1
|
Peña-Corona SI, Vargas-Estrada D, Chávez-Corona JI, Mendoza-Rodríguez CA, Caballero-Chacón S, Pedraza-Chaverri J, Gracia-Mora MI, Galván-Vela DP, García-Rodríguez H, Sánchez-Bartez F, Vergara-Onofre M, Leyva-Gómez G. Vitamin E (α-Tocopherol) Does Not Ameliorate the Toxic Effect of Bisphenol S on the Metabolic Analytes and Pancreas Histoarchitecture of Diabetic Rats. TOXICS 2023; 11:626. [PMID: 37505591 PMCID: PMC10383361 DOI: 10.3390/toxics11070626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
This study investigated whether the coadministration of vitamin E (VitE) diminishes the harmful effects provoked by plasticizer bisphenol S (BPS) in the serum metabolites related to hepatic and renal metabolism, as well as the endocrine pancreatic function in diabetic male Wistar rats. Rats were divided into five groups (n = 5-6); the first group was healthy rats (Ctrl group). The other four groups were diabetic rats induced with 45 mg/kg bw of streptozotocin: Ctrl-D (diabetic control); VitE-D (100 mg/kg bw/d of VitE); BPS-D (100 mg/kg bw/d of BPS); The animals from the VitE + BPS-D group were administered 100 mg/kg bw/d of VitE + 100 mg/kg bw/d of BPS. All compounds were administered orally for 30 days. Body weight, biochemical assays, urinalysis, glucose tolerance test, pancreas histopathology, proximate chemical analysis in feces, and the activity of antioxidants in rat serum were assessed. The coadministration of VitE + BPS produced weight losses, increases in 14 serum analytes, and degeneration in the pancreas. Therefore, the VitE + BPS coadministration did not have a protective effect versus the harmful impact of BPS or the diabetic metabolic state; on the contrary, it partially aggravated the damage produced by the BPS. VitE is likely to have an additive effect on the toxicity of BPS.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan I Chávez-Corona
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Caballero-Chacón
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Isabel Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Diana Patricia Galván-Vela
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Helena García-Rodríguez
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Francisco Sánchez-Bartez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marcela Vergara-Onofre
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Baltusnikiene A, Staneviciene I, Jansen E. Beneficial and adverse effects of vitamin E on the kidney. Front Physiol 2023; 14:1145216. [PMID: 37007997 PMCID: PMC10050743 DOI: 10.3389/fphys.2023.1145216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
This article reviews the beneficial and adverse effects of high-dose vitamin E supplementation on the vitamin E status and renal function in human and rodent studies. The high doses of vitamin E, which can cause renal effects, were compared to upper limits of toxicity (UL) as established by various authorities worldwide. In recent mice studies with higher doses of vitamin E, several biomarkers of tissue toxicity and inflammation were found to be significantly elevated. In these biomarker studies, the severity of inflammation and the increased levels of the biomarkers are discussed together with the need to re-evaluate ULs, given the toxic effects of vitamin E on the kidney and emphasizing oxidative stress and inflammation. The controversy in the literature about vitamin E effects on the kidney is mainly caused by the dose-effects relations that do not give a clear view, neither in human nor animals studies. In addition, more recent studies on rodents with new biomarkers of oxidative stress and inflammation give new insights into possible mechanisms. In this review, the controversy is shown and an advice given on the vitamin E supplementation for renal health.
Collapse
Affiliation(s)
- Aldona Baltusnikiene
- Department of Biochemistry, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Inga Staneviciene
- Department of Biochemistry, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Eugène Jansen
- Retired from Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
3
|
Qi F, Huang H, Wang M, Rong W, Wang J. Applications of Antioxidants in Dental Procedures. Antioxidants (Basel) 2022; 11:2492. [PMID: 36552699 PMCID: PMC9774737 DOI: 10.3390/antiox11122492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
As people are paying more and more attention to dental health, various dental treatment procedures have emerged, such as tooth bleaching, dental implants, and dental restorations. However, a large number of free radicals are typically produced during the dental procedures. When the imbalance in distribution of reactive oxygen species (ROS) is induced, oxidative stress coupled with oxidative damage occurs. Oral inflammations such as those in periodontitis and pulpitis are also unavoidable. Therefore, the applications of exogenous antioxidants in oral environment have been proposed. In this article, the origin of ROS during dental procedures, the types of antioxidants, and their working mechanisms are reviewed. Additionally, antioxidants delivery in the complicated dental procedures and their feasibility for clinical applications are also covered. Finally, the importance of safety assessment of these materials and future work to take the challenge in antioxidants development are proposed for perspective.
Collapse
Affiliation(s)
| | | | | | | | - Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 Xincun Road, Zibo 255000, China
| |
Collapse
|
4
|
Wu R, Sun M, Liu X, Qin F, Zhang X, Qian Z, Huang J, Li Y, Tan T, Chen W, Chen Z. Oxidase-like ZnCoFe Three-Atom Nanozyme as a Colorimetric Platform for Ascorbic Acid Sensing. Anal Chem 2022; 94:14308-14316. [PMID: 36194751 DOI: 10.1021/acs.analchem.2c02853] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Great enthusiasm in single-atom catalysts for various catalytic reactions continues to heat up. However, the poor activity of the existing single/dual-metal-atom catalysts does not meet the actual requirement. In this scenario, the precise design of triple-metal-atom catalysts is vital but still challenging. Here, a triple-atom site catalyst of FeCoZn catalyst coordinated with S and N, which is doped in the carbon matrix (named FeCoZn-TAC/SNC), is designed. The FeCoZn catalyst can mimic the activity of oxidase by activating O2 into •O2- radicals by virtue of its atomically dispersed metal active sites. Employing this characteristic, triple-atom catalysts can become a great driving force for the development of novel biosensors featuring adequate sensitivity. First, the property of FeCoZn catalyst as an oxidase-like nanozyme was explored. The obtained FeCoZn-TAC/SNC shows remarkably enhanced catalytic performance than that of FeCoZn-TAC/NC and single/dual-atom site catalysts (FeZn, CoZn, FeCo-DAC/NC and Fe, Zn, Co-SAC/NC) because of trimetallic sites, demonstrating the synergistic effect. Further, the utility of the oxidase-like FeCoZn-TAC/SNC in biosensor field is evaluated by the colorimetric sensing of ascorbic acid. The nanozyme sensor shows a wide concentration range from 0.01 to 90 μM and an excellent detection limit of 6.24 nM. The applicability of the nanozyme sensor in biologically relevant detection was further proved in serum. The implementation of TAC in colorimetric detection holds vast promise for further development of biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Rufen Wu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Mengru Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaolong Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhenni Qian
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Juan Huang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yujing Li
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
5
|
Garg A, Lee JCY. Vitamin E: Where Are We Now in Vascular Diseases? Life (Basel) 2022; 12:life12020310. [PMID: 35207597 PMCID: PMC8874674 DOI: 10.3390/life12020310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Vitamin E is one of the most popular fat-soluble vitamins in pathological research and has been under scrutiny since the 1980s as a vital dietary component of food. The antioxidant effect of vitamin E has been widely studied due to its benefits in the prevention of various cardiovascular diseases. In recent years, alternative effects of vitamin E, in terms of anti-inflammatory pathways and gene regulation, have also been of interest to researchers. This review examines the role of dietary vitamin E (α-tocopherol) as an antioxidant and bioactive molecule in promoting vascular health. While the antioxidant effect of vitamin E is well established, knowledge about its capacity as a promising regulatory molecule in the control of the vascular system is limited. The aim of this review is to discuss some of these mechanisms and summarize their role in the prevention of cardiovascular diseases (CVD). Here, we also briefly discuss foods rich in vitamin E, and deliberate some potential toxicological effects of excessive supplemental vitamin E in the body.
Collapse
|
6
|
Liu Y, Zhou S, Xiang D, Ju L, Shen D, Wang X, Wang Y. Friend or Foe? The Roles of Antioxidants in Acute Lung Injury. Antioxidants (Basel) 2021; 10:1956. [PMID: 34943059 PMCID: PMC8750496 DOI: 10.3390/antiox10121956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extra-pulmonary injury factors. The oxidative stress caused by excessive reactive oxygen species (ROS) produced in the lungs plays an important role in the pathogenesis of ALI. ROS is a "double-edged sword", which is widely involved in signal transduction and the life process of cells at a physiological concentration. However, excessive ROS can cause mitochondrial oxidative stress, leading to the occurrence of various diseases. It is well-known that antioxidants can alleviate ALI by scavenging ROS. Nevertheless, more and more studies found that antioxidants have no significant effect on severe organ injury, and may even aggravate organ injury and reduce the survival rate of patients. Our study introduces the application of antioxidants in ALI, and explore the mechanisms of antioxidants failure in various diseases including it.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| | - Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan 430071, China
| | - Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| |
Collapse
|
7
|
Abstract
Nonmelanoma skin cancer (NMSC), the most widely diagnosed cancer in the United States, is rising in incidence despite public health and educational campaigns that highlight the importance of sun avoidance. It is,therefore, important to establish other modifiable risk factors that may be contributing to this increase. There is a growing body of evidence in the literature suggesting certain nutrients may have protective or harmful effects on NMSC. We review the current literature on nutrition and its effect on NMSC with a focus on dietary fat, vitamin A, nicotinamide, folate, vitamin C, vitamin D, vitamin E, polyphenols, and selenium.
Collapse
Affiliation(s)
- Victoria Stoj
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Neda Shahriari
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kimberly Shao
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hao Feng
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
8
|
Takahashi A, Takahashi R, Hiromori K, Shibasaki‐Kitakawa N. Quantitative Evaluation of Oxidative Stability of Biomembrane Lipids in the Presence of Vitamin E. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Atsushi Takahashi
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | - Ryota Takahashi
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | - Kousuke Hiromori
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | | |
Collapse
|
9
|
Wu S, Song Z, Zhu M, Zhang Y, Yao W, Kosinova M, Fedin VP, Chen J, Gao E. Controllable self‐assembly from homonuclear Mn (II)‐MOF to heteronuclear Mn (II)‐K(I)‐MOF by alkali‐regulation: A novel mode of structural and luminescent regulation for off–on sensing ascorbic acid. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang P.R. China
| | - Zhenfeng Song
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang P.R. China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang P.R. China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang P.R. China
| | - Wei Yao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan P.R. China
| | - Marina Kosinova
- Nikolaev Institute of Inorganic Chemistry Novosibirsk Russia
| | | | - Jiaqi Chen
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang P.R. China
| | - Enjun Gao
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang P.R. China
- School of Chemical Engineering University of Science and Technology Liaoning Anshan P.R. China
| |
Collapse
|
10
|
The ameliorative effects of a phenolic derivative of Moringa oleifera leave against vanadium-induced neurotoxicity in mice. IBRO Rep 2020; 9:164-182. [PMID: 32803016 PMCID: PMC7417907 DOI: 10.1016/j.ibror.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/03/2020] [Indexed: 12/29/2022] Open
Abstract
Vanadium, a transition series metal released during some industrial activities, induces oxidative stress and lipid peroxidation. Ameliorative effect of a pure compound from the methanolic extract of Moringa oleifera leaves, code-named MIMO2, in 14-day old mice administered with vanadium (as sodium metavanadate 3 mg/kg) for 2 weeks was assessed. Results from body weight monitoring, muscular strength, and open field showed slight reduction in body weight and locomotion deficit in vanadium-exposed mice, ameliorated with MIMO2 co-administration. Degeneration of the Purkinje cell layer and neuronal death in the hippocampal CA1 region were observed in vanadium-exposed mice and both appeared significantly reduced with MIMO2 co-administration. Demyelination involving the midline of the corpus callosum, somatosensory and retrosplenial cortices was also reduced with MIMO2. Microglia activation and astrogliosis observed through immunohistochemistry were also alleviated. Immunohistochemistry for myelin, axons and oligodendrocyte lineage cells were also carried out and showed that in vanadium-treated mice brains, oligodendrocyte progenitor cells increased NG2 immunolabelling with hypertrophy and bushy, ramified appearance of their processes. MIMO2 displayed ameliorative and antioxidative effects in vanadium-induced neurotoxicity in experimental murine species. This is likely the first time MIMO2 is being used in vivo in an animal model.
Collapse
|
11
|
Targeting Oxidative Stress for Disease Prevention and Therapy: Where Do We Stand, and Where Do We Go from Here. Molecules 2020; 25:molecules25112653. [PMID: 32517368 PMCID: PMC7321135 DOI: 10.3390/molecules25112653] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OxS) is one of the main processes related to aging and a common denominator of many different chronic/degenerative diseases (e.g., cardiovascular and neurodegenerative conditions and cancer). Thus, its potential modulation by supplementation/pharmacological therapy caused a lot of interest. However, these expectations have been mitigated by the obtainment of controversial results (beneficial, null, or adverse effects) following antioxidant interventions. Here, we discuss the current understanding of OxS assessment in health and disease, challenges and the potential of its evaluation in clinical practice, and available and future development for supplementation and pharmacologic strategies targeting OxS.
Collapse
|
12
|
Wang Q, Ma X, Lv H, Wei A, Wu T, Ding L, Ma X, Ma C. MnO 2 nanoparticle mediated colorimetric turn-off determination of ascorbic acid. NEW J CHEM 2020. [DOI: 10.1039/c9nj05751j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The scheme of the turn-off colorimetric response of AA to the TMB–MnO2 NP system.
Collapse
Affiliation(s)
- Qi Wang
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Xulu Ma
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Houhua Lv
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Awen Wei
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Tingxuan Wu
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Lifeng Ding
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Xiang Ma
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| | - Chunlei Ma
- Chemistry & Chemical Engineering Department
- Taiyuan Institute of Technology
- Taiyuan
- P. R. China
| |
Collapse
|
13
|
Luo K, Jiang X. Fluorescent Carbon Quantum Dots with Fe(III/II) Irons as Bridge for the Detection of Ascorbic Acid and H2O2. J Fluoresc 2019; 29:769-777. [DOI: 10.1007/s10895-019-02395-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
|
14
|
Abstract
The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
15
|
Singh VK, Singh V, Yadav PK, Chandra S, Bano D, Kumar V, Koch B, Talat M, Hasan SH. Bright-blue-emission nitrogen and phosphorus-doped carbon quantum dots as a promising nanoprobe for detection of Cr(vi) and ascorbic acid in pure aqueous solution and in living cells. NEW J CHEM 2018. [DOI: 10.1039/c8nj02126k] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Efficient synthesis of N,P-CQDs via a one-step hydrothermal method with a high quantum yield for potential applications in turn-off and turn-on detections of Cr(vi) and AA in vitro in living cells.
Collapse
Affiliation(s)
- Vikas Kumar Singh
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Virendra Singh
- Department of Zoology
- Institute of Science (Banaras Hindu University)
- Varanasi-221005
- India
| | - Pradeep Kumar Yadav
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Subhash Chandra
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Daraksha Bano
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Vijay Kumar
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Biplob Koch
- Department of Zoology
- Institute of Science (Banaras Hindu University)
- Varanasi-221005
- India
| | - Mahe Talat
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Syed Hadi Hasan
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| |
Collapse
|
16
|
Igado OO, Glaser J, Ramos-Tirado M, Bankoğlu EE, Atiba FA, Holzgrabe U, Stopper H, Olopade JO. Isolation of a novel compound (MIMO2) from the methanolic extract of Moringa oleifera leaves: protective effects against vanadium-induced cytotoxity. Drug Chem Toxicol 2017; 41:249-258. [PMID: 28925291 DOI: 10.1080/01480545.2017.1366504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Moringa oleifera is reported to be a miracle plant, with positive effects on practically every system in the animal body. The methanolic extract of Moringa oleifera leaves was fractionated using liquid-liquid fractionation, column chromatography and preparative high-performance liquid chromatography (HPLC). Bioassay guided fractionation using Ferric Reducing Antioxidant Power (FRAP) was used to determine the fraction with the highest antioxidative power. Chemical structure was elucidated with nuclear magnetic resonance (NMR) spectroscopy. FRAP showed that the pure compound, butyl p-hydroxyphenyl-acetate (MIMO2) exhibited an antioxidant activity higher than TEMPOL (positive control). Vanadium is a metal, which as a salt has been shown to be a neurotoxicant; and was therefore used to assess the efficacy of MIMO2 in this experiment. HT22 (immortalized mouse hippocampal) cells were used for cell culture. The Comet assay showed a statistically significant reduction (p < .05) in DNA damage when 0.25 and 0.5 μM MIMO2 as well as 0.1 and 0.2 mg of the methanolic extract of Moringa oleifera leaves (MO) were used in combination with 200 μM vanadium (sodium metavanadate). Analogously, a reduced formation of superoxide was observed using dihydroethidium (2,7-Diamino-10-ethyl-9-phenyl-9,10-dihydrophenanthridine-DHE) stain after 0.5 μM MIMO2 and 0.063 mg MO were used in combination with vanadium 100 μM. MIMO2 and MO gave a statistically significant (p < .05) protective effect against vanadium toxicity on neuronal cells. Further assays may need to be performed to assess the extent of protection that MIMO2 may offer, and also to better understand its mechanisms of action.
Collapse
Affiliation(s)
- Olumayowa O Igado
- a Department of Veterinary Anatomy , University of Ibadan , Ibadan , Nigeria.,b Institute of Pharmacy and Food Chemistry , University of Würzburg , Germany.,c Institute of Pharmacology and Toxicology , University of Würzburg , Germany
| | - Jan Glaser
- b Institute of Pharmacy and Food Chemistry , University of Würzburg , Germany
| | - Mario Ramos-Tirado
- c Institute of Pharmacology and Toxicology , University of Würzburg , Germany
| | - Ezgi Eylül Bankoğlu
- c Institute of Pharmacology and Toxicology , University of Würzburg , Germany
| | - Foluso A Atiba
- d Department of Anatomy, College of Medicine , University of Ibadan , Ibadan , Nigeria
| | - Ulrike Holzgrabe
- b Institute of Pharmacy and Food Chemistry , University of Würzburg , Germany
| | - Helga Stopper
- c Institute of Pharmacology and Toxicology , University of Würzburg , Germany
| | - James O Olopade
- a Department of Veterinary Anatomy , University of Ibadan , Ibadan , Nigeria
| |
Collapse
|
17
|
Feng LL, Wu YX, Zhang DL, Hu XX, Zhang J, Wang P, Song ZL, Zhang XB, Tan W. Near Infrared Graphene Quantum Dots-Based Two-Photon Nanoprobe for Direct Bioimaging of Endogenous Ascorbic Acid in Living Cells. Anal Chem 2017; 89:4077-4084. [PMID: 28281746 DOI: 10.1021/acs.analchem.6b04943] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ascorbic acid (AA), as one of the most important vitamins, participates in various physiological reactions in the human body and is implicated with many diseases. Therefore, the development of effective methods for monitoring the AA level in living systems is of great significance. Up to date, various technologies have been developed for the detection of AA. However, few methods can realize the direct detection of endogenous AA in living cells. In this work, we for the first time reported that near-infrared (NIR) graphene quantum dots (GQD) possessed good two-photon fluorescence properties with a NIR emission at 660 nm upon exciting with 810 nm femtosecond pulses and a two-photon (TP) excitation action cross-section (δΦ) of 25.12 GM. They were then employed to construct a TP nanoprobe for detection and bioimaging of endogenous AA in living cells. In this nanosystem, NIR GQDs (NGs), which exhibited lower fluorescence background in living system to afford improved fluorescence imaging resolution, were acted as fluorescence reporters. Also CoOOH nanoflakes were chosen as fluorescence quenchers by forming on the surface of NGs. Once AA was introduced, CoOOH was reduced to Co2+, which resulted in a "turn-on" fluorescence signal of NGs. The proposed nanoprobe demonstrated high sensitivity toward AA, with the observed LOD of 270 nM. It also showed high selectivity to AA with excellent photostability. Moreover, the nanoprobe was successfully used for TP imaging of endogenous AA in living cells as well as deep tissue imaging.
Collapse
Affiliation(s)
- Li-Li Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Yong-Xiang Wu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Dai-Liang Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Jing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Peng Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Zhi-Ling Song
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , Qingdao 266042, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| |
Collapse
|
18
|
Peng H, Chen S, Luo M, Ning F, Zhu X, Xiong H. Preparation and Self-Assembly Mechanism of Bovine Serum Albumin-Citrus Peel Pectin Conjugated Hydrogel: A Potential Delivery System for Vitamin C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7377-7384. [PMID: 27622937 DOI: 10.1021/acs.jafc.6b02966] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, a novel hydrogel (BSA-pectin hydrogel, BPH) was prepared via a self-assembly method by using the natural polymers of bovine serum albumin (BSA) and citrus peel pectin (pectin). The rheological properties and gel conformational structures were determined and showed that electrostatic and covalent interactions between BSA and pectin were the main mechanisms for the formation of BPH. The morphological characteristics of BPH included a stable and solid three-dimensional network structure with a narrow size distribution (polydispersity index <0.06). BPH was used as a delivery system to load the functional agent vitamin C (Vc). The encapsulation efficiency (EE) and release properties of Vc from BPH were also investigated. The results revealed that the EE of Vc into BPH was approximately 65.31%, and the in vitro Vc release from BPH was governed by two distinct stages (i.e., burst release and sustained release) in different pH solutions, with release mechanisms involving diffusion, swelling, and erosion. Meanwhile, the stability results showed that BPH was a stable system with an enhanced Vc retention (73.95%) after 10 weeks of storage. Thus, this three-dimensional network system of BPH may be a potential delivery system to improve the stability and bioavailability of functional agents in both food and non-food fields.
Collapse
Affiliation(s)
- Hailong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, Jiangxi, China
- Department of Chemical and Pharmaceutical Engineering, Nanchang University , Nanchang 330031, Jiangxi, China
| | - Sha Chen
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, Jiangxi, China
| | - Mei Luo
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, Jiangxi, China
- Department of Chemical and Pharmaceutical Engineering, Nanchang University , Nanchang 330031, Jiangxi, China
| | - Fangjian Ning
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, Jiangxi, China
| | - Xuemei Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, Jiangxi, China
| |
Collapse
|
19
|
Inverse association linking serum levels of potential antioxidant vitamins with C-reactive protein levels using a novel analytical approach. Br J Nutr 2016; 116:1256-1264. [PMID: 27620205 DOI: 10.1017/s0007114516003159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposures to antioxidants (AO) are associated with levels of C-reactive protein (CRP), but the pattern of evidence is mixed, due in part to studying each potential AO, one at a time, when multiple AO exposures might affect CRP levels. By studying multiple AO via a composite indicator approach, we estimate the degree to which serum CRP level is associated with serum AO level. Standardised field survey protocols for the US National Health and Nutrition Examination Survey (NHANES) 2003-2006 yielded nationally representative cross-sectional samples of adults aged 20 years and older (n 8841). NHANES latex-enhanced nephelometry quantified serum CRP levels. Liquid chromatography quantified serum concentrations of vitamins A, E and C and carotenoids. Using structural equations, we regressed CRP level on AO levels, and derived a summary estimate for a composite of these potential antioxidants (CPA), with covariates held constant. The association linking CPA with CRP was inverse, stronger for slightly elevated CRP (1·8≤CRP<10 mg/l; slope= -1·08; 95 % CI -1·39, -0·77) and weaker for highly elevated CRP (≥10 mg/l; slope= -0·52; 95 % CI -0·68, -0·35), with little change when covariates were added. Vitamins A and C, as well as lutein+zeaxanthin, were prominent contributors to the composite. In these cross-sectional data studied via a composite indicator approach, the CPA level and the CRP level were inversely related. The stage is set for more confirmatory longitudinal or intervention research on multiple vitamins. The composite indicator approach might be most useful in epidemiology when several exposure constructs are too weakly inter-correlated to be studied via formal measurement models for underlying latent dimensions.
Collapse
|
20
|
Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int J Mol Sci 2015; 16:25234-63. [PMID: 26512646 PMCID: PMC4632800 DOI: 10.3390/ijms161025234] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.
Collapse
Affiliation(s)
- Yosuke Kayama
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Uwe Raaz
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Ann Jagger
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Matti Adam
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Isabel N Schellinger
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Masaya Sakamoto
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minatoku, Tokyo 105-0003, Japan.
| | - Hirofumi Suzuki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minatoku, Tokyo 105-0003, Japan.
| | - Kensuke Toyama
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
21
|
Zaitone SA, Hammad LN, Farag NE. Antioxidant potential of melatonin enhances the response to L-dopa in 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-parkinsonian mice. Pharmacol Rep 2014; 65:1213-26. [PMID: 24399717 DOI: 10.1016/s1734-1140(13)71479-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/22/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Parkinson's disease is a neurodegenerative disorder of uncertain pathogenesis characterized by a loss of dopaminergic neurons in substantia nigra pars compacta, and can be modeled by the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The current research was directed to investigate the role of melatonin in preventing the gradual decrease in the response to L-dopa in MPTP-induced parkinsonism in mice. METHODS Eighty four male Swiss mice were divided into seven groups. Group I is the saline group. The other six groups were injected with MPTP (20 mg/kg/2 h). Group II is the MPTP control group. Group III was treated with L-dopa/carbidopa (100/10 mg/kg, po). Group IV and V were treated with melatonin (5 or 10 mg/kg, po), respectively. Group VI and VII received L-dopa/carbidopa in combination with melatonin in the same above-mentioned doses, respectively. RESULTS Results showed that MPTP-treated mice exhibited low striatal dopamine level accompanied by motor impairment and increased oxidative stress. Treatment with L-dopa improved the motor performance of mice. Addition of melatonin to L-dopa therapy improved the motor response to L-dopa and increased striatal dopamine level. This combination reduced lipid peroxidation, ameliorated reduced glutathione and improved antioxidant enzyme activities (p ≤ 0.05). CONCLUSIONS Overall, our study suggests that the antioxidant potential of melatonin makes it a promising candidate to L-dopa in treating Parkinson's disease.
Collapse
Affiliation(s)
- Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | | | | |
Collapse
|
22
|
Veloso CA, Oliveira BF, Mariani FEP, Fagundes-Neto FS, Volpe CMO, Nogueira-Machado JA, Chaves MM. Vitamin complex (ascorbic acid, alpha-tocopherol and beta-carotene) induces micronucleus formation in PBMNC unrelated to ROS production. Redox Rep 2014; 18:219-23. [PMID: 24112956 DOI: 10.1179/1351000213y.0000000067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES To evaluate the correlation between reactive oxygen species (ROS) production and micronucleus formation induced by a vitamin complex in peripheral blood mononuclear cells from healthy people aged between 40 and 85 years old. METHODS Peripheral blood mononuclear cells (PBMNCs) were purified utilizing ficoll-hypaque gradient. ROS production by PBMNCs was quantified by luminol-dependent chemiluminescence in the presence or in the absence of the vitamin complex. DNA damage in PBMNC by the vitamin complex was detected by the micronucleus technique. Statistical analyses were made with the Student's 't' test and the Pearson correlation. P < 0.05 was considered significant. RESULTS The vitamin complex induced MN formation in PBMNC but did not augment ROS production. There was no correlation between ROS production and MN formation either in the presence or in the absence of the vitamin complex. DISCUSSION There was no increase in the ROS production in the presence of the vitamin complex. The vitamin complex induced an augmentation in the MN formation. There was no correlation between ROS production and the induction of MN formation. Since no association could be detected between ROS production and MN formation, additional studies are required in order to investigate the possible mechanism of vitamin-induced MN formation.
Collapse
Affiliation(s)
- Clara A Veloso
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Paulsen G, Cumming KT, Holden G, Hallén J, Rønnestad BR, Sveen O, Skaug A, Paur I, Bastani NE, Østgaard HN, Buer C, Midttun M, Freuchen F, Wiig H, Ulseth ET, Garthe I, Blomhoff R, Benestad HB, Raastad T. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol 2014; 592:1887-901. [PMID: 24492839 DOI: 10.1113/jphysiol.2013.267419] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4-6 × 4-6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30-60 min; 70-90% of HRmax). Maximal oxygen uptake (VO2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their VO2 max (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: -13 ± 54%; PGC-1α: -13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in VO2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.
Collapse
Affiliation(s)
- Gøran Paulsen
- Norwegian School of Sport Sciences, PB 4014 Ullevål Stadion, 0806 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
NASH is a common liver disease that increases liver-related mortality and reduces survival. The need for optimal management of NASH is therefore a priority for today's practicing hepatologist. The rationale for specific pharmacological therapy for NASH is based on the potential for disease progression and the difficulties that many patients have successfully implementing, in the long term, diet and lifestyle changes. Even in those that succeed, limited evidence exists that severe liver injury in patients with NASH can be reversed by diet and lifestyle measures alone. This Review provides a personal and critical assessment of the histological efficacy and safety of agents tested in randomized trials in patients with NASH.
Collapse
Affiliation(s)
- Vlad Ratziu
- Department of Hepatology and Gastroenterology, Hôpital Pitié Salpêtrière, 47-83 Boulevard de l'Hôpital, CdR Saint-Antoine, Paris 75651, France.
| |
Collapse
|
25
|
Srivastava Y, Semwal AD, Swamy MSL. Hypocholesterimic effects of cold and hot extracted virgin coconut oil (VCO) in comparison to commercial coconut oil: Evidence from a male wistar albino rat model. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0244-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
26
|
Craft BD, Kerrihard AL, Amarowicz R, Pegg RB. Phenol-Based Antioxidants and the In Vitro Methods Used for Their Assessment. Compr Rev Food Sci Food Saf 2012. [DOI: 10.1111/j.1541-4337.2011.00173.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Igado OO, Olopade JO, Adesida A, Aina OO, Farombi EO. Morphological and biochemical investigation into the possible neuroprotective effects of kolaviron (Garciniakola bioflavonoid) on the brains of rats exposed to vanadium. Drug Chem Toxicol 2012; 35:371-80. [DOI: 10.3109/01480545.2011.630005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Singal AK, Jampana SC, Weinman SA. Antioxidants as therapeutic agents for liver disease. Liver Int 2011; 31:1432-48. [PMID: 22093324 PMCID: PMC3228367 DOI: 10.1111/j.1478-3231.2011.02604.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 06/15/2011] [Indexed: 12/12/2022]
Abstract
Oxidative stress is commonly associated with a number of liver diseases and is thought to play a role in the pathogenesis of chronic hepatitis C, alcoholic liver disease, non-alcoholic steatohepatitis (NASH), haemochromatosis and Wilson's disease. Antioxidant therapy has thus been considered to have the possibility of beneficial effects in the management of these liver diseases. Despite this promise, antioxidants have produced mixed results in a number of clinical trials of efficacy. This review summarizes the results of clinical trials of antioxidants as sole or adjuvant therapy of chronic hepatitis C, alcoholic liver disease and non-alcoholic steatohepatitis (NASH). Overall, the most promising results to date are for vitamin E therapy of NASH but some encouraging results have been obtained with antioxidant therapy of acute alcoholic hepatitis as well. Despite evidence for small reductions of serum alanine aminotransferase, there is as yet no convincing evidence that antioxidant therapy itself is beneficial to patients with chronic hepatitis C. Problems such as small sample size, short follow up duration, inadequate endpoints, failure to demonstrate tissue delivery and antioxidant efficacy, and heterogeneous nature of the 'antioxidant' compounds used have complicated interpretation of results of the clinical studies. These limitations and their implications for future trial design are discussed.
Collapse
Affiliation(s)
- Ashwani K. Singal
- Department of Internal Medicine, University of Texas Medical Branch; Galveston, TX
| | - Sarat C. Jampana
- Department of Internal Medicine, University of Texas Medical Branch; Galveston, TX
| | - Steven A. Weinman
- Department of Internal Medicine; University of Kansas Medical Center; Kansas City, KS
| |
Collapse
|
29
|
Liposomal Antioxidants for Protection against Oxidant-Induced Damage. J Toxicol 2011; 2011:152474. [PMID: 21876690 PMCID: PMC3157762 DOI: 10.1155/2011/152474] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 04/13/2011] [Accepted: 05/24/2011] [Indexed: 12/26/2022] Open
Abstract
Reactive oxygen species (ROS), including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.
Collapse
|
30
|
Lott IT, Doran E, Nguyen VQ, Tournay A, Head E, Gillen DL. Down syndrome and dementia: a randomized, controlled trial of antioxidant supplementation. Am J Med Genet A 2011; 155A:1939-48. [PMID: 21739598 DOI: 10.1002/ajmg.a.34114] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/22/2011] [Indexed: 01/03/2023]
Abstract
Individuals with Down syndrome over age 40 years are at risk for developing dementia of the Alzheimer type and have evidence for chronic oxidative stress. There is a paucity of treatment trials for dementia in Down syndrome in comparison to Alzheimer disease in the general (non-Down syndrome) population. This 2-year randomized, double-blind, placebo-controlled trial assessed whether daily oral antioxidant supplementation (900 IU of alpha-tocopherol, 200 mg of ascorbic acid and 600 mg of alpha-lipoic acid) was effective, safe and tolerable for 53 individuals with Down syndrome and dementia. The outcome measures comprised a battery of neuropsychological assessments administered at baseline and every 6 months. Compared to the placebo group, those individuals receiving the antioxidant supplement showed neither an improvement in cognitive functioning nor a stabilization of cognitive decline. Mean plasma levels of alpha-tocopherol increased ~2-fold in the treatment group and were consistently higher than the placebo group over the treatment period. Pill counts indicated good compliance with the regimen. No serious adverse events attributed to the treatment were noted. We conclude that antioxidant supplementation is safe, though ineffective as a treatment for dementia in individuals with Down syndrome and Alzheimer type dementia. Our findings are similar to studies of antioxidant supplementation in Alzheimer disease in the general population. The feasibility of carrying out a clinical trial for dementia in Down syndrome is demonstrated.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics, School of Medicine, University of California, Irvine (UCI), Orange, California, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Secoisolariciresinol diglucoside determination in flaxseed (Linum usitatissimum L.) oil and application to a shelf life study. Food Chem 2011; 126:1553-8. [DOI: 10.1016/j.foodchem.2010.11.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/21/2010] [Accepted: 11/30/2010] [Indexed: 11/20/2022]
|
32
|
Wan-Ibrahim W, Sidik K, Kuppusamy U. A high antioxidant level in edible plants is associated with genotoxic properties. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.03.101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Zingg JM, Meydani M, Azzi A. alpha-Tocopheryl phosphate--an active lipid mediator? Mol Nutr Food Res 2010; 54:679-92. [PMID: 20169583 DOI: 10.1002/mnfr.200900404] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vitamin E (alpha-tocopherol, alphaT) derivative, alpha-tocopheryl phosphate (alphaTP), is detectable in small amounts in plasma, tissues, and cultured cells. Studies done in vitro and in vivo suggest that alphaT can become phosphorylated and alphaTP dephosphorylated, suggesting the existence of enzyme(s) with alphaT kinase or alphaTP phosphatase activity, respectively. As a supplement in animal studies, alphaTP can reach plasma concentrations similar to alphaT and only a part is dephosphorylated; thus, alphaTP may act both as pro-vitamin E, but also as phosphorylated form of vitamin E with possibly novel regulatory activities. Many effects of alphaTP have been described: in the test tube alphaTP modulates the activity of several enzymes; in cell culture alphaTP affects proliferation, apoptosis, signal transduction, and gene expression; in animal studies alphaTP prevents atherosclerosis, ischemia/reperfusion injury, and induces hippocampal long-term potentiation. At the molecular level, alphaTP may act as a cofactor for enzymes, as an active lipid mediator similar to other phosphorylated lipids, or indirectly by altering membrane characteristics such as lipid rafts, fluidity, and curvature. In this review, the molecular and cellular activities of alphaTP are examined and the possible functions of alphaTP as a natural compound, cofactor and active lipid mediator involved in signal transduction and gene expression discussed.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- JM USDA-Human Nutr. Res. Ctr. On Aging, Tufts University, Boston, MA, USA
| | | | | |
Collapse
|
34
|
Ascherio A, LeWitt PA, Xu K, Eberly S, Watts A, Matson WR, Marras C, Kieburtz K, Rudolph A, Bogdanov MB, Schwid SR, Tennis M, Tanner CM, Beal MF, Lang AE, Oakes D, Fahn S, Shoulson I, Schwarzschild MA. Urate as a predictor of the rate of clinical decline in Parkinson disease. ARCHIVES OF NEUROLOGY 2009; 66:1460-8. [PMID: 19822770 PMCID: PMC2795011 DOI: 10.1001/archneurol.2009.247] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The risk of Parkinson disease (PD) and its rate of progression may decline with increasing concentration of blood urate, a major antioxidant. OBJECTIVE To determine whether serum and cerebrospinal fluid concentrations of urate predict clinical progression in patients with PD. DESIGN, SETTING, AND PARTICIPANTS Eight hundred subjects with early PD enrolled in the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP) trial. The pretreatment urate concentration was measured in serum for 774 subjects and in cerebrospinal fluid for 713 subjects. MAIN OUTCOME MEASURES Treatment-, age-, and sex-adjusted hazard ratios (HRs) for clinical disability requiring levodopa therapy, the prespecified primary end point of the original DATATOP trial. RESULTS The HR of progressing to the primary end point decreased with increasing serum urate concentrations (HR for highest vs lowest quintile = 0.64; 95% confidence interval [CI], 0.44-0.94; HR for a 1-SD increase = 0.82; 95% CI, 0.73-0.93). In analyses stratified by alpha-tocopherol treatment (2000 IU/d), a decrease in the HR for the primary end point was seen only among subjects not treated with alpha-tocopherol (HR for a 1-SD increase = 0.75; 95% CI, 0.62-0.89; vs HR for those treated = 0.90; 95% CI, 0.75-1.08). Results were similar for the rate of change in the Unified Parkinson's Disease Rating Scale score. Cerebrospinal fluid urate concentration was also inversely related to both the primary end point (HR for highest vs lowest quintile = 0.65; 95% CI, 0.44-0.96; HR for a 1-SD increase = 0.89; 95% CI, 0.79-1.02) and the rate of change in the Unified Parkinson's Disease Rating Scale score. As with serum urate concentration, these associations were present only among subjects not treated with alpha-tocopherol. CONCLUSIONS Higher serum and cerebrospinal fluid urate concentrations at baseline were associated with slower rates of clinical decline. The findings strengthen the link between urate concentration and PD and the rationale for considering central nervous system urate concentration elevation as a potential strategy to slow PD progression.
Collapse
Affiliation(s)
- Alberto Ascherio
- Departments of Nutrition and Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gupta S, Sodhi S, Mahajan V. Correlation of antioxidants with lipid peroxidation and lipid profile in patients suffering from coronary artery disease. Expert Opin Ther Targets 2009; 13:889-94. [DOI: 10.1517/14728220903099668] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Abudu N, Miller JJ, Levinson SS. Fibrinogen is a co-antioxidant that supplements the vitamin E analog trolox in a model system. Free Radic Res 2009; 40:321-31. [PMID: 16484048 DOI: 10.1080/10715760500488998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE It appears that the atherosclerotic plaque is a prooxidant environment where some molecules that are normally antioxidants, including vitamins C and E, may act as prooxidants that contribute to atherosclerosis by oxidizing LDL. Some molecules can act as co-antioxidants to eliminate this prooxidant effect by recycling or other mechanisms of supplementation. Fibrinogen and other acute phase proteins found in the plaque are antioxidants. We hypothesized that fibrinogen can act as a co-antioxidant to supplement vitamin E thereby eliminating its oxidative effect under prooxidant conditions. We tested a model system for this hypothesis using the vitamin E analogue Trolox in a cell free system. METHODS LDL was oxidized using 5 umol/l copper. Antioxidant conditions were achieved by adding the antioxidants immediately with LDL, while prooxidant conditions were created by adding antioxidants after a 40 min delay. Oxidation was monitored as the lag phase at 234 nm. RESULTS Under antioxidant conditions, the protective effect of fibrinogen and Trolox combined together were about equal to the sum of the anitioxidant effects of each alone (additive), while under prooxidant conditions the combined protection was 54-200% greater (synergistic). These effects were different than those of vitamin C with Trolox in that under antioxidant conditions fibrinogen and Trolox were additive while vitamin C and Trolox showed strong synergistic effects, and in that unlike vitamin C and Trolox fibrinogen showed no prooxidant tendencies under prooxidant reaction conditions. CONCLUSIONS The data indicated that fibrinogen did act as a co-antioxidant to supplement Trolox and eliminate its prooxidant effect, most probably, by directly quenching the phenoxyl radical, because unlike vitamin C, fibrinogen did not appear to recycle vitamin E. But fibrinogen may act as a universal antioxidant, since unlike Trolox and vitamin C, it showed little tendency toward becoming a prooxidant.
Collapse
Affiliation(s)
- Ntei Abudu
- Department of Pathology and Laboratory Medicine, University of Louisville, KY, 40292, USA
| | | | | |
Collapse
|
37
|
Vincent HK, Bourguignon CM, Weltman AL, Vincent KR, Barrett E, Innes KE, Taylor AG. Effects of antioxidant supplementation on insulin sensitivity, endothelial adhesion molecules, and oxidative stress in normal-weight and overweight young adults. Metabolism 2009; 58:254-62. [PMID: 19154960 PMCID: PMC3325609 DOI: 10.1016/j.metabol.2008.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
The objective of the study was to determine whether short-term antioxidant (AOX) supplementation affects insulin sensitivity, endothelial adhesion molecule levels, and oxidative stress in overweight young adults. A randomized, double-blind, controlled study tested the effects of AOXs on measures of insulin sensitivity (homeostasis model assessment [HOMA]) and quantitative insulin sensitivity check index), endothelial adhesion molecules (soluble intercellular adhesion molecule-1, vascular adhesion molecule, and endothelial-leukocyte adhesion molecule-1), adiponectin, and oxidative stress (lipid hydroperoxides) in overweight and normal-weight individuals (N = 48, 18-30 years). Participants received either AOX (vitamin E, 800 IU; vitamin C, 500 mg; beta-carotene, 10 mg) or placebo for 8 weeks. The HOMA values were initially higher in the overweight subjects and were lowered with AOX by week 8 (15% reduction, P = .02). Adiponectin increased in both AOX groups. Soluble intercellular adhesion molecule-1 and endothelial-leukocyte adhesion molecule-1 decreased in overweight AOX-treated groups by 6% and 13%, respectively (P < .05). Plasma lipid hydroperoxides were reduced by 0.31 and 0.70 nmol/mL in the normal-weight and overweight AOX-treated groups, respectively, by week 8 (P < .05). Antioxidant supplementation moderately lowers HOMA and endothelial adhesion molecule levels in overweight young adults. A potential mechanism to explain this finding is the reduction in oxidative stress by AOX. Long-term studies are needed to determine whether AOXs are effective in suppressing diabetes or vascular activation over time.
Collapse
Affiliation(s)
- Heather K Vincent
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, PO Box 112727, FL 32608, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Katsiki N, Manes C. Is there a role for supplemented antioxidants in the prevention of atherosclerosis? Clin Nutr 2008; 28:3-9. [PMID: 19042058 DOI: 10.1016/j.clnu.2008.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/20/2008] [Accepted: 10/28/2008] [Indexed: 12/13/2022]
Abstract
BACKGROUND Oxidative stress is thought to play a substantial role in the pathogenesis of atherosclerosis. Supplementation of antioxidants has been studied as a strategy in the prevention of occurrence and progression of atherosclerosis. METHOD We searched the MEDLINE and PubMed databases (up to February 2008) for randomized, double-blind, placebo-controlled trials of antioxidant (and in particular vitamins E, C and/or beta-carotene) supplementation, published in English. RESULTS We identified 22 trials (N=134,590 subjects) of antioxidant supplementation for the prevention of atherosclerosis (7 primary, 13 secondary and 2 both primary and secondary). Of these studies, 10 examined the effect of a single antioxidant supplementation on primary or secondary prevention of cardiovascular disease, while 12 the effect of a combination of antioxidants. CONCLUSION As the majority of studies included in this review does not support a possible role of antioxidant supplementation in reducing the risk of cardiovascular disease, no definite conclusion can be drawn to justify the use of antioxidant vitamin supplements for the prevention of atherosclerotic events.
Collapse
Affiliation(s)
- Niki Katsiki
- Department of Internal Medicine and Diabetes Center, University Hospital G Papageorgiou, Thessaloniki, Greece.
| | | |
Collapse
|
39
|
Zingg JM, Azzi A, Meydani M. Genetic polymorphisms as determinants for disease-preventive effects of vitamin E. Nutr Rev 2008; 66:406-14. [DOI: 10.1111/j.1753-4887.2008.00050.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
40
|
Nagaraju A, Belur LR. Rats fed blended oils containing coconut oil with groundnut oil or olive oil showed an enhanced activity of hepatic antioxidant enzymes and a reduction in LDL oxidation. Food Chem 2008; 108:950-7. [DOI: 10.1016/j.foodchem.2007.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 10/30/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
|
41
|
Protecting antioxidative effects of vitamins E and C in experimental physical stress. J Physiol Biochem 2008; 63:187-94. [PMID: 18309774 DOI: 10.1007/bf03165781] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Like every redox-active compound vitamin E may exert pro-oxidative and antioxidative effects depending on the reaction partners present. In this work we evaluated the intensity of oxidative stress produced by a physical exercise through swimming as well as of protecting action of antioxidant vitamins E and C. Antioxidant systems include antioxidant enzymes: superoxide-dismutase (SOD), catalase (CAT), glutathion peroxidase (GSH-Px), as well as of components with an antioxidant action of the reduced glutathion type (GSH) and vitamins E and C. We determine the activities of these enzymes in the erythrocytes and heart homogenate. Our results points out a protective effect against oxidative stress produced by swimming in animals treated with vitamins E and C, which are expressed through the diminution of the malondialdehyde (MDA) quantity both in erythrocytes and in the heart, and through the conservation of GSH content in both products. CAT and GSH-Px activities decrease while that of SOD increases on both tissues, but with different intensities in accordance with the variation of protection degree performed by the vitamin couple on these tissues. The obtained data underline the necessity of intensifying the means of endogenous antiradical defence with exogenous antioxidant vitamins C and E. This study highlights the need of a proper vitamin supplement in organism under stress.
Collapse
|
42
|
Siekmeier R, Steffen C, März W. Role of oxidants and antioxidants in atherosclerosis: results of in vitro and in vivo investigations. J Cardiovasc Pharmacol Ther 2008; 12:265-82. [PMID: 18172221 DOI: 10.1177/1074248407299519] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Both in vitro and in vivo studies have shown that oxidants are central in the development of atherosclerosis. Consequently, additional studies evaluated the protective effects of various natural and synthetic antioxidants, alone and in combination, with most studies focusing on alpha-tocopherol (vitamin E). Here, we summarize the role of oxidants in the pathomechanism of atherosclerosis. We also discuss epidemiological studies and others focused on the protective effect of vitamin E against atherosclerosis. Other antioxidants are also considered if they were included in studies involving vitamin E. The protective effect of antioxidants on atherosclerotic pathomechanisms has been confirmed in vitro, but only in some animal studies. Various epidemiological and observational studies have produced conflicting results on the protective effect of antioxidants. Most studies of primary or secondary prevention failed to show a protective effect. These conflicting results are biased by a number of factors, including differences between the study groups. Therefore, we describe these studies in detail.
Collapse
Affiliation(s)
- Rüdiger Siekmeier
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| | | | | |
Collapse
|
43
|
Heinen MM, Hughes MC, Ibiebele TI, Marks GC, Green AC, van der Pols JC. Intake of antioxidant nutrients and the risk of skin cancer. Eur J Cancer 2007; 43:2707-16. [PMID: 17988857 DOI: 10.1016/j.ejca.2007.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/04/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
To investigate the associations between intake of antioxidant nutrients and risk of basal cell (BCC) and squamous cell carcinomas (SCC) of the skin, we carried out a prospective study among 1001 randomly selected adults living in an Australian community. Intake of antioxidants was estimated in 1996. Incident, histologically-confirmed BCC and SCC were recorded between 1996 and 2004. High dietary intake of lutein and zeaxanthin was associated with a reduced incidence of SCC in persons who had a history of skin cancer at baseline (highest versus lowest tertile, multivariable adjusted relative risk (RR)=0.47, 95% confidence interval (CI): 0.25-0.89; P for trend=0.02). In persons without a history of skin cancer at baseline, development of BCC was positively associated with intake of vitamins C and E from foods plus supplements (RR=3.1, 95% CI: 1.1-8.6; P for trend=0.03 and RR=2.6, 95% CI: 1.1-6.3; P for trend=0.02, respectively). In those with a skin cancer history at baseline, dietary intake in the second tertile for beta-carotene (multivariable adjusted RR=2.2, 95% CI: 1.2-4.1) and for vitamin E (multivariable adjusted RR=2.1, 95% CI: 1.1-3.9) was associated with increased BCC risk, with no trend, and similar results were seen in those with a specific history of BCC. These data suggest quite different associations between antioxidant intake and SCC compared with BCC, consistent with other evidence of their different causal pathways.
Collapse
Affiliation(s)
- Mirjam M Heinen
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Vitamin C is required for collagen synthesis and biosynthesis of certain hormones and recommended dietary intake levels are largely based these requirements. However, to function effectively as an antioxidant (or a pro-oxidant), relatively high levels of this vitamin must be maintained in the body. The instability of vitamin C combined with its relatively poor intestinal absorption and ready excretion from the body reduce physiological availability of this vitamin. This inability to maintain high serum levels of vitamin C may have serious health implications and is particularly relevant in the onset and progression of degenerative disease, such as cancer and cardiovascular disease (CVD), which have a strong contributing oxidative damage factor. In this review, we examine recent studies on the regulation of transport mechanisms for vitamin C, related clinical ramifications, and potential implications in high-dose vitamin C therapy. We also evaluate recent clinical and scientific evidence on the effects of this vitamin on cancer and CVD, with focus on the key mechanisms of action that may contribute to the therapeutic potential of this vitamin in these diseases. Several animal models that could be utilized to address unresolved questions regarding the feasibility of vitamin C therapy are also discussed.
Collapse
Affiliation(s)
- Yi Li
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | |
Collapse
|
45
|
Munteanu A, Zingg JM. Cellular, molecular and clinical aspects of vitamin E on atherosclerosis prevention. Mol Aspects Med 2007; 28:538-90. [PMID: 17825403 DOI: 10.1016/j.mam.2007.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 02/07/2023]
Abstract
Randomised clinical trials and epidemiologic studies addressing the preventive effects of vitamin E supplementation against cardiovascular disease reported both positive and negative effects, and recent meta-analyses of the clinical studies were rather disappointing. In contrast to that, many animal studies clearly show a preventive action of vitamin E in several experimental settings, which can be explained by the molecular and cellular effects of vitamin E observed in cell cultures. This review is focusing on the molecular effects of vitamin E on the cells playing a role during atherosclerosis, in particular on the endothelial cells, vascular smooth muscle cells, monocytes/macrophages, T cells, and mast cells. Vitamin E may act by normalizing aberrant signal transduction and gene expression in antioxidant and non-antioxidant manners; in particular, over-expression of scavenger receptors and consequent foam cell formation can be prevented by vitamin E. In addition to that, the cellular effects of alpha-tocopheryl phosphate and of EPC-K1, a composite molecule between alpha-tocopheryl phosphate and l-ascorbic acid, are summarized.
Collapse
Affiliation(s)
- Adelina Munteanu
- Physiology Department, Faculty of Medicine, University of Medicine and Pharmacy Bucharest, Romania
| | | |
Collapse
|
46
|
Estany S, Palacio JR, Barnadas R, Sabes M, Iborra A, Martínez P. Antioxidant activity of N-acetylcysteine, flavonoids and α-tocopherol on endometrial cells in culture. J Reprod Immunol 2007; 75:1-10. [PMID: 17343919 DOI: 10.1016/j.jri.2007.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/18/2006] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
An appropriate local environment is necessary for successful implantation. Oxidative stress is implicated in the pathogenesis of several pathologies, and may contribute to early pregnancy failure. Antioxidant therapies have been studied in infertility. In this study, we have assessed the antioxidant activity of N-acetylcysteine (NAC), flavonoids (quercetin, catechin) and alpha-tocopherol in an oxidative model of endometrial cells (RL95). Endometrial cells were incubated at several hydrogen peroxide concentrations. Antioxidant effects of NAC (15 mM), quercetin (150 microM), catechin (150 microM) and alpha-tocopherol included in liposomes (1.6 microg) were assessed by measuring cell viability by the MTT assay. Alpha-tocopherol-liposomes taken up by endometrial cells were assessed by HPLC. All liposomes used were able to introduce alpha-tocopherol into cells. The antioxidant effect of NAC and quercetin improved the viability of oxidised cells, and this effect was observed when the oxidant and antioxidant were coincubated. No viability change occurred when the antioxidant was added before or after the oxidant. The antioxidant effect of NAC was better than that of quercetin. When catechin or alpha-tocopherol were used in the same conditions, no antioxidant effect was detected in cells in culture. These results demonstrate that NAC and quercetin are good H2O2 scavengers.
Collapse
Affiliation(s)
- S Estany
- Universidad Autónoma de Barcelona, Instituto de Biotecnología y de Biomedicina, Campus de Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Villacorta L, Azzi A, Zingg JM. Regulatory role of vitamins E and C on extracellular matrix components of the vascular system. Mol Aspects Med 2007; 28:507-37. [PMID: 17624419 DOI: 10.1016/j.mam.2007.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 05/17/2007] [Indexed: 12/14/2022]
Abstract
The protective effect of vitamins E (alpha-tocopherol) and C (L-ascorbic acid) in the prevention of cardiovascular disease (CVD) has been shown in a number of situations but a secure correlation is not universally accepted. Under certain conditions, both, L-ascorbic acid and alpha-tocopherol can exhibit antioxidant properties and thus may reduce the formation of oxidized small molecules, proteins and lipids, which are a possible cause of cellular de-regulation. However, non-antioxidant effects have also been suggested to play a role in the prevention of atherosclerosis. Vitamin E and C can modulate signal transduction and gene expression and thus affect many cellular reactions such as the proliferation of smooth muscle cells, the expression of cell adhesion and extracellular matrix molecules, the production of O(2)(-) by NADPH-oxidase, the aggregation of platelets and the inflammatory response. Vitamins E and C may modulate the extracellular matrix environment by affecting VSMC differentiation and the expression of connective tissue proteins involved in vascular remodeling as well as the maintenance of vascular wall integrity. This review summarizes individually the molecular activities of vitamins E and C on the cells within the connective tissue of the vasculature, which are centrally involved in the maintenance of an intact vascular wall as well as in the repair of atherosclerotic lesions during disease development.
Collapse
Affiliation(s)
- Luis Villacorta
- Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
48
|
Orhan H. Analyses of representative biomarkers of exposure and effect by chromatographic, mass spectrometric, and nuclear magnetic resonance techniques: method development and application in life sciences. J Sep Sci 2007; 30:149-74. [PMID: 17390611 DOI: 10.1002/jssc.200600322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biomarkers are essential tools in monitoring studies, which include environmental monitoring, biological monitoring, biological effect monitoring, and health surveillance, as well as drug development processes. Their discovery, validation, and analysis require highly sensitive and selective analytical technologies. In this regard, gas and liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy have facilitated great achievements in all these areas. In addition and closely related to biomarkers, the ongoing developments in these techniques promise a better understanding of the nature and mechanisms of toxic effects originating from various chemical, biological, or physical sources. This Review compiles studies performed on selected biomarkers with respect to both method development and application. Section 1 summarizes the concept of biomarkers; their application in various industrial/occupational, agricultural, drug developmental, and medical/clinical platforms. This section also focuses on biotransformation studies in close relation to biomarker discovery and validation, and on major techniques utilized in this area. In Section 2, biotransformation of volatile anesthetics in humans with a focus on mercapturic acid derivatives as potential biomarkers of effect is reviewed. The use of GC-ECD, GC/MS, and 19F-NMR in these studies is described. Section 3 focuses on the analysis of aldehydic lipid peroxidation degradation products by GC-ECD in mammalian cells in which oxidative stress induced chemically, and in humans after various challenges; anesthetic exposure, ischemia-reperfusion, and controlled endurance exercise. In Section 4, method development for protein and DNA oxidation products by LC-tandem MS and its application in mammalian cells and in humans are summarized. Possibilities, limitations, and future perspectives are discussed in Section 5.
Collapse
Affiliation(s)
- Hilmi Orhan
- Department of Toxicology, Faculty of Pharmacy, Ege University, 35100 Bornova-Izmir, Turkey.
| |
Collapse
|
49
|
Kool J, Van Liempd SM, Harmsen S, Schenk T, Irth H, Commandeur JNM, Vermeulen NPE. An on-line post-column detection system for the detection of reactive-oxygen-species-producing compounds and antioxidants in mixtures. Anal Bioanal Chem 2007; 388:871-9. [PMID: 17468853 PMCID: PMC1914274 DOI: 10.1007/s00216-007-1296-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 01/04/2023]
Abstract
Reactive oxygen species (ROS) can damage proteins, cause lipid peroxidation, and react with DNA, ultimately resulting in harmful effects. Antioxidants constitute one of the defense systems used to neutralize pro-oxidants. Since pro-oxidants and antioxidants are found ubiquitously in nature, pro-and antioxidant effects of individual compounds and of mixtures receive much attention in scientific research. A major bottleneck in these studies, however, is the identification of the individual pro-oxidants and antioxidants in mixtures. Here, we describe the development and validation of an on-line post-column biochemical detection system for ROS-producing compounds and antioxidants in mixtures. Inclusion of cytochrome P450s and cytochrome P450 reductase also permitted the screening of compounds that need bioactivation to exert their ROS-producing properties. This pro-oxidant and antioxidant detection system was integrated on-line with gradient HPLC. The resulting high-resolution screening technology was able to separate mixtures of ROS-producing compounds and antioxidants, allowing each species to be characterized rapidly and sensitively.
Collapse
Affiliation(s)
- Jeroen Kool
- LACDR-Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Sebastiaan M. Van Liempd
- LACDR-Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Stefan Harmsen
- LACDR-Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Tim Schenk
- Kiadis B.V., 9747 AN Groningen, The Netherlands
| | | | - Jan N. M. Commandeur
- LACDR-Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- LACDR-Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
50
|
Ward NC, Wu JHY, Clarke MW, Puddey IB, Burke V, Croft KD, Hodgson JM. The effect of vitamin E on blood pressure in individuals with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J Hypertens 2007; 25:227-34. [PMID: 17143195 DOI: 10.1097/01.hjh.0000254373.96111.43] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Oxidative stress has been suggested to play a role in the development of diabetes, hypertension and vascular dysfunction. Vitamin E, a major lipid-soluble dietary antioxidant, has two major dietary forms, alpha-tocopherol and gamma-tocopherol. The potential importance of gamma-tocopherol has largely been overlooked. Our aim was to investigate the effect of alpha-tocopherol and gamma-tocopherol supplementation on 24-h ambulatory blood pressure (BP) and heart rate, vascular function and oxidative stress in individuals with type 2 diabetes. METHOD Fifty-eight individuals with type 2 diabetes were randomized in a double-blind, placebo-controlled trial. Participants were randomized to a daily dose of 500 mg/day RRR-alpha-tocopherol, 500 mg/day mixed tocopherols (60% gamma-tocopherol) or placebo for 6 weeks. Primary endpoints were 24-h ambulatory BP and heart rate, endothelium-dependent and independent vasodilation and plasma and urinary F2-isoprostanes. RESULTS Treatment with alpha-tocopherol significantly increased systolic BP [7.0 (5.2, 8.8) mmHg, P < 0.0001], diastolic BP [5.3 (4.0, 6.5) mmHg, P < 0.0001], pulse pressure [1.8 (0.6, 3.0) mmHg, P < 0.005] and heart rate [2.0 (0.6, 3.3) bpm, P < 0.005] versus placebo. Treatment with mixed tocopherols significantly increased systolic BP [6.8 (4.9, 8.6) mmHg, P < 0.0001], diastolic BP [3.6 (2.3, 4.9) mmHg, P < 0.0001], pulse pressure [3.2 (2.0, 4.4) mmHg, P < 0.0001] and heart rate [1.8 (0.5, 3.2) bpm, P < 0.01] versus placebo. Treatment with alpha-tocopherol or mixed tocopherols significantly reduced plasma F2-isoprostanes versus placebo, but had no effect on urinary F2-isoprostanes. Endothelium-dependent and independent vasodilation was not affected by either treatment. CONCLUSION In contrast to our initial hypothesis, treatment with either alpha- or mixed tocopherols significantly increased BP, pulse pressure and heart rate in individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Natalie C Ward
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | |
Collapse
|