles (size ranges from 30 to 150 nm) secreted from both prokaryotic and eukaryotic cells and appears significantly in the extracellular space. These EVs (extracellular vesicles) can exist in different sources, including mammals, plants and microorganisms. Different advanced techniques have been introduced for the isolation of exosomes to overcome the existing barriers present with conventional methods. Extensive research on the application of exosomes in therapeutic delivery for treating various diseases related to central nervous system, bone, cancer, skin, etc. has been employed. Several studies are on different stages of clinical trials, and many exosomes patents have been registered.
Collapse
Affiliation(s)
- Himakshi Baruah
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India
| | - Anupam Sarma
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India.
| | - Debojeet Basak
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India
| | - Mridusmita Das
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India
| |
Collapse
|
14
|
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, Thiruvengadam M. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers. Mol Neurobiol 2024; 61:3042-3089. [PMID: 37966683 DOI: 10.1007/s12035-023-03730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Oriane Onimus
- Faculty of Basic and Biomedical Sciences, University of Paris, Paris, France
| | - Naomi D'souza
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Research Consultation Department, Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
15
|
Zhou S, Huang J, Zhang Y, Yu H, Wang X. Exosomes in Action: Unraveling Their Role in Autoimmune Diseases and Exploring Potential Therapeutic Applications. Immune Netw 2024; 24:e12. [PMID: 38725675 PMCID: PMC11076296 DOI: 10.4110/in.2024.24.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Exosomes are double phospholipid membrane vesicles that are synthesized and secreted by a variety of cells, including T cells, B cells, dendritic cells, immune cells, are extracellular vesicles. Recent studies have revealed that exosomes can play a significant role in under both physiological and pathological conditions. They have been implicated in regulation of inflammatory responses, immune response, angiogenesis, tissue repair, and antioxidant activities, particularly in modulating immunity in autoimmune diseases (AIDs). Moreover, variations in the expression of exosome-related substances, such as miRNA and proteins, may not only offer valuable perspectives for the early warning, and prognostic assessment of various AIDs, but may also serve as novel markers for disease diagnosis. This article examines the impact of exosomes on the development of AIDs and explores their potential for therapeutic application.
Collapse
Affiliation(s)
- Shuanglong Zhou
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Yi Zhang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Xin Wang
- School of Basic Medical Sciences, Zunyi Medical University, Guizhou 563002, China
| |
Collapse
|
16
|
Tang W, Zhao K, Li X, Zhou X, Liao P. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Promote the Recovery of Spinal Cord Injury and Inhibit Ferroptosis by Inactivating IL-17 Pathway. J Mol Neurosci 2024; 74:33. [PMID: 38536541 DOI: 10.1007/s12031-024-02209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell (MSC)-derived exosomes are considered as alternative to cell therapy in various diseases. This study aimed to understand the effect of bone marrow MSC-derived exosomes (BMMSC-exos) on spinal cord injury (SCI) and to unveil its regulatory mechanism on ferroptosis. Exosomes were isolated from BMMSCs and the uptake of BMMSCs-exos by PC12 cells was determined using PKH67 staining. The effect of BMMSC-exos on SCI in rats was studied by evaluating pathological changes of spinal cord tissues, inflammatory cytokines, and ferroptosis-related proteins. Transcriptome sequencing was used to discover the differential expressed genes (DEGs) between SCI rats and BMMSC-exos-treated rats followed by functional enrichment analyses. The effect of BMMSC-exos on ferroptosis and interleukin 17 (IL-17) pathway was evaluated in SCI rats and oxygen-glucose deprivation (OGD)-treated PC12 cells. The results showed that particles extracted from BMMSCs were exosomes that could be taken up by PC12 cells. BMMSC-exos treatment ameliorated injuries of spinal cord, suppressed the accumulation of Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS), with the elevated glutathione (GSH). Also, BMMSC-exos downregulated the expression of acyl-CoA synthetase long chain family member 4 (ACSL4) and upregulated glutathione peroxidase 4 (GPX4) and cysteine/glutamate antiporter xCT. A total of 110 DEGs were discovered and they were mainly enriched in IL-17 signaling pathway. Further in vitro and in vivo experiments showed that BMMSC-exos inactivated IL-17 pathway. BMMSC-exos promote the recovery of SCI and inhibit ferroptosis by inhibiting the IL-17 pathway, which provides BMMSC-exos as an alternative to the management of SCI.
Collapse
Affiliation(s)
- Wen Tang
- Department of Trauma Center, The First Affiliated Hospital of Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China.
| | - Kai Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China
| | - Xiaobo Li
- Center for Technology of Information and Network Management, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaozhong Zhou
- Department of Trauma Center, The First Affiliated Hospital of Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China
| | - Peigen Liao
- The First Clinical Medical College, Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China
| |
Collapse
|
17
|
Mohammadi M, Mansouri K, Mohammadi P, Pournazari M, Najafi H. Exosomes in renal cell carcinoma: challenges and opportunities. Mol Biol Rep 2024; 51:443. [PMID: 38520545 DOI: 10.1007/s11033-024-09384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer that accounts for approximately 2-3% of adult malignancies. Among the primary treatment methods for this type of cancer are surgery and targeted treatment. Still, due to less than optimal effectiveness, there are problems such as advanced distant metastasis, delayed diagnosis, and drug resistance that continue to plague patients. In recent years, therapeutic advances have increased life expectancy and effective treatment in renal cell carcinoma patients. One of these methods is the use of stem cells. Although the therapeutic effects of stem cells, especially mesenchymal stem cells, are still impressive, today, extracellular vesicles (EVs) as carrying molecules and various mediators in intercellular communications, having a central role in tumorigenesis, metastasis, immune evasion, and drug response, and on the other hand, due to its low immunogenicity and strong regulatory properties of the immune system, has received much attention from researchers and doctors. Despite the increasing interest in exosomes as the most versatile type of EVs, the heterogeneity of their efficacy presents challenges and, on the other hand, exciting opportunities for diagnostic and clinical interventions.In the upcoming article, we will review the various aspects of exosomes' effects in the prevention, treatment, and progress of renal cell carcinoma and also ways to optimize them to strengthen their positive sides.
Collapse
Affiliation(s)
- Mahan Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Saadh MJ, Mohamed AH, Almoyad MAA, Allela OQB, Amin AH, Malquisto AA, Jin WT, Sârbu I, AlShamsi F, Elsaid FG, Akhavan-Sigari R. Dual role of mesenchymal stem/stromal cells and their cell-free extracellular vesicles in colorectal cancer. Cell Biochem Funct 2024; 42:e3962. [PMID: 38491792 DOI: 10.1002/cbf.3962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell-cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, Iraq
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Mushait, Saudi Arabia
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - April Ann Malquisto
- Abuyog Community College, Abuyog Leyte, Philippines
- ESL Science Teacher, Tacloban City, Tacloban, Philippines
- Department of Art Sciences and Education, Tacloban City, Philippines
| | - Wong Tze Jin
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Sarawak, Malaysia
- Institute for Mathematical Research, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, Romania
| | - Faisal AlShamsi
- Dubai Health Authority, Primary Health Care Department, Dubai, United Arab Emirates
| | - Fahmy Gad Elsaid
- Biology Department, College of Science, King Khalid University, Asir, Abha, Al-Faraa, Saudi Arabia
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
19
|
Miron RJ, Zhang Y. Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol 2000 2024; 94:231-256. [PMID: 37740431 DOI: 10.1111/prd.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with a diameter in the range of 30-150 nm. Their use has gained great momentum recently due to their ability to be utilized as diagnostic tools with a vast array of therapeutic applications. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be investigated. This review article first focuses on understanding exosomes, including their cellular origin, biogenesis, function, and characterization. Thereafter, overviews of the quantification methods and isolation techniques are given with discussion over their potential use as novel therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
20
|
Rademakers DJ, Saffari S, Shin AY, Pulos N. The Role of Exosomes in Upper-Extremity Tissue Regeneration. J Hand Surg Am 2024; 49:170-178. [PMID: 38099878 DOI: 10.1016/j.jhsa.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2023] [Accepted: 11/13/2023] [Indexed: 02/05/2024]
Abstract
Exosomes are cell-free membrane vesicles secreted by a wide variety of cells as secretomes into the extracellular matrix. Alongside facilitating intercellular communication, exosomes carry various bioactive molecules consisting of nucleic acids, proteins, and lipids. Exosome applications have increased in popularity by overcoming the disadvantages of mesenchymal stem cell therapies. Despite this, a better understanding of the underlying mechanisms of action of exosomes is necessary prior to clinical application in upper-extremity tissue regeneration. The purpose of this review is to introduce the concept of exosomes and their possible applications in upper-extremity tissue regeneration, detail the shortcomings of current exosome research, and explore their potential clinical application in the upper extremity.
Collapse
Affiliation(s)
- Daan J Rademakers
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Sara Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Alexander Y Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Pulos
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Vychytilova-Faltejskova P, Vilmanova S, Pifkova L, Catela Ivković T, Mᶏdrzyk M, Jugas R, Machackova T, Kotoucek J, Sachlova M, Bohovicova L, Stanek T, Halamkova J, Kiss I, Slaby O. Optimized procedure for high-throughput transcriptome profiling of small extracellular vesicles isolated from low volume serum samples. Clin Chem Lab Med 2024; 62:157-167. [PMID: 37505924 DOI: 10.1515/cclm-2023-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVES Small extracellular vesicles (EVs) contain various signaling molecules, thus playing a crucial role in cell-to-cell communication and emerging as a promising source of biomarkers. However, the lack of standardized procedures impedes their translation to clinical practice. Thus, we compared different approaches for high-throughput analysis of small EVs transcriptome. METHODS Small EVs were isolated from 150 μL of serum. Quality and quantity were assessed by dynamic light scattering, transmission electron microscopy, and Western blot. Comparison of RNA extraction efficiency was performed, and expression of selected genes was analyzed by RT-qPCR. Whole transcriptome analysis was done using microarrays. RESULTS Obtained data confirmed the suitability of size exclusion chromatography for isolation of small EVs. Analyses of gene expression showed the best results in case of samples isolated by Monarch Total RNA Miniprep Kit. Totally, 7,182 transcripts were identified to be deregulated between colorectal cancer patients and healthy controls. The majority of them were non-coding RNAs with more than 70 % being lncRNAs, while protein-coding genes represented the second most common gene biotype. CONCLUSIONS We have optimized the protocol for isolation of small EVs and their RNA from low volume of sera and confirmed the suitability of Clariom D Pico Assays for transcriptome profiling.
Collapse
Affiliation(s)
| | - Sara Vilmanova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lucie Pifkova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tina Catela Ivković
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Mᶏdrzyk
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robin Jugas
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tana Machackova
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Kotoucek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Milana Sachlova
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lucia Bohovicova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Teodor Stanek
- Department of Surgical Oncology, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Brno, Czech Republic
| | - Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
22
|
Sheykhhasan M, Heidari F, Farsani ME, Azimzadeh M, Kalhor N, Ababzadeh S, Seyedebrahimi R. Dual Role of Exosome in Neurodegenerative Diseases: A Review Study. Curr Stem Cell Res Ther 2024; 19:852-864. [PMID: 37496136 DOI: 10.2174/1574888x18666230726161035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are one of the crucial means of intercellular communication, which takes many different forms. They are heterogeneous, secreted by a range of cell types, and can be generally classified into microvesicles and exosomes depending on their location and function. Exosomes are small EVs with diameters of about 30-150 nm and diverse cell sources. METHODS The MEDLINE/PubMed database was reviewed for papers written in English and publication dates of recent years, using the search string "Exosome" and "Neurodegenerative diseases." RESULTS The exosomes have attracted interest as a significant biomarker for a better understanding of disease development, gene silencing delivery, and alternatives to stem cell-based therapy because of their low-invasive therapeutic approach, repeatable distribution in the central nervous system (CNS), and high efficiency. Also, they are nanovesicles that carry various substances, which can have an impact on neural plasticity and cognitive functioning in both healthy and pathological circumstances. Therefore, exosomes are conceived as nanovesicles containing proteins, lipids, and nucleic acids. However, their composition varies considerably depending on the cells from which they are produced. CONCLUSION In the present review, we discuss several techniques for the isolation of exosomes from different cell sources. Furthermore, reviewing research on exosomes' possible functions as carriers of bioactive substances implicated in the etiology of neurodegenerative illnesses, we further examine them. We also analyze the preclinical and clinical research that shows exosomes to have therapeutic potential.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Fatemeh Heidari
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Eslami Farsani
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Azimzadeh
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Shima Ababzadeh
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Reihaneh Seyedebrahimi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
23
|
Ihlamur M, Kelleci K, Zengin Y, Allahverdiyev MA, Abamor EŞ. Applications of Exosome Vesicles in Different Cancer Types as Biomarkers. Curr Mol Med 2024; 24:281-297. [PMID: 36941811 DOI: 10.2174/1566524023666230320120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
One of the biggest challenges in the fight against cancer is early detection. Early diagnosis is vital, but there are some barriers such as economic, cultural, and personal factors. Considering the disadvantages of radiological imaging techniques or serological analysis methods used in cancer diagnosis, such as being expensive, requiring expertise, and being time-consuming, there is a need to develop faster, more reliable, and cost-effective diagnostic methods for use in cancer diagnosis. Exosomes, which are responsible for intercellular communication with sizes ranging from 30-120 nm, are naturally produced biological nanoparticles. Thanks to the cargo contents they carry, they are a potential biomarker to be used in the diagnosis of cancer. Exosomes, defined as extracellular vesicles of endosomal origin, are effective in cancer growth, progression, metastasis, and drug resistance, and changes in microenvironmental conditions during tumor development change exosome secretion. Due to their high cellular activity, tumor cells produce much higher exosomes than healthy cells. Therefore, it is known that the number of exosomes in body fluids is significantly rich compared to other cells and can act as a stand-alone diagnostic biomarker. Cancer- derived exosomes have received great attention in recent years for the early detection of cancer and the evaluation of therapeutic response. In this article, the content, properties, and differences of exosomes detected in common types of cancer (lung, liver, pancreas, ovaries, breast, colorectal), which are the leading causes of cancer-related deaths, are reviewed. We also discuss the potential utility of exosome contents as a biomarker for early detection, which is known to be important in targeted cancer therapy.
Collapse
Affiliation(s)
- Murat Ihlamur
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Biruni University, Vocational School, Department of Electronics and Automation, Istanbul, Turkey
| | - Kübra Kelleci
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Beykoz University, Vocational School, Department of Medical Services and Techniques, Istanbul, Turkey
| | - Yağmur Zengin
- Bogazici University, Biomedical Engineering Institute, Department of Biomedical Engineering, Istanbul, Turkey
| | - M Adil Allahverdiyev
- Institute of the V. Akhundov National Scientific Research Medical Prophylactic, Baku, Azerbaijan Republic
| | - Emrah Şefik Abamor
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
24
|
V J, M S, Wani A, Ahmad SF, Nadeem A, Sharma A, Ahmed SSSJ. Pharmacoscreening, molecular dynamics, and quantum mechanics of inermin from Panax ginseng: a crucial molecule inhibiting exosomal protein target associated with coronary artery disease progression. PeerJ 2023; 11:e16481. [PMID: 38077444 PMCID: PMC10710165 DOI: 10.7717/peerj.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Background Exosomes, microvesicles, carry and release several vital molecules across cells, tissues, and organs. Epicardial adipose tissue exosomes are critical in the development and progression of coronary artery disease (CAD). It is hypothesized that exosomes may transport causative molecules from inflamed tissue and deliver to the target tissue and progress CAD. Thus, identifying and inhibiting the CAD-associated proteins that are being transported to other cells via exosomes will help slow the progression of CAD. Methods This study uses a systems biological approach that integrates differential gene expression in the CAD, exosomal cargo assessment, protein network construction, and functional enrichment to identify the crucial exosomal cargo protein target. Meanwhile, absorption, distribution, metabolism, and excretion (ADME) screening of Panax ginseng-derived compounds was conducted and then docked against the protein target to identify potential inhibitors and then subjected to molecular dynamics simulation (MDS) to understand the behavior of the protein-ligand complex till 100 nanoseconds. Finally, density functional theory (DFT) calculation was performed on the ligand with the highest affinity with the target. Results Through the systems biological approach, Mothers against decapentaplegic homolog 2 protein (SMAD2) was determined as a potential target that linked with PI3K-Akt signaling, Ubiquitin mediated proteolysis, and the focal adhesion pathway. Further, screening of 190 Panax ginseng compounds, 27 showed drug-likeness properties. Inermin, a phytochemical showed good docking with -5.02 kcal/mol and achieved stability confirmation with SMAD2 based on MDS when compared to the known CAD drugs. Additionally, DFT analysis of inermin showed high chemical activity that significantly contributes to effective target binding. Overall, our computational study suggests that inermin could act against SMAD2 and may aid in the management of CAD.
Collapse
Affiliation(s)
- Janakiraman V
- Muti-omics and Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettnad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Sudhan M
- Muti-omics and Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettnad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Abubakar Wani
- Department of Immunology, St. Jude Children’s Research Hospital Memphis, TN, USA
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ashutosh Sharma
- Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro, Mexico
| | - Shiek S. S. J. Ahmed
- Muti-omics and Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettnad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
25
|
Zhang H, Zang C, Zhao W, Zhang L, Liu R, Feng Z, Wu J, Cui R. Exosome Derived from Mesenchymal Stem Cells Alleviates Hypertrophic Scar by Inhibiting the Fibroblasts via TNFSF-13/HSPG2 Signaling Pathway. Int J Nanomedicine 2023; 18:7047-7063. [PMID: 38046235 PMCID: PMC10693282 DOI: 10.2147/ijn.s433510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023] Open
Abstract
Background Mesenchymal stem cell-derived exosomes (MSC-exo) have been shown to have significant potential in wound healing and scar relief processes. According to reports, TNFSF13 and HSPG2 are associated with various fibrotic diseases. The aim of this study is to investigate how TNFSF13 and HSPG2 affect the formation of hypertrophic scar (HS) and the mechanism by which exosomes regulate HS. Methods Immunohistochemistry, qRT-PCR, Western blot, and immunofluorescence were performed to measure TNFSF13 expression in HS skin tissues and hypertrophic scar fibroblast (HSF). HSF were treated with recombinant TNFSF13 protein and TNFSF13 siRNAs to probe the effect of TNFSF13 on the activity of HSF. The CCK-8, EdU, Transwell, and Western blot were used to investigate the role of TNFSF13 in viability, proliferation and inflammation. The influence of MSC-exo on the proliferation and function of HSF was determined by scratch and Western blot. Results TNFSF13 was dramatically up-regulated in HS skin tissues and HSF. Recombinant TNFSF13 protein increased cell viability, proliferation, migration, fibrosis, inflammation, and the binding between TNFSF13 and HSPG2 of HSF. The opposite results were obtained in TNFSF13 siRNAs transferred HSF. Furthermore, TNFSF13 activated the nuclear factor-κB (NF-κB) signaling pathway. Silencing of HSPG2 and inhibition of NF-κB remarkably eliminated the promoting effects of TNFSF13 on cell viability, proliferation, migration, fibrosis and inflammation of HSF. MSC-exo reduced α-SMA and COL1A1 inhibited the proliferation and migration of HSF by inhibiting TNFSF13 and HSPG2. Conclusion TNFSF13 activates NF-κB signaling pathway by interacting with HSPG2, which regulates the proliferation, migration, fibrosis and inflammatory response of HSF. Through the above mechanisms, knocking out TNFSF13 can inhibit the proliferation, migration, fibrosis and inflammatory response of HSF, whereas MSC-exo could reverse this process. These results suggest that MSC-exo alleviates HS by inhibiting the fibroblasts via TNFSF-13/HSPG2 signaling pathway.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Chengyu Zang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
| | - Wen Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Linfeng Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Rui Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Zhang Feng
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Jie Wu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Rongtao Cui
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| |
Collapse
|
26
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
27
|
Qiao X, Cheng Z, Xue K, Xiong C, Zheng Z, Jin X, Li J. Tumor-associated macrophage-derived exosomes LINC01592 induce the immune escape of esophageal cancer by decreasing MHC-I surface expression. J Exp Clin Cancer Res 2023; 42:289. [PMID: 37915049 PMCID: PMC10621170 DOI: 10.1186/s13046-023-02871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND TAMs (tumor-associated macrophages) infiltration promotes the progression of esophageal cancer (EC). However, the underlying mechanisms remain unclear. METHODS Abnormal expression of LINC01592 from EC microarrays of the TCGA database was analyzed. LINC01592 expression level was validated in both EC cell lines and tissues. Stable LINC01592 knockdown and overexpression of EC cell lines were established. In vitro and in vivo trials were conducted to test the impact of LINC01592 knockdown and overexpression on EC cells. RNA binding protein immunoprecipitation (RIP), RNA pulldown assays, and Immunofluorescence (IF) were used to verify the combination of E2F6 and LINC01592. The combination of E2F6 and NBR1 was verified through the utilization of ChIP and dual luciferase reporter assays. RESULTS LINC01592 is carried and transferred by exosomes secreted by M2-TAMs to tumor cells. The molecular mechanism underlying the promotion of NBR1 transcription involves the direct binding of LINC01592 to E2F6, which facilitates the nuclear entry of E2F6. The collaborative action of LINC01592 and E2F6 results in improved NBR1 transcription. The elevation of NBR1 binding to the ubiquitinated protein MHC-I via the ubiquitin domain caused a higher degradation of MHC-I in autophagolysosomes and a reduction in MHC-I expression on the exterior of cancerous cell. Consequently, this caused cancerous cells to escape from CD8+ CTL immune attack. The tumor-promoting impacts of LINC01592, as well as the growth of M2-type macrophage-driven tumors, were significantly suppressed by the interruption of E2F6/NBR1/MHC-I signaling through the effect of siRNA or the corresponding antibody blockade. Significantly, the suppression of LINC01592 resulted in an upregulation of MHC-I expression on the tumor cell membrane, thereby enhancing the efficacy of CD8+ T cell reinfusion therapy. CONCLUSIONS The investigation conducted has revealed a significant molecular interaction between TAMs and EC via the LINC01592/E2F6/NBR1/MHC-I axis, which facilitates the progression of malignant tumors. This suggests that a therapeutic intervention targeting this axis may hold promise for the treatment of the disease.
Collapse
Affiliation(s)
- Xinwei Qiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Zaixing Cheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Kaming Xue
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Cui Xiong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Zhikun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jinsong Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
28
|
Srinivas AN, Suresh D, Kaur S, Kumar DP. The promise of small particles: extracellular vesicles as biomarkers in liver pathology. J Physiol 2023; 601:4953-4971. [PMID: 35708653 DOI: 10.1113/jp283074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscopic packages that are heterogeneous and bona fide players in hepatic physiology and pathology as they are involved in intercellular communication. EVs carrying bioactive cargoes rich in lipids, proteins or nucleic acids are implicated in the onset and progression of liver diseases. Liver pathology using liver biopsy has been assessed for several intricate conditions such as viral hepatitis, alcoholic and non-alcoholic fatty liver disease, hepatic malignancies and drug-induced liver injury. The lacunae, however, lie in early diagnosis and timely treatment of the above conditions, underscoring the need for non-invasive, accurate diagnostic tools that could replace the gold standard method of tissue biopsy. In this regard, EVs have emerged as promising candidates that could serve as potential biomarkers. In the last two decades, EVs, owing to their multifaceted charm in bringing out cell-free therapeutic responses and the ability of their cargoes to be applied to novel biomarkers, have drawn the great attention of researchers with the advancement and clinical application of liquid biopsy. In this review, we recapitulate the role of EVs and provide insights into the promising role of these small packages as biomarkers in liver pathology.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
29
|
Xu J, Liu J, Qu Y, Jiang L, Liang R, Li B, Li L, Jiang Y. Label-free quantitative proteomic analysis of serum exosomes in mice with thoracic aortic aneurysm. Proteome Sci 2023; 21:19. [PMID: 37875866 PMCID: PMC10594717 DOI: 10.1186/s12953-023-00220-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE Thoracic aortic aneurysm (TAA) is a cardiovascular disease with high morbidity and mortality. However, the causes and mechanisms of TAA are not fully understood. Serum exosomes from mice with TAA were used to explore the markers associated with this disease. METHODS C57BL/6 mice were divided into three groups and given ordinary drinking water, ordinary drinking water plus a saline osmotic pump, or drinking water containing β-aminopropionitrile (BAPN) (1 g/kg/d) plus an angiotensin II (Ang II) (1 μg/kg/min) osmotic pump. Haematoxylin and eosin staining of thoracic aortic tissues was performed. The basic characteristics of exosomes were analysed. Differentially expressed proteins (DEPs) were identified by LC‒MS/MS. Protein‒protein networks and enrichment analysis were used to explore possible molecular mechanisms. RESULTS The present study elucidated the protein expression profile of serum exosomes in mice with TAA induced by BAPN combined with Ang II. In this work, the expression of a total of 196 proteins was significantly dysregulated in serum exosomes of mice with TAA, with 122 proteins significantly upregulated and 74 proteins markedly downregulated. Notably, Haptoglobin (Hp) and Serum amyloid p-component (Sap) identified based on the PPI network were significantly upregulated and have been strongly linked to cardiovascular disease. Interestingly, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the upregulated and downregulated proteins were involved in the complement and coagulation cascade pathways. CONCLUSIONS This study showed that the identified DEPs have potential as biomarkers for the diagnosis of TAA and provided a more comprehensive understanding of the pathophysiological mechanisms of TAA.
Collapse
Affiliation(s)
- Jia Xu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
- Department of Cardiovascular Surgery, Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Jiacheng Liu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yibai Qu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Linhui Jiang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Rongxin Liang
- Department of Cardiovascular Surgery, Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Bohai Li
- Department of Cardiovascular Surgery, Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Lei Li
- Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
30
|
Yang X, Xie X, Liu S, Ma W, Zheng Z, Wei H, Yu CY. Engineered Exosomes as Theranostic Platforms for Cancer Treatment. ACS Biomater Sci Eng 2023; 9:5479-5503. [PMID: 37695590 DOI: 10.1021/acsbiomaterials.3c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Tremendous progress in nanotechnology and nanomedicine has made a significant positive effect on cancer treatment by integrating multicomponents into a single multifunctional nanosized delivery system for combinatorial therapies. Although numerous nanocarriers developed so far have achieved excellent therapeutic performance in mouse models via elegant integration of chemotherapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, their synthetic origin may still cause systemic toxicity, immunogenicity, and preferential detection or elimination by the immune system. Exosomes, endogenous nanosized particles secreted by multiple biological cells, could be absorbed by recipient cells to facilitate intercellular communication and content delivery. Therefore, exosomes have emerged as novel cargo delivery tools and attracted considerable attention for cancer diagnosis and treatment due to their innate stability, biological compatibility, and biomembrane penetration capacity. Exosome-related properties and functions have been well-documented; however, there are few reviews, to our knowledge, with a focus on the combination of exosomes and nanotechnology for the development of exosome-based theranostic platforms. To make a timely review on this hot subject of research, we summarize the basic information, isolation and functionalization methodologies, diagnostic and therapeutic potential of exosomes in various cancers with an emphasis on the description of exosome-related nanomedicine for cancer theranostics. The existing appealing challenges and outlook in exosome clinical translation are finally introduced. Advanced biotechnology and nanotechnology will definitely not only promote the integration of intrinsic advantages of natural nanosized exosomes with traditional synthetic nanomaterials for modulated precise cancer treatment but also contribute to the clinical translations of exosome-based nanomedicine as theranostic nanoplatforms.
Collapse
Affiliation(s)
- Xu Yang
- Postdoctoral Research Station of Basic Medicine, Hengyang Medical College, College of Chemistry and Chemical Engineering, Hunan Province Cooperative, Hengyang, Hunan 421001, China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Xiangyu Xie
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Songbin Liu
- Postdoctoral Research Station of Basic Medicine, Hengyang Medical College, College of Chemistry and Chemical Engineering, Hunan Province Cooperative, Hengyang, Hunan 421001, China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Wei Ma
- Postdoctoral Research Station of Basic Medicine, Hengyang Medical College, College of Chemistry and Chemical Engineering, Hunan Province Cooperative, Hengyang, Hunan 421001, China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Zhi Zheng
- Postdoctoral Research Station of Basic Medicine, Hengyang Medical College, College of Chemistry and Chemical Engineering, Hunan Province Cooperative, Hengyang, Hunan 421001, China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Hua Wei
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Cui-Yun Yu
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
31
|
Ghalavand M, Moradi-Chaleshtori M, Dorostkar R, Mohammadi-Yeganeh S, Hashemi SM. Exosomes derived from rapamycin-treated 4T1 breast cancer cells induced polarization of macrophages to M1 phenotype. Biotechnol Appl Biochem 2023; 70:1754-1771. [PMID: 37254633 DOI: 10.1002/bab.2473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/07/2023] [Indexed: 06/01/2023]
Abstract
M2 macrophages are the most prevalent type in the tumor microenvironment and their polarization to M1 type can be used as a potential cancer immunotherapy. Here, we investigated the role of tumor microenvironment and particularly purified exosomes in M2 to M1 macrophage polarization. Rapamycin treatment on triple-negative breast cancer cells (TNBC) was performed. Tumor cells-derived exosomes (called texosomes) were isolated and characterized using scanning electron microscopy, transmission electron microscopy, dynamic light scattering, high-performance liquid chromatography, Fourier transform infrared, and Western blot assays. M2 mouse peritoneal macrophages were treated with rapamycin or rapamycin-texosome. Then, M1/M2 phenotype-specific marker genes and proteins were measured to assess the degree of M2 to M1 polarization. Finally, nitric oxide (NO) production, phagocytosis, and efferocytosis assays were assessed to verify the functionality of the polarized macrophages. Purified rapamycin-texosomes significantly increased the expression of the M1 markers (Irf5, Nos2, and CD86) and decreased M2 markers (Arg, Ym1, and CD206). In addition, the levels of M1-specific cytokines tumor necrosis factor alpha and interleukin 1β (IL-1β) were increased, whereas the levels of M2 specific cytokines IL-10 and transforming growth factor beta were declined. Furthermore, texosome treatment increased NO concentration and phagocytosis and decreased efferocytosis indicating M1 polarization. These findings suggest rapamycin-texosomes can induce M2 to M1 macrophages polarization as a potential immunotherapy for TNBC.
Collapse
Affiliation(s)
- Majdedin Ghalavand
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moradi-Chaleshtori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Berggreen AH, Petersen JL, Lin L, Benabdellah K, Luo Y. CRISPR delivery with extracellular vesicles: Promises and challenges. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e111. [PMID: 38938376 PMCID: PMC11080907 DOI: 10.1002/jex2.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 06/29/2024]
Abstract
The CRISPR gene editing tool holds great potential for curing genetic disorders. However, the safe, efficient, and specific delivery of the CRISPR/Cas9 components into cells and tissues remains a challenge. While many currently available delivery methods achieve high levels of gene editing effects in vivo, they often result in genotoxicity and immunogenicity. Extracellular vesicles (EVs), which are cell-derived lipid nanoparticles, are capable of transferring protein and nucleic acid cargoes between cells, making them a promising endogenous alternative to synthetic delivery methods. This review provides a comprehensive analysis of the currently available strategies for EV-mediated delivery of CRISPR/Cas9. These strategies include cell-based, passive loading obtained by overexpression of CRISPR/Cas9, active loading involving protein or RNA dimerization, and loading into already purified EVs. All these approaches suggest that EV-based CRISPR/Cas9 delivery is useful for achieving both in vitro and in vivo gene editing. Despite that, substantial variations in cellular uptake and gene editing efficiencies indicate that further improvement and standardization are required for the therapeutic use of EVs as a CRISPR/Cas9 delivery vehicle. These improvements include, but is not limited to, the high-yield purification of EVs, increased loading and release efficiencies, as well as improved tissue- or cell-specific targeting specificities.
Collapse
Affiliation(s)
| | | | - Lin Lin
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | - Karim Benabdellah
- Pfizer‐Universidad de Granada‐Junta de Andalucía Centre for Genomics and Oncological Research (GENYO)GranadaSpain
| | - Yonglun Luo
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao Europe Advanced Institute for Life SciencesBGI‐ResearchQingdaoChina
- Lars Bolund Institute of Regenerative Medicine, HIM‐BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesZhejiangHangzhouChina
| |
Collapse
|
33
|
Shaikh S, Yadav DK, Bhadresha K, Rawal RM. Integrated computational screening and liquid biopsy approach to uncover the role of biomarkers for oral cancer lymph node metastasis. Sci Rep 2023; 13:14033. [PMID: 37640804 PMCID: PMC10462753 DOI: 10.1038/s41598-023-41348-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is an abnormal, heterogeneous growth of cells with the ability to invade surrounding tissue and even distant organs. Worldwide, GLOBOCAN had an estimated 18.1 million new cases and 9.6 million death rates of cancer in 2018. Among all cancers, Oral cancer (OC) is the sixth most common cancer worldwide, and the third most common in India, the most frequent type, oral squamous cell carcinoma (OSCC), tends to spread to lymph nodes in advanced stages. Throughout the past few decades, the molecular landscape of OSCC biology has remained unknown despite breakthroughs in our understanding of the genome-scale gene expression pattern of oral cancer particularly in lymph node metastasis. Moreover, due to tissue variability in single-cohort studies, investigations on OSCC gene-expression profiles are scarce or inconsistent. The work provides a comprehensive analysis of changed expression and lays a major focus on employing a liquid biopsy base method to find new therapeutic targets and early prediction biomarkers for lymph node metastasis. Therefore, the current study combined the profile information from GSE9844, GSE30784, GSE3524, and GSE2280 cohorts to screen for differentially expressed genes, and then using gene enrichment analysis and protein-protein interaction network design, identified the possible candidate genes and pathways in lymph node metastatic patients. Additionally, the mRNA expression of discovered genes was assessed using real-time PCR, and the Human Protein Atlas database was utilized to determine the protein levels of hub genes in tumor and normal tissues. Angiogenesis was been investigated using the Chorioallentoic membrane (CAM) angiogenesis test. In a cohort of OSCC patients, fibronectin (FN1), C-X-C Motif Chemokine Ligand 8 (CXCL8), and matrix metallopeptidase 9 (MMP9) were significantly upregulated, corroborating these findings. Our identified significant gene signature showed greater serum exosome effectiveness in early detection and clinically linked with intracellular communication in the establishment of the premetastatic niche. Also, the results of the CAM test reveal that primary OC derived exosomes may have a function in angiogenesis. As a result, our study finds three potential genes that may be used as a possible biomarker for lymph node metastasis early detection and sheds light on the underlying processes of exosomes that cause a premetastatic condition.
Collapse
Affiliation(s)
- Shayma Shaikh
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Deep Kumari Yadav
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Kinjal Bhadresha
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
- National Institute of Health, Bethesda, MD, USA
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
- Department of Biochemistry and Forensic Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
34
|
Rahmati S, Khazaei M, Nadi A, Alizadeh M, Rezakhani L. Exosome-loaded scaffolds for regenerative medicine in hard tissues. Tissue Cell 2023; 82:102102. [PMID: 37178527 DOI: 10.1016/j.tice.2023.102102] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Tissue engineering can be used to repair tissue by employing bioscaffolds that provide better spatial control, porosity, and a three-dimensional (3D) environment like the human body. Optimization of injectability, biocompatibility, bioactivity, and controlled drug release are also features of such scaffolds. The 3D shape of the scaffold can control cell interaction and improve cell migration, proliferation, and differentiation. Exosomes (EXOs) are nanovesicles that can regulate osteoblast activity and proliferation using a complex composition of lipids, proteins, and nucleic acids in their vesicles. Due to their excellent biocompatibility and efficient cellular internalization, EXOs have enormous potential as desirable drug/gene delivery vectors in the field of regenerative medicine. They can cross the biological barrier with minimal immunogenicity and side effects. Scaffolds that contain EXOs have been studied extensively in both basic and preclinical settings for the regeneration and repair of both hard (bone, cartilage) and soft (skin, heart, liver, kidney) tissue. Cell motility, proliferation, phenotype, and maturation can all be controlled by EXOs. The angiogenic and anti-inflammatory properties of EXOs significantly influence tissue healing. The current study focused on the use of EXO-loaded scaffolds in hard tissue regeneration.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Nadi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
35
|
Faur CI, Dinu C, Toma V, Jurj A, Mărginean R, Onaciu A, Roman RC, Culic C, Chirilă M, Rotar H, Fălămaș A, Știufiuc GF, Hedeșiu M, Almășan O, Știufiuc RI. A New Detection Method of Oral and Oropharyngeal Squamous Cell Carcinoma Based on Multivariate Analysis of Surface Enhanced Raman Spectra of Salivary Exosomes. J Pers Med 2023; 13:jpm13050762. [PMID: 37240933 DOI: 10.3390/jpm13050762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Raman spectroscopy recently proved a tremendous capacity to identify disease-specific markers in various (bio)samples being a non-invasive, rapid, and reliable method for cancer detection. In this study, we first aimed to record vibrational spectra of salivary exosomes isolated from oral and oropharyngeal squamous cell carcinoma patients and healthy controls using surface enhancement Raman spectroscopy (SERS). Then, we assessed this method's capacity to discriminate between malignant and non-malignant samples by means of principal component-linear discriminant analysis (PC-LDA) and we used area under the receiver operating characteristics with illustration as the area under the curve to measure the power of salivary exosomes SERS spectra analysis to identify cancer presence. The vibrational spectra were collected on a solid plasmonic substrate developed in our group, synthesized using tangential flow filtered and concentrated silver nanoparticles, capable of generating very reproducible spectra for a whole range of bioanalytes. SERS examination identified interesting variations in the vibrational bands assigned to thiocyanate, proteins, and nucleic acids between the saliva of cancer and control groups. Chemometric analysis indicated discrimination sensitivity between the two groups up to 79.3%. The sensitivity is influenced by the spectral interval used for the multivariate analysis, being lower (75.9%) when the full-range spectra were used.
Collapse
Affiliation(s)
- Cosmin Ioan Faur
- Department of Oral Radiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Valentin Toma
- MedFuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Anca Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Radu Mărginean
- MedFuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Anca Onaciu
- MedFuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Rareș Călin Roman
- Department of Oral and Craniomaxillofacial Surgery, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Carina Culic
- Department of Odontology, Endodontics, Oral Pathology, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Magdalena Chirilă
- Department of Otorhinolaryngology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Horațiu Rotar
- Department of Oral and Craniomaxillofacial Surgery, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Alexandra Fălămaș
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | | | - Mihaela Hedeșiu
- Department of Oral Radiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Oana Almășan
- Department of Prosthodontics and Dental Materials, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Rares Ionuț Știufiuc
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
36
|
Saadh MJ, Ramírez-Coronel AA, Saini RS, Arias-Gonzáles JL, Amin AH, Gavilán JCO, Sârbu I. Advances in mesenchymal stem/stromal cell-based therapy and their extracellular vesicles for skin wound healing. Hum Cell 2023:10.1007/s13577-023-00904-8. [PMID: 37067766 DOI: 10.1007/s13577-023-00904-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Wound healing is a dynamic and complicated process containing overlapping phases. Presently, definitive therapy is not available, and the investigation into optimal wound care is influenced by the efficacy and cost-effectiveness of developing therapies. Accumulating evidence demonstrated the potential role of mesenchymal stem/stromal cell (MSC) therapy in several tissue injuries and diseases due to their high proliferation and differentiation abilities along with an easy collection procedure, low tumorigenesis, and immuno-privileged status. MSCs have also accelerated wound repair in all phases through their advantageous properties, such as accelerating wound closure, improving re-epithelialization, elevating angiogenesis, suppressing inflammation, and modulating extracellular matrix (ECM) remodeling. In addition, the beneficial therapeutic impacts of MSCs are largely associated with their paracrine functions, including extracellular vesicles (EVs). Exosomes and microvesicles are the two main subgroups of EVs. These vesicles are heterogeneous bilayer membrane structures that contain several proteins, lipids, and nucleic acids. EVs have emerged as a promising alternative to stem cell-based therapies because of their lower immunogenicity, tumorigenicity, and ease of management. MSCs from various sources have been widely investigated in skin wound healing and regeneration. Considering these features, in this review, we highlighted recent studies that the investigated therapeutic potential of various MSCs and MSC-EVs in skin damages and wounds.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, Pontifical University of Peru, San Miguel, Peru
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | - Ioan Sârbu
- 2nd Department of Surgery, Pediatric Surgery and Orthopedics, "Grigore T. Popa", University of Medicine and Pharmacy, 700115, Iași, Romania.
| |
Collapse
|
37
|
Abdelaziz MH, El Sawy EN, Abdelnaser A. A Novel Electrochemical Differentiation between Exosomal-RNA of Breast Cancer MCF7 and MCF7/ADR-Resistant Cells. Pharmaceuticals (Basel) 2023; 16:ph16040540. [PMID: 37111297 PMCID: PMC10145523 DOI: 10.3390/ph16040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer is considered one of the most burdensome diseases affecting lives and, hence, the economy. Breast cancer is one of the most common types of cancer. Patients with breast cancer are divided into two groups: one group responds to the chemotherapy, and the other group resists the chemotherapy. Unfortunately, the group which resists the chemotherapy is still suffering the pain associated with the severe side effects of the chemotherapy. Therefore, there is a critical need for a method to differentiate between both groups before the administration of the chemotherapy. Exosomes, the recently discovered nano-vesicles, are often used as cancer diagnostic biomarkers as their unique composition allows them to represent their parental cells, which makes them promising indicators for tumor prognosis. Exosomes contain proteins, lipids, and RNA that exist in most body fluids and are expelled by multiple cell types, including cancer cells. Furthermore, exosomal RNA has been significantly used as a promising biomarker for tumor prognosis. Herein, we have developed an electrochemical system that could successfully differentiate between MCF7 and MCF7/ADR depending on the exosomal RNA. The high sensitivity of the proposed electrochemical assay opens the door for further investigation that will address the other type of cancer cells.
Collapse
Affiliation(s)
- Mohammed H Abdelaziz
- Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo 11835, Egypt
| | - Ehab N El Sawy
- Chemistry Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
38
|
Reiss AB, Ahmed S, Johnson M, Saeedullah U, De Leon J. Exosomes in Cardiovascular Disease: From Mechanism to Therapeutic Target. Metabolites 2023; 13:479. [PMID: 37110138 PMCID: PMC10142472 DOI: 10.3390/metabo13040479] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent decades, clinical research has made significant advances, resulting in improved survival and recovery rates for patients with CVD. Despite this progress, there is substantial residual CVD risk and an unmet need for better treatment. The complex and multifaceted pathophysiological mechanisms underlying the development of CVD pose a challenge for researchers seeking effective therapeutic interventions. Consequently, exosomes have emerged as a new focus for CVD research because their role as intercellular communicators gives them the potential to act as noninvasive diagnostic biomarkers and therapeutic nanocarriers. In the heart and vasculature, cell types such as cardiomyocytes, endothelial cells, vascular smooth muscle, cardiac fibroblasts, inflammatory cells, and resident stem cells are involved in cardiac homeostasis via the release of exosomes. Exosomes encapsulate cell-type specific miRNAs, and this miRNA content fluctuates in response to the pathophysiological setting of the heart, indicating that the pathways affected by these differentially expressed miRNAs may be targets for new treatments. This review discusses a number of miRNAs and the evidence that supports their clinical relevance in CVD. The latest technologies in applying exosomal vesicles as cargo delivery vehicles for gene therapy, tissue regeneration, and cell repair are described.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | |
Collapse
|
39
|
Guo XR, Ma Y, Ma ZM, Dai TS, Wei SH, Chu YK, Dan XG. Exosomes: The role in mammalian reproductive regulation and pregnancy-related diseases. Front Physiol 2023; 14:1056905. [PMID: 36969587 PMCID: PMC10036776 DOI: 10.3389/fphys.2023.1056905] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Exosomes are a kind of extracellular vesicles that are produced and secreted by different mammalian cells. They serve as cargo proteins and can transfer different kinds of biomolecules, including proteins, lipids, and nucleic acids, which consequently act on target cells to exert different biological effects. Recent years have witnessed a significant increase in the number of studies on exosomes due to the potential effects of exosomes in the diagnosis and treatment of cancers, neurodegenerative diseases, and immune disorders. Previous studies have demonstrated that exosomal contents, especially miRNAs, are implicated in numerous physiological processes such as reproduction, and are crucial regulators of mammalian reproduction and pregnancy-related diseases. Here, we describe the origin, composition, and intercellular communication of exosomes, and discuss their functions in follicular development, early embryonic development, embryonic implantation, male reproduction and development of pregnancy-related diseases in humans and animals. We believe this study will provide a foundation for revealing the mechanism of exosomes in regulating mammalian reproduction, and providing new approaches and ideas for the diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Xing-Ru Guo
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Zi-Ming Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Tian-Shu Dai
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shi-Hao Wei
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yuan-Kui Chu
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- *Correspondence: Yuan-Kui Chu, ; Xin-Gang Dan,
| | - Xin-Gang Dan
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- *Correspondence: Yuan-Kui Chu, ; Xin-Gang Dan,
| |
Collapse
|
40
|
Schneider L, Dansranjav T, Neumann E, Yan H, Pilatz A, Schuppe HC, Wagenlehner F, Schagdarsurengin U. Post-prostatic-massage urine exosomes of men with chronic prostatitis/chronic pelvic pain syndrome carry prostate-cancer-typical microRNAs and activate proto-oncogenes. Mol Oncol 2023; 17:445-468. [PMID: 36321189 PMCID: PMC9980307 DOI: 10.1002/1878-0261.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) has a high prevalence of up to 15% and accounts for 90-95% of prostatitis diagnoses, and yet its etiopathogenesis and link to prostate cancer (PCa) are still unclear. Here, we investigated microRNAs in exosomes isolated from blood and post-prostatic-massage urine of CP/CPPS type IIIb patients and healthy men. THP-1 monocytes (human leukemia monocytic cell line) were treated with exosomes and subjected to mRNA arrays "Cancer Inflammation and Immunity Crosstalk" and "Transcription Factors." Using The Cancer Genome Atlas, the expression of CP/CPPS-associated microRNAs was analyzed in PCa and normal prostate tissue. In silico functional studies were carried out to explore the disease ontology of CP/CPPS. In CP/CPPS, urine exosomes exhibited significant upregulation of eight PCa-specific microRNAs (e.g., hsa-miR-501, hsa-miR-20a, and hsa-miR-106), whose target genes were significantly enriched for GO terms, hallmark gene sets, and pathways specific for carcinogenesis. In THP-1 monocytes, CP/CPPS-derived urine exosomes induced upregulation of PCa-associated proinflammatory genes (e.g., CCR2 and TLR2) and proto-oncogene transcription factors (e.g., MYB and JUNB). In contrast, CP/CPPS-derived blood exosomes exhibited molecular properties similar to those of healthy men. Thus, CP/CPPS exhibits molecular changes that constitute a risk for PCa and should be considered in the development of PCa biomarkers and cancer screening programs.
Collapse
Affiliation(s)
- Laura Schneider
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany.,Working Group "Epigenetics of the Urogenital System," Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Temuujin Dansranjav
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Elena Neumann
- Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University of Giessen, Bad Nauheim, Germany
| | - Hang Yan
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany.,Working Group "Epigenetics of the Urogenital System," Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Florian Wagenlehner
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Undraga Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany.,Working Group "Epigenetics of the Urogenital System," Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
41
|
Venkatesan G, Wan Ab Rahman WS, Shahidan WNS, Iberahim S, Muhd Besari@Hashim AB. Plasma-derived exosomal miRNA as potential biomarker for diagnosis and prognosis of vector-borne diseases: A review. Front Microbiol 2023; 14:1097173. [PMID: 37125151 PMCID: PMC10133507 DOI: 10.3389/fmicb.2023.1097173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Early disease diagnosis is critical for better management and treatment outcome of patients. Therefore, diagnostic methods should ideally be accurate, consistent, easy to perform at low cost and preferably non-invasive. In recent years, various biomarkers have been studied for the detection of cardiovascular diseases, cerebrovascular diseases, infectious diseases, diabetes mellitus and malignancies. Exosomal microRNA (miRNA) are small non-coding RNA molecules that influence gene expression after transcription. Previous studies have shown that these types of miRNAs can potentially be used as biomarkers for cancers of the breast and colon, as well as diffuse large B-cell lymphoma. It may also be used to indicate viral and bacterial infections, such as the human immunodeficiency virus (HIV), tuberculosis and hepatitis. However, its use in the diagnosis of vector-borne diseases is rather limited. Therefore, this review aims to introduce several miRNAs derived from exosomal plasma that may potentially serve as a disease biomarker due to the body's immune response, with special focus on the early detection of vector-borne diseases.
Collapse
Affiliation(s)
| | - Wan Suriana Wan Ab Rahman
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Wan Suriana Wan Ab Rahman,
| | | | - Salfarina Iberahim
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alwi bin Muhd Besari@Hashim
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
42
|
Ghasempour E, Hesami S, Movahed E, keshel SH, Doroudian M. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy in the brain tumors. Stem Cell Res Ther 2022; 13:527. [PMID: 36536420 PMCID: PMC9764546 DOI: 10.1186/s13287-022-03212-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Brain tumors are one of the most mortal cancers, leading to many deaths among kids and adults. Surgery, chemotherapy, and radiotherapy are available options for brain tumor treatment. However, these methods are not able to eradicate cancer cells. The blood-brain barrier (BBB) is one of the most important barriers to treat brain tumors that prevents adequate drug delivery to brain tissue. The connection between different brain parts is heterogeneous and causes many challenges in treatment. Mesenchymal stem cells (MSCs) migrate to brain tumor cells and have anti-tumor effects by delivering cytotoxic compounds. They contain very high regenerative properties, as well as support the immune system. MSCs-based therapy involves cell replacement and releases various vesicles, including exosomes. Exosomes receive more attention due to their excellent stability, less immunogenicity and toxicity compare to cells. Exosomes derived from MSCs can develop a powerful therapeutic strategy for different diseases and be a hopeful candidate for cell-based and cell-free regenerative medicine. These nanoparticles contain nucleic acid, proteins, lipids, microRNAs, and other biologically active substances. Many studies show that each microRNA can prevent angiogenesis, migration, and metastasis in glioblastoma. These exosomes can-act as a suitable nanoparticle carrier for therapeutic applications of brain tumors by passing through the BBB. In this review, we discuss potential applications of MSC and their produced exosomes in the treatment of brain tumors.
Collapse
Affiliation(s)
- Elham Ghasempour
- grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shilan Hesami
- grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Movahed
- grid.238491.50000 0004 0367 6866Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeed Heidari keshel
- grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Doroudian
- grid.412265.60000 0004 0406 5813Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
43
|
Trentini M, Zanolla I, Zanotti F, Tiengo E, Licastro D, Dal Monego S, Lovatti L, Zavan B. Apple Derived Exosomes Improve Collagen Type I Production and Decrease MMPs during Aging of the Skin through Downregulation of the NF-κB Pathway as Mode of Action. Cells 2022; 11:3950. [PMID: 36552714 PMCID: PMC9776931 DOI: 10.3390/cells11243950] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Skin ageing is strictly related to chronic inflammation of the derma and the decay of structural proteins of the extracellular matrix. Indeed, it has become common practice to refer to this phenomenon as inflammageing. Biotech innovation is always in search of new active principles that induce a youthful appearance. In this paper, apple-derived nanovesicles (ADNVs) were investigated as novel anti-inflammatory compounds, which are able to alter the extracellular matrix production of dermal fibroblasts. Total RNA sequencing analysis revealed that ADNVs negatively influence the activity of Toll-like Receptor 4 (TLR4), and, thus, downregulate the NF-κB pro-inflammatory pathway. ADNVs also reduce extracellular matrix degradation by increasing collagen synthesis (COL3A1, COL1A2, COL8A1 and COL6A1) and downregulating metalloproteinase production (MMP1, MMP8 and MMP9). Topical applications for skin regeneration were evaluated by the association of ADNVs with hyaluronic-acid-based hydrogel and patches.
Collapse
Affiliation(s)
- Martina Trentini
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Zanolla
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Zanotti
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Tiengo
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | | | | | - Luca Lovatti
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Barbara Zavan
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
44
|
Rajput A, Varshney A, Bajaj R, Pokharkar V. Exosomes as New Generation Vehicles for Drug Delivery: Biomedical Applications and Future Perspectives. Molecules 2022; 27:7289. [PMID: 36364116 PMCID: PMC9658823 DOI: 10.3390/molecules27217289] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
Currently, particular interest among the scientific community is focused on exploring the use of exosomes for several pharmaceutical and biomedical applications. This is due to the identification of the role of exosomes as an excellent intercellular communicator by delivering the requisite cargo comprising of functional proteins, metabolites and nucleic acids. Exosomes are the smallest extracellular vesicles (EV) with sizes ranging from 30-100 nm and are derived from endosomes. Exosomes have similar surface morphology to cells and act as a signal transduction channel between cells. They encompass different biomolecules, such as proteins, nucleic acids and lipids, thus rendering them naturally as an attractive drug delivery vehicle. Like the other advanced drug delivery systems, such as polymeric nanoparticles and liposomes to encapsulate drug substances, exosomes also gained much attention in enhancing therapeutic activity. Exosomes present many advantages, such as compatibility with living tissues, low toxicity, extended blood circulation, capability to pass contents from one cell to another, non-immunogenic and special targeting of various cells, making them an excellent therapeutic carrier. Exosome-based molecules for drug delivery are still in the early stages of research and clinical trials. The problems and clinical transition issues related to exosome-based drugs need to be overcome using advanced tools for better understanding and systemic evaluation of exosomes. In this current review, we summarize the most up-to-date knowledge about the complex biological journey of exosomes from biogenesis and secretion, isolation techniques, characterization, loading methods, pharmaceutical and therapeutic applications, challenges and future perspectives of exosomes.
Collapse
Affiliation(s)
| | | | | | - Varsha Pokharkar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Erandwane, Pune 411038, Maharashtra, India
| |
Collapse
|
45
|
Rashidi M, Bijari S, Khazaei AH, Shojaei-Ghahrizjani F, Rezakhani L. The role of milk-derived exosomes in the treatment of diseases. Front Genet 2022; 13:1009338. [PMID: 36338966 PMCID: PMC9634108 DOI: 10.3389/fgene.2022.1009338] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Exosomes (EXOs) are natural nanoparticles of endosome origin that are secreted by a variety of cells in the body. Exosomes have been found in bio-fluids such as urine, saliva, amniotic fluid, and ascites, among others. Milk is the only commercially available biological liquid containing EXOs. Proof that exosomes are essential for cell-to-cell communication is increasingly being reported. Studies have shown that they migrate from the cell of origin to various bioactive substances, including membrane receptors, proteins, mRNAs, microRNAs, and organelles, or they can stimulate target cells directly through interactions with receptors. Because of the presence of specific proteins, lipids, and RNAs, exosomes act in physiological and pathological conditions in vivo. Other salient features of EXOs include their long half-life in the body, no tumorigenesis, low immune response, good biocompatibility, ability to target cells through their surface biomarkers, and capacity to carry macromolecules. EXOs have been introduced to the scientific community as important, efficient, and attractive nanoparticles. They can be extracted from different sources and have the same characteristics as their parents. EXOs present in milk can be separated by size exclusion chromatography, density gradient centrifugation, or (ultra) centrifugation; however, the complex composition of milk that includes casein micelles and milk fat globules makes it necessary to take additional issues into consideration when employing the mentioned techniques with milk. As a rich source of EXOs, milk has unique properties that, in addition to its role as a carrier, promotes its use in treating diseases such as digestive problems, skin ulcers, and cancer, Moreover, EXOs derived from camel milk are reported to reduce the risk of oxidative stress and cancer. Milk-derived exosomes (MDEs) from yak milk improves gastrointestinal tract (GIT) development under hypoxic conditions. Furthermore, yak-MDEs have been suggested to be the best treatment for intestinal epithelial cells (IEC-6 cell line). Because of their availability as well as the non-invasiveness and cost-effectiveness of their preparation, isolates from mammals milk can be excellent resources for studies related to EXOs. These features also make it possible to exploit MDEs in clinical trials. The current study aimed to investigate the therapeutic applications of EXOs isolated from various milk sources.
Collapse
Affiliation(s)
- Mehdi Rashidi
- Department of Medical Nanotechnology, Islamic Azad University of Pharmaceutical Sciences (IAUPS), Tehran, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salar Bijari
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Hossein Khazaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- *Correspondence: Leila Rezakhani, ,
| |
Collapse
|
46
|
Faur CI, Roman RC, Jurj A, Raduly L, Almășan O, Rotaru H, Chirilă M, Moldovan MA, Hedeșiu M, Dinu C. Salivary Exosomal MicroRNA-486-5p and MicroRNA-10b-5p in Oral and Oropharyngeal Squamous Cell Carcinoma. Medicina (B Aires) 2022; 58:medicina58101478. [PMID: 36295638 PMCID: PMC9610161 DOI: 10.3390/medicina58101478] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Objectives: The research aimed at evaluating the capacity of salivary exosomal miR-10b-5p and miR-486-5p for oral and oropharyngeal cancer detection. Materials and Methods: The saliva samples were harvested from histopathological diagnosed oral and oropharyngeal squamous cell carcinoma patients and healthy volunteer subjects. The exosomes were isolated by differential ultracentrifugation and quantified by Nano Track Analysis. The microRNAs were extracted and quantified from salivary exosomes by quantitative Real-Time Polymerase Chain Reaction. Results: This research comprised fifty participants. When compared to healthy controls, salivary exosomal miR-486-5p was elevated and miR-10b-5p was reduced in oral and oropharyngeal squamous cell carcinoma. Moreover, miR-486-5p had a high expression level in stage II of cancer in comparison to the other cancer stages. The cancer samples presented an increased exosome dimension compared to the control samples. Conclusions: Salivary exosomal miR-10b-5p and miR-486-5p have an altered expression in oral and oropharyngeal cancer.
Collapse
Affiliation(s)
- Cosmin Ioan Faur
- Department of Maxillofacial Surgery and Radiology, Oral Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Rareș Călin Roman
- Department of Maxillofacial Surgery and Radiology, Oral and Cranio-Maxillofacial Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 33 Moților Street, 400001 Cluj-Napoca, Romania
- Correspondence:
| | - Ancuța Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Oana Almășan
- Department of Prosthetic Dentistry and Dental Materials, “Iuliu Hațieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Horațiu Rotaru
- Department of Maxillofacial Surgery and Radiology, Oral and Cranio-Maxillofacial Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 33 Moților Street, 400001 Cluj-Napoca, Romania
| | - Magdalena Chirilă
- 8th Department-Surgical Secialties, O.R.L., “Iuliu Hațieganu” University of Medicine and Pharmacy, 4-6 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Mădălina Anca Moldovan
- Department of Maxillofacial Surgery and Radiology, Oral and Cranio-Maxillofacial Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 33 Moților Street, 400001 Cluj-Napoca, Romania
| | - Mihaela Hedeșiu
- Department of Maxillofacial Surgery and Radiology, Oral Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Maxillofacial Surgery and Radiology, Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 37 Iuliu Hossu Street, 400429 Cluj-Napoca, Romania
| |
Collapse
|
47
|
Wan S, Song G, Hu H, Xu Y, Zeng P, Lin S, Yang J, Jiang J, Song X, Luo Y, Jin D. Intestine epithelial cell-derived extracellular vesicles alleviate inflammation induced by Clostridioides difficile TcdB through the activity of TGF-β1. Mol Cell Toxicol 2022; 19:1-11. [PMID: 35967466 PMCID: PMC9362614 DOI: 10.1007/s13273-022-00280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Background Clostridioides difficile infection (CDI) has been primarily associated with the toxin B (TcdB), one of the three known protein toxins secreted by C. difficile, which can activate the intestinal immune system and lead to pathological damage. Even though the biological functions of intestine epithelial cell-derived extracellular vesicles (I-Evs) have been well documented, the role of I-Evs in the process of CDI is still unknown. Objectives The protective effect of I-Evs against C. difficile TcdB was investigated both in cultured murine colon carcinoma MC38 cells and a mouse model used in this study. Results Mouse I-Evs with mean diameter ranging from 100 to 200 nm and a density of 1.09-1.17 g/mL were obtained and confirmed containing the Ev-associated specific surface markers CD63 and TSG101 as well as high level of TGF-β1. In MC38 cells, I-Evs were able to decrease the gene expression of IL-6, TNF-α, IL-1β, and IL-22 induced by C. difficile TcdB, but to increase both the gene expression and protein levels of TGF-β1. I-Evs treatment via intraperitoneal administration alleviates C. difficile TcdB-induced local colon inflammation in mice and increased their survival rate from 50% up to 80%. Furthermore, I-Evs induced an increase in the proportion of CD4+Foxp3+Tregs in vitro and in vivo through a TGF-β1-dependent mechanism by activating the TGF-β1 pathway and prompting phosphorylation of the downstream proteins Smad 2/3. Conclusion For the first time, our study demonstrated that I-Evs originated from intestine epithelial cells can alleviate inflammation induced by C. difficile TcdB both in vitro and in vivo. Therefore, I-Evs might be potentially a novel endogenous candidate for effective treatment of CDI.
Collapse
Affiliation(s)
- Shuangshuang Wan
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No. 481 Binwen Rd., Hangzhou, 310053 Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 310063 Zhejiang China
| | - Guangzhong Song
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No. 481 Binwen Rd., Hangzhou, 310053 Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 310063 Zhejiang China
| | - Hui Hu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No. 481 Binwen Rd., Hangzhou, 310053 Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 310063 Zhejiang China
| | - Yaqing Xu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No. 481 Binwen Rd., Hangzhou, 310053 Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 310063 Zhejiang China
| | - Peng Zeng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No. 481 Binwen Rd., Hangzhou, 310053 Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 310063 Zhejiang China
| | - Shan Lin
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No. 481 Binwen Rd., Hangzhou, 310053 Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 310063 Zhejiang China
| | - Jun Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No. 481 Binwen Rd., Hangzhou, 310053 Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 310063 Zhejiang China
| | - Jinqin Jiang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No. 481 Binwen Rd., Hangzhou, 310053 Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 310063 Zhejiang China
| | - Xiaojun Song
- Centre of Laboratory Medicine, People’s Hospital of Hangzhou Medical College, Zhejiang Provincial People’s Hospital, Hangzhou, 310014 Zhejiang China
| | - Yongneng Luo
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No. 481 Binwen Rd., Hangzhou, 310053 Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 310063 Zhejiang China
| | - Dazhi Jin
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No. 481 Binwen Rd., Hangzhou, 310053 Zhejiang China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 310063 Zhejiang China
| |
Collapse
|
48
|
Yang P, Song F, Yang X, Yan X, Huang X, Qiu Z, Wen Z, Liang C, Xin X, Lei Z, Zhang K, Yang J, Liu H, Wang H, Xiang S, Li L, Zhang B, Wang H. Exosomal MicroRNAs Signature Acts as Efficient Biomarker for Non-Invasive Diagnosis of Gallbladder Carcinoma. iScience 2022; 25:104816. [PMID: 36043050 PMCID: PMC9420508 DOI: 10.1016/j.isci.2022.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Through a three-step study that relies on biomarker discovery, training, and validation, we identified a set of five exosomal microRNAs (miRNAs) that can be used to evaluate the risk of gallbladder carcinoma (GBC), including miR-552-3p, miR-581, miR-4433a-3p, miR-496, and miR-203b-3p. When validated in 102 GBC patients and 112 chronic cholecystitis patients from multiple medical centers, the AUC of this combinatorial biomarker was 0.905, with a sensitivity of 81.37% and a specificity of 86.61%. The performance of this biomarker is superior to that of the standard biomarkers CA199 and CEA and is suited for GBC early diagnosis. The multi-clinicopathological features and prognosis of GBC patients were significantly associated with this biomarker. After building a miRNA-target gene regulation network, cell functions and signaling pathways regulated by these five miRNAs were examined. This biomarker signature can be used in the development of a noninvasive tool for GBC diagnosis, screening and prognosis prediction. A five exosomal miRNAs-set is identified to diagnose GBC through a three-step study The efficacy of this noninvasive biomarker is superior to that of conventional ones This biomarker is correlated with multiple GBC clinical features and the prognosis The functions and signal pathways that this biomarker may affect were estimated
Collapse
|
49
|
Liu H, Huang Y, Huang M, Huang Z, Wang Q, Qing L, Li L, Xu S, Jia B. Current Status, Opportunities, and Challenges of Exosomes in Oral Cancer Diagnosis and Treatment. Int J Nanomedicine 2022; 17:2679-2705. [PMID: 35733418 PMCID: PMC9208818 DOI: 10.2147/ijn.s365594] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Oral cancer is one of the most common cancers in the world, with more than 300,000 cases diagnosed each year, of which oral squamous cell carcinoma accounts for more than 90%, with a 5-year survival rate of only 40–60%, and poor prognosis. Exploring new strategies for the early diagnosis and treatment of oral cancer is key to improving the survival rate. Exosomes are nanoscale lipid bilayer membrane vesicles that are secreted by almost all cell types. During the development of oral cancer, exosomes can transport their contents (DNA, RNA, proteins, etc) to target cells and promote or inhibit the proliferation, invasion, and metastasis of oral cancer cells by influencing the host immune response, drug-resistant metastasis, and tumour angiogenesis. Therefore, exosomes have great potential and advantages as biomarkers for oral cancer diagnosis, and as drug delivery vehicles or targets for oral cancer therapy. In this review, we first describe the biogenesis, biological functions, and isolation methods of exosomes, followed by their relationship with oral cancer. Here, we focused on the potential of exosomes as oral cancer biomarkers, drug carriers, and therapeutic targets. Finally, we provide an insightful discussion of the opportunities and challenges of exosome application in oral cancer diagnosis and treatment, intending to offer new ideas for the clinical management of oral cancer.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
50
|
Anusha R, Priya S. Dietary Exosome-Like Nanoparticles: An Updated Review on Their Pharmacological and Drug Delivery Applications. Mol Nutr Food Res 2022; 66:e2200142. [PMID: 35593481 DOI: 10.1002/mnfr.202200142] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Indexed: 11/10/2022]
Abstract
Exosomes are lipid bilayer membrane-bound extracellular vesicular structures (30-150 nm) mainly released by eukaryotic cells of animal origin. Exosome-like nanoparticles (ELNs) are the vesicular structures originating from plant sources with features similar to eukaryotic animal cell derived exosomes. ELNs derived from dietary sources (dietary ELNs) have exceptional pharmacological potential in alleviating many diseases and are good in maintaining intestinal health through the manipulation of the gut microbiome. The dietary ELNs being highly biocompatible find their application in targeted therapy as well. They are being established as promising drug delivery agents and can also be developed into dietary supplements. This review highlights the ELNs derived from various dietary sources, their diversity in molecular compositions, potential health benefits, and drug delivery applications. Few clinical trials are attempted with dietary ELNs which are also described in the review along with their properties that can be exploited for the food and pharma industries in the future.
Collapse
Affiliation(s)
- Rajitha Anusha
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sulochana Priya
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|