1
|
Chu X, Tian Y, Lv C. Decoding the spatiotemporal heterogeneity of tumor-associated macrophages. Mol Cancer 2024; 23:150. [PMID: 39068459 PMCID: PMC11282869 DOI: 10.1186/s12943-024-02064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal in cancer progression, influencing tumor growth, angiogenesis, and immune evasion. This review explores the spatial and temporal heterogeneity of TAMs within the tumor microenvironment (TME), highlighting their diverse subtypes, origins, and functions. Advanced technologies such as single-cell sequencing and spatial multi-omics have elucidated the intricate interactions between TAMs and other TME components, revealing the mechanisms behind their recruitment, polarization, and distribution. Key findings demonstrate that TAMs support tumor vascularization, promote epithelial-mesenchymal transition (EMT), and modulate extracellular matrix (ECM) remodeling, etc., thereby enhancing tumor invasiveness and metastasis. Understanding these complex dynamics offers new therapeutic targets for disrupting TAM-mediated pathways and overcoming drug resistance. This review underscores the potential of targeting TAMs to develop innovative cancer therapies, emphasizing the need for further research into their spatial characteristics and functional roles within the TME.
Collapse
Affiliation(s)
- Xiangyuan Chu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, P. R. China.
| |
Collapse
|
2
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Zhang C, Lei L, Yang X, Ma K, Zheng H, Su Y, Jiao A, Wang X, Liu H, Zou Y, Shi L, Zhou X, Sun C, Hou Y, Xiao Z, Zhang L, Zhang B. Single-cell sequencing reveals antitumor characteristics of intratumoral immune cells in old mice. J Immunother Cancer 2021; 9:jitc-2021-002809. [PMID: 34642245 PMCID: PMC8513495 DOI: 10.1136/jitc-2021-002809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Aging has long been thought to be a major risk factor for various types of cancers. However, accumulating evidence indicates increased resistance of old animals to tumor growth. An in-depth understanding of how old individuals defend against tumor invasion requires further investigations. Methods We revealed age-associated alterations in tumor-infiltrating immune cells between young and old mice using single-cell RNA and coupled T cell receptor (TCR) sequencing analysis. Multiple bioinformatics methods were adopted to analyze the characteristics of the transcriptome between two groups. To explore the impacts of young and old CD8+ T cells on tumor growth, mice were treated with anti-CD8 antibody every 3 days starting 7 days after tumor inoculation. Flow cytometry was used to validate the differences indicated by sequencing analysis between young and old mice. Results We found a higher proportion of cytotoxic CD8+ T cells, naturally occurring Tregs, conventional dendritic cell (DC), and M1-like macrophages in tumors of old mice compared with a higher percentage of exhausted CD8+ T cells, induced Tregs, plasmacytoid DC, and M2-like macrophages in young mice. Importantly, TCR diversity analysis showed that top 10 TCR clones consisted primarily of exhausted CD8+ T cells in young mice whereas top clones were predominantly cytotoxic CD8+ T cells in old mice. Old mice had more CD8+ T cells with a ‘progenitor’ and less ‘terminally’ exhausted phenotypes than young mice. Consistently, trajectory inference demonstrated that CD8+ T cells preferentially differentiated into cytotoxic cells in old mice in contrast to exhausted cells in young mice. Importantly, elimination of CD8+ T cells in old mice during tumor growth significantly accelerated tumor development. Moreover, senescent features were demonstrated in exhausted but not cytotoxic CD8+ T cells regardless of young and old mice. Conclusions Our data revealed that a significantly higher proportion of effector immune cells in old mice defends against tumor progression, providing insights into understanding the altered kinetics of cancer development and the differential response to immunotherapeutic modulation in elderly patients.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Kaili Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujing Zou
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhengtao Xiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China .,Suzhou Institute of Systems Medicine, Suzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China .,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| |
Collapse
|
4
|
Phytogalactolipid dLGG Inhibits Mouse Melanoma Brain Metastasis through Regulating Oxylipin Activity and Re-Programming Macrophage Polarity in the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13164120. [PMID: 34439274 PMCID: PMC8391228 DOI: 10.3390/cancers13164120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Metastatic brain melanoma is a common metastatic cancer with a high mortality rate. Current clinical regimens use the anti-angiogenesis drug bevacizumab (Avastin) and/or Lipo-DOX, a drug capable penetrating the blood–brain barrier; however, both commonly result in adverse side effects and limited treatment results. This study provides evidence to support the function of a phyto-glyceroglycolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG) in inhibiting melanoma brain metastasis (MBM) in mice through reprogramming the tumor microenvironment and interacting with melanoma cells and macrophages. The novel function of oxylipin 9,10-EpOMEs + 12,13-EpOMEs in preventing melanoma cell invasion and microglia/macrophage distribution and polarization in the tumor microenvironment is presented. The novel anti-melanoma function and underlying molecular mechanism of dLGG proposed herein can be considered as a novel therapeutic strategy to combat MBM. Abstract Current conventional cancer therapies for melanoma brain metastasis (MBM) remain ineffective. In this study, we demonstrated the bioefficacy of a phyto-glyceroglycolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG) alone, or in combination with liposomal doxorubicin (Lip-DOX) or Avastin against MBM in a syngeneic B16BM4COX−2/Luc brain-seeking melanoma mouse model. Treatment with dLGG–10, dLGG–25, dLGG–10 + Avastin–5, Lipo-DOX–2, dLGG–10 + Lipo-DOX–2 or Lipo-DOX–2 + Avastin–5 suppressed, respectively, 17.9%, 59.1%, 55.7%, 16.2%, 44.5% and 72.4% of MBM in mice relative to the untreated tumor control. Metastatic PD-L1+ melanoma cells, infiltration of M2-like macrophages and CD31+ endothelial cells, and high expression levels of 15-LOX/CYP450 4A enzymes in the brain tumor microenvironment of the tumor control mice were significantly attenuated in dLGG-treated mice; conversely, M1-like resident microglia and cytotoxic T cells were increased. A lipidomics study showed that dLGG promoted B16BM4 cells to secrete oxylipins 9,10-/12,13-EpOMEs into the culture medium. Furthermore, the conditioned medium of B16BM4 cells pretreated with dLGG or 9,10-EpOMEs + 12,13-EpOMEs drove M2-like macrophages to polarize into M1-like macrophages in vitro. An ex vivo 3D-culture assay further demonstrated that dLGG, 9,10-EpOME or 9,10-EpOME + 12,13-EpOME pretreatment attenuated B16BM4 cells invading brain tissue, and prevented microglia/macrophages infiltrating into the interface of melanoma plug and brain organ/tissue. In summary, this report provides a novel therapeutic strategy and mechanistic insights into phytogalactolipid dLGG for combating MBM.
Collapse
|
5
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
6
|
Shen Q, Reedijk M. Notch Signaling and the Breast Cancer Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:183-200. [PMID: 33034033 DOI: 10.1007/978-3-030-55031-8_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Notch promotes breast cancer progression through tumor initiating cell maintenance, tumor cell fate specification, proliferation, survival, and motility. In addition, Notch is recognized as a decisive mechanism in regulating various juxtacrine and paracrine communications in the tumor microenvironment (TME). In this chapter, we review recent studies on stress-mediated Notch activation within the TME and sequelae such as angiogenesis, extracellular matrix remodeling, changes in the innate and adaptive immunophenotype, and therapeutic perspectives.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael Reedijk
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
7
|
Poltavets AS, Vishnyakova PA, Elchaninov AV, Sukhikh GT, Fatkhudinov TK. Macrophage Modification Strategies for Efficient Cell Therapy. Cells 2020; 9:E1535. [PMID: 32599709 PMCID: PMC7348902 DOI: 10.3390/cells9061535] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages, important cells of innate immunity, are known for their phagocytic activity, capability for antigen presentation, and flexible phenotypes. Macrophages are found in all tissues and therefore represent an attractive therapeutic target for the treatment of diseases of various etiology. Genetic programming of macrophages is an important issue of modern molecular and cellular medicine. The controllable activation of macrophages towards desirable phenotypes in vivo and in vitro will provide effective treatments for a number of inflammatory and proliferative diseases. This review is focused on the methods for specific alteration of gene expression in macrophages, including the controllable promotion of the desired M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotypes in certain pathologies or model systems. Here we review the strategies of target selection, the methods of vector delivery, and the gene editing approaches used for modification of macrophages.
Collapse
Affiliation(s)
- Anastasiya S. Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
| | - Polina A. Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia;
| | - Andrey V. Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
- Department of Histology, Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia; (A.S.P.); (A.V.E.); (G.T.S.)
| | - Timur Kh. Fatkhudinov
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia;
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| |
Collapse
|
8
|
Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020; 8:351. [PMID: 32509781 PMCID: PMC7249856 DOI: 10.3389/fcell.2020.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex network of epithelial and stromal cells, wherein stromal components provide support to tumor cells during all stages of tumorigenesis. Among these stromal cell populations are myeloid cells, which are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN). Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by providing growth factors and metabolites, increasing angiogenesis, as well as promoting immune evasion through the creation of an immune-suppressive microenvironment. Immunosuppression in the TME is achieved by preventing critical anti-tumor immune responses by natural killer and T cells within the primary tumor and in metastatic niches. Therapeutic success in targeting myeloid cells in malignancies may prove to be an effective strategy to overcome chemotherapy and immunotherapy limitations. Current therapeutic approaches to target myeloid cells in various cancers include inhibition of their recruitment, alteration of function, or functional re-education to an antitumor phenotype to overcome immunosuppression. In this review, we describe strategies to target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted approaches and combination therapies including chemotherapy and immunotherapy. We also summarize recent molecular targets that are specific to myeloid cell populations in the TME, while providing a critical review of the limitations of current strategies aimed at targeting a single subtype of the myeloid cell compartment. The goal of this review is to provide the reader with an understanding of the critical role of myeloid cells in the TME and current therapeutic approaches including ongoing or recently completed clinical trials.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Subhash C Chauhan
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Hematology Oncology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
9
|
Hatcher A, Yu K, Meyer J, Aiba I, Deneen B, Noebels JL. Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model. J Clin Invest 2020; 130:2286-2300. [PMID: 32250339 PMCID: PMC7190940 DOI: 10.1172/jci133316] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Seizures often herald the clinical appearance of gliomas or appear at later stages. Dissecting their precise evolution and cellular pathogenesis in brain malignancies could inform the development of staged therapies for these highly pharmaco-resistant epilepsies. Studies in immunodeficient xenograft models have identified local interneuron loss and excess glial glutamate release as chief contributors to network disinhibition, but how hyperexcitability in the peritumoral microenvironment evolves in an immunocompetent brain is unclear. We generated gliomas in WT mice via in utero deletion of key tumor suppressor genes and serially monitored cortical epileptogenesis during tumor infiltration with in vivo electrophysiology and GCAMP7 calcium imaging, revealing a reproducible progression from hyperexcitability to convulsive seizures. Long before seizures, coincident with loss of inhibitory cells and their protective scaffolding, gain of glial glutamate antiporter xCT expression, and reactive astrocytosis, we detected local Iba1+ microglial inflammation that intensified and later extended far beyond tumor boundaries. Hitherto unrecognized episodes of cortical spreading depolarization that arose frequently from the peritumoral region may provide a mechanism for transient neurological deficits. Early blockade of glial xCT activity inhibited later seizures, and genomic reduction of host brain excitability by deleting MapT suppressed molecular markers of epileptogenesis and seizures. Our studies confirmed xenograft tumor-driven pathobiology and revealed early and late components of tumor-related epileptogenesis in a genetically tractable, immunocompetent mouse model of glioma, allowing the complex dissection of tumor versus host pathogenic seizure mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey L. Noebels
- Department of Neuroscience
- Department of Neurology, and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Molecular and Clinical Insights into the Invasive Capacity of Glioblastoma Cells. JOURNAL OF ONCOLOGY 2019; 2019:1740763. [PMID: 31467533 PMCID: PMC6699388 DOI: 10.1155/2019/1740763] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
Abstract
The invasive capacity of GBM is one of the key tumoral features associated with treatment resistance, recurrence, and poor overall survival. The molecular machinery underlying GBM invasiveness comprises an intricate network of signaling pathways and interactions with the extracellular matrix and host cells. Among them, PI3k/Akt, Wnt, Hedgehog, and NFkB play a crucial role in the cellular processes related to invasion. A better understanding of these pathways could potentially help in developing new therapeutic approaches with better outcomes. Nevertheless, despite significant advances made over the last decade on these molecular and cellular mechanisms, they have not been translated into the clinical practice. Moreover, targeting the infiltrative tumor and its significance regarding outcome is still a major clinical challenge. For instance, the pre- and intraoperative methods used to identify the infiltrative tumor are limited when trying to accurately define the tumor boundaries and the burden of tumor cells in the infiltrated parenchyma. Besides, the impact of treating the infiltrative tumor remains unclear. Here we aim to highlight the molecular and clinical hallmarks of invasion in GBM.
Collapse
|
11
|
Morisse MC, Jouannet S, Dominguez-Villar M, Sanson M, Idbaih A. Interactions between tumor-associated macrophages and tumor cells in glioblastoma: unraveling promising targeted therapies. Expert Rev Neurother 2018; 18:729-737. [PMID: 30099909 DOI: 10.1080/14737175.2018.1510321] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the deadliest primary malignant central nervous system (CNS) tumor with a median overall survival of 15 months despite a very intensive therapeutic regimen including maximal safe surgery, radiotherapy, and chemotherapy. Therefore, GBM treatment still raises major biological and therapeutic challenges. Areas covered: One of the hallmarks of the GBM is its tumor microenvironment including tumor-associated macrophages (TAM). TAM, accounting for approximately 30% of the GBM bulk cell population, may explain, at least in part, the immunosuppressive features of GBMs. The TAM are active and highly plastic immune cells and include two major ontogenetically different cell populations: (i) microglia and, (ii) monocytes-derived macrophages (MDM). TAM recruited to the tumor bulk can be reprogramed by GBM cells resulting in an ineffective anti-tumor response. Interestingly, interactions between TAM and GBM cells promote tumor oncogenesis (i.e. tumor cells proliferation and migration/invasion). This review aims to explore TAM targeting in GBM as a promising therapeutic option in the near future. Expert Commentary: A better understanding of TAM-GBM interactions and dynamics will certainly uncover new anti-GBM therapeutic avenues.
Collapse
Affiliation(s)
- Mony Chenda Morisse
- a Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP , Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix , Service de Neurologie 2-Mazarin, Paris , France.,b Department of Medical Oncology , CHU Sud , Amiens , France
| | - Stéphanie Jouannet
- a Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP , Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix , Service de Neurologie 2-Mazarin, Paris , France
| | | | - Marc Sanson
- a Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP , Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix , Service de Neurologie 2-Mazarin, Paris , France
| | - Ahmed Idbaih
- a Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP , Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix , Service de Neurologie 2-Mazarin, Paris , France
| |
Collapse
|
12
|
Guerriero JL. Macrophages: The Road Less Traveled, Changing Anticancer Therapy. Trends Mol Med 2018; 24:472-489. [PMID: 29655673 PMCID: PMC5927840 DOI: 10.1016/j.molmed.2018.03.006] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/04/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
Abstract
Macrophages are present in all vertebrate tissues and have emerged as multifarious cells with complex roles in development, tissue homeostasis, and disease. Macrophages are a major constituent of the tumor microenvironment, where they either promote or inhibit tumorigenesis and metastasis depending on their state. Successful preclinical strategies to target macrophages for anticancer therapy are now being evaluated in the clinic and provide proof of concept that targeting macrophages may enhance current therapies; however, clinical success has been limited. This review discusses the promise of targeting macrophages for anticancer therapy, yet highlights how much is unknown regarding their ontogeny, regulation, and tissue-specific diversity. Further work might identify subsets of macrophages within different tissues, which could reveal novel therapeutic opportunities for anticancer therapy.
Collapse
Affiliation(s)
- Jennifer L Guerriero
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Palaga T, Wongchana W, Kueanjinda P. Notch Signaling in Macrophages in the Context of Cancer Immunity. Front Immunol 2018; 9:652. [PMID: 29686671 PMCID: PMC5900058 DOI: 10.3389/fimmu.2018.00652] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
Macrophages play both tumor-suppressing and tumor-promoting roles depending on the microenvironment. Tumor-associated macrophages (TAMs) are often associated with poor prognosis in most, but not all cancer. Understanding how macrophages become TAMs and how TAMs interact with tumor cells and shape the outcome of cancer is one of the key areas of interest in cancer therapy research. Notch signaling is involved in macrophage activation and its effector functions. Notch signaling has been indicated to play roles in the regulation of macrophage activation in pro-inflammatory and wound-healing processes. Recent evidence points to the involvement of canonical Notch signaling in the differentiation of TAMs in a breast cancer model. On the other hand, hyperactivation of Notch signaling specifically in macrophages in tumors mass has been shown to suppress tumor growth in an animal model of cancer. Investigations into how Notch signaling is regulated in TAMs and translates into pro- or anti-tumor functions are still largely in their infancy. Therefore, in this review, we summarize the current understanding of the conflicting roles of Notch signaling in regulating the effector function of macrophages and the involvement of Notch signaling in TAM differentiation and function. Furthermore, how Notch signaling in TAMs affects the tumor microenvironment is reviewed. Finally, the direct or indirect cross-talk among TAMs, tumor cells and other cells in the tumor microenvironment via Notch signaling is discussed along with the possibility of its clinical application. Investigations into Notch signaling in macrophages may lead to a more effective way for immune intervention in the treatment of cancer in the future.
Collapse
Affiliation(s)
- Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Wipawee Wongchana
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.,Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.,Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Cheng Z, Zhang D, Gong B, Wang P, Liu F. CD163 as a novel target gene of STAT3 is a potential therapeutic target for gastric cancer. Oncotarget 2017; 8:87244-87262. [PMID: 29152078 PMCID: PMC5675630 DOI: 10.18632/oncotarget.20244] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
CD163 is a member of the scavenger receptor cysteine-rich superfamily, and has been widely used to identify M2 type macrophage. However, the expression of CD163 in gastric cancer and its regulatory mechanism are still unclear. Here we show that CD163 is elevated in gastric cancer tissues. High expression of CD163 is a potential indicator to evaluate the status of tumor associated macrophages (TAMs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and cancer associated fibroblasts (Cafs). Besides, more CD163 positive macrophages and CD163 expressing gastric cancer cells are associated with tumor invasion and poor prognosis. Knocking-down CD163 in cancer cells could inhibit tumor growth in vivo. We also find various immune molecules which are correlated with CD163 in gastric cancer tissues and cell lines have positive staining in the cancer cells of clinical sample. Finally, we confirm CD163 is a novel target gene of STAT3 (signal transducer and activator of transcription 3) in gastric cancer. Our data indicate that CD163 may be a potential poor prognostic marker and therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Zhenguo Cheng
- National Center for The International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Danhua Zhang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Baocheng Gong
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Pengliang Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Funan Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
15
|
Jackaman C, Tomay F, Duong L, Abdol Razak NB, Pixley FJ, Metharom P, Nelson DJ. Aging and cancer: The role of macrophages and neutrophils. Ageing Res Rev 2017; 36:105-116. [PMID: 28390891 DOI: 10.1016/j.arr.2017.03.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/12/2022]
Abstract
Impaired immune function has been implicated in the declining health and higher incidence of cancer in the elderly. However, age-related changes to immunity are not completely understood. Neutrophils and macrophages represent the first line of defence yet their ability to phagocytose pathogens decrease with aging. Cytotoxic T lymphocytes are critical in eliminating tumors, but T cell function is also compromised with aging. T cell responses can be regulated by macrophages and may depend on the functional phenotype macrophages adopt in response to microenvironmental signals. This can range from pro-inflammatory, anti-tumorigenic M1 to anti-inflammatory, pro-tumorigenic M2 macrophages. Macrophages in healthy elderly adipose and hepatic tissue exhibit a more pro-inflammatory M1 phenotype compared to young hosts whilst immunosuppressive M2 macrophages increase in elderly lymphoid tissues, lung and muscle. These M2-like macrophages demonstrate altered responses to stimuli. Recent studies suggest that neutrophils also regulate T cell function and, like macrophages, neutrophil function is modulated with aging. It is possible that age-modified tissue-specific macrophages and neutrophils contribute to chronic low-grade inflammation that is associated with dysregulated macrophage-mediated immunosuppression, which together are responsible for development of multiple pathologies, including cancer. This review discusses recent advances in macrophage and neutrophil biology in healthy aging and cancer.
Collapse
Affiliation(s)
- Connie Jackaman
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia.
| | - Federica Tomay
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Lelinh Duong
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Norbaini Bintu Abdol Razak
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Fiona J Pixley
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Pat Metharom
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Delia J Nelson
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| |
Collapse
|
16
|
Zhou Q, Xian M, Xiang S, Xiang D, Shao X, Wang J, Cao J, Yang X, Yang B, Ying M, He Q. All-Trans Retinoic Acid Prevents Osteosarcoma Metastasis by Inhibiting M2 Polarization of Tumor-Associated Macrophages. Cancer Immunol Res 2017; 5:547-559. [PMID: 28515123 DOI: 10.1158/2326-6066.cir-16-0259] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
M2-polarized tumor-associated macrophages (TAM) play a critical role in cancer invasion and metastasis. Here, we report that M2 macrophages enhanced metastasis of K7M2 WT osteosarcoma cells to the lungs in mice, thus establishing M2 TAMs as a therapeutic target for blocking osteosarcoma metastasis. We found that all-trans retinoic acid (ATRA) inhibited osteosarcoma metastasis via inhibiting the M2 polarization of TAMs. ATRA suppressed IL13- or IL4-induced M2-type macrophages, and then inhibited migration of osteosarcoma cells as promoted by M2-type macrophages in vitro ATRA reduced the number of pulmonary metastatic nodes of osteosarcoma and decreased expression of M2-type macrophages in metastatic nodes both in intravenous injection and orthotopic transplantation models. ATRA's effect was independent of conventional STAT3/6 or C/EBPβ signaling, which regulate M2-like polarization of macrophages. Quantitative genomic and functional analyses revealed that MMP12, a macrophage-secreted elastase, was elevated in IL13-skewed TAM polarization, whereas ATRA treatment downregulated IL13-induced secretion of MMP12. This downregulation correlates with the antimetastasis effect of ATRA. Our results show the role of TAM polarization in osteosarcoma metastasis, identify a therapeutic opportunity for antimetastasis treatment, and indicate ATRA treatment as an approach for preventing osteosarcoma metastasis via M2-type polarization intervention. Cancer Immunol Res; 5(7); 547-59. ©2017 AACR.
Collapse
Affiliation(s)
- Qian Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Miao Xian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Senfeng Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Danyan Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|